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Abstract: We define a global model to simulate the characteristics of three kinds of the manufacturing systems with 
transport resources. Based on this model, we use an immune-based genetic algorithm to solve the associated 
scheduling problems. We take the makespan and minimum storage as the two objectives and use modified 
Pareto ranking method to solve this problem. We show how to choose the best solutions for the studied 
systems. Though not all the constraints of the real systems are considered until now, the computational 
results show that our proposed model and algorithm have efficiencies in solving scheduling problems. 

1 INTRODUCTION 

During the past decade, problems in production 
planning have been arisen dramatically in automated 
manufacturing systems. A well planed 
synchronization between the machines and the 
transportation resources are crucial to improve their 
efficiency. Most of the classical works do not 
consider transport operations constraints. However, 
material handling systems may become critical 
resources. Moreover numerous practical constraints 
have to be taken into account, and several objectives 
have to be considered. Multiobjective optimization 
no doubt plays a very important role to get a more 
realistic solution for the decision maker.  

In this paper, we consider the manufacturing 
systems with transportation resources which can be 
classified into mainly three main classes: flexible 
manufacturing systems (FMS), robotic cells (RC), 
and treatment surface facilities (TSF). A 
classification can be found in the literature for each 
of these systems (Hall et al., 1998, Tacquard & 
Martineau, 2001, Manier & Bloch, 2003, Brauner et 
al., 2005). In each system, the associated scheduling 
problems can be considered as specific ones. 
Nevertheless, there also exist similarities among 
them. In fact, there is few works related to the 
general problems which link the scheduling of 

product operations and transportation together. 
Knust (Knust, 1999) integrated the transportation 
issues into classical scheduling models. In the same 
way, we try to define a global model suitable for any 
of those systems with transportation constraints 
(section 2). An improved immune-based genetic 
algorithm and a modified Pareto-compliant ranking 
method are applied as the main solving methods to 
solve the scheduling problem with two objectives 
(minimization of the makespan and the storage) 
(section 3). The computational results for the 
proposed algorithm show that our model and the 
adopted algorithm are efficient enough to schedule 
the activities of production (section 4). 

2 GENERAL MODEL 

2.1 Notation 

Our notations consider the following four aspects: 
1) Job/task 
n : total number of jobs. 
Oi: number of the operations of job i (i ∈[1, n]). 
P(i,j): operation j of job i (j ∈[1, Oi]).  
pijk: processing time for P(i,j)), on machine MPk. 

−
kijp : minimal processing time of P(i,j) on machine  
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MPk. 
+
ijkp : maximal processing time of P(i,j) on machine 

MPk. 
di: due date of job i, i ∈[1, n]. 
tij: starting date of P(i,j). (i ∈[1, n], j ∈[1, Oi]) 
Ci: completion time of job i.  
2) Processing Resources 
MP: total set of the machines (processing resources) 
MPk: machine k (k ∈ [1, ⎜MP⎜]) (unitary capacity).  
PRij: is the total set of the processing resources that 
can perform operation j of job i . (i ∈[1, n], j ∈[1, 
Oi]). 
PJijk: PJijk =1, if the operation j of job i is performed 
by machine MPk; PJijk =0, otherwise 
YPiji’jk: =1, if P(i, j) is performed right before P(i', j') 
on the machine MPk; =0, otherwise 
Siji’j’k: setup time on MPk between P(i,j) and P(i’,j’). 
3) Transportation Resources 
MT: total set of the transportations. 
MTh: transportation resource h (Unitary capacity).  
T(i, j): transportation task between P(i, j) and P(i, 
j+1). 
TRij: total set of the transportation resources that can 
transport T(i, j). 
−
khl , +

khl : needed time for a transportation resource 
MTh to unload (respectively to load) machine MPk. 
σkk'h: empty travel time between machine MPk and 
MPk’ by transportation resource MTh, k, k’ ∈ [1, 
|MP|], h∈[1, |MT|]. 
τkk’h: loaded travel time between machines MPk and 
MPk’ by transportation resource MTh.(it includes −

khl  
and +

khl ) 

ijhTJ : =1, if T(i, j) is performed by MTh; =0, 
otherwise. 
YTiji’j’h: =1, if MTh performs T(i, j) right before T(i', 
j'); YTiji’j’h =0, otherwise. 
4) Storage Configuration: 

−s
ijkγ :time of the input buffer for P(i,j) treated on  

MPk. 
+s

ijkγ : time of the output buffer for P(i,j) on MPk. 

2.2 Mathematical Model  

The  objectives of the general model are to minimize  
the makespan and the minimal storage: 
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Constraint (1) is the precedence constraints between 
two operations of job i; constraint (2) is the 
processing time constraints for (i,j) on machine MPk; 
Constraint (3) makes sure that one operation can 
only be assigned to one machine; constraint (4) 
makes sure that one operation can only be assigned 
to one transportation resource; constraints (5) and (6) 
are the capacity constraints for each processing 
resource MPk; constraints (7) and (8) are the 
capacity constraints for each transportation resource 
MTh; constraint (9) is the travelling constraint, which 
expresses that a transportation resource MTh must 
have enough time to move a job i between two 
successive operations. 
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3 RESOLUTION 

We use an improved immune-based genetic 
algorithm as the training method to find 
nondominated solutions of the n-objective 
optimization problem. 
In our case, we code the antibody into two parts. The 
first part is a permutation of the s transportation 
tasks ( ∑

∈

−=
ni

iOs )1( ). The second part is a 

permutation of the m operation tasks 
( nsOm

ni
i +== ∑

∈

). 

3.1 Selection Operation 

In the algorithm (Zhang et al., 2006), the affinity 
between antigen and antibody v, is defined by 

vv optax = , where vopt  is the fitness of antibody v. 
The expected selection probability ev of antibody 

v is calculated as: ev = axv/cv, where cv is the density 
of antibody v. It can be seen from the above equation 
that the antibody with both high fitness and low 
density would have more chances to survive. 

We define that antibody v and antibody w have 
the affinity when the following inequality is satisfied 

Lwvf <),(  , where ||),(),( wv axaxwvdwvf −+= , 
and |axv-axw| is the Euclidean distance, 

)exp(0 TbLL ⋅×= , 00 >L ， 0>b ，and 0>T  is the 
number of evolution generations. L is an increasing 
function of evolution generations. The antibody’s 
diversity and density would be increased efficiently 
with the increase of the evolution generations and 
that the suppression would be more powerful to 
preserve high diversity. So the algorithm would have 
strong ability to control the reproducing process. 

3.2 Learning Procedure 

The  whole  learning  process  of  the  Pareto-  
imune-genetic algorithm can be described as follows: 

Step 1. Initialization of the Population. All the 
gene bits of each antibody in the first generation are 
generated randomly within the feasible domain. In 
the initialization stage, we calculate the time 
windows ],[ +−

ijij αα and ],[ +−
ijij ββ , which are the 

earliest and the latest starting dates of each operation 
P(i, j) and T(i, j) respectively. Then, according to all 
the constraints, we narrow down the time windows 
for all the operations and transportation tasks. Firstly, 
we update the earliest starting dates forwardly.  

Secondly, we update latest starting dates backwardly. 

Step 2. Calculation of the Time Windows. Then 
we allocate the tasks on each transport resource by 
randomly sequence. We do the same for each 
machine according to constraint (1). 

After that, we verify all the time windows. If an 
individual is not eligible we generate a new one. We 
do this until we obtain an eligible individual. The 
initial individual is replaced with this new one. 

Step 3. Fitness Calculation. We change the 
calculation of the new fitness as 
follows: ))1(exp( −−= kfk , which makes the value of 
the first objective varies according to the rank. And 
we take the Pareto ranking method (Goldberg, 1989) 
to calculate the rank. In this paper, the two objective 
fitness values are defined as the makespan and the 
minimum storage. 

Step 4. Evolution of the Population. The algorithm 
starts with the initial population that is generated 
randomly. The reproduction, crossover and mutation 
operators are used to produce the filial generation 
superior to their parents. Because it has improved 
the affinity calculation and makes the threshold 
value a dynamic parameter, it has strong ability to 
overcome the shortage of the tendency towards local 
optimum value and premature. We take the single 
point for crossover and the single bit for mutation. 
The reproduction operator is based on not only the 
fitness but also the density which plays an important 
role in diversity maintenance in immune system. 
The aforementioned steps are performed repeatedly 
until all the training data are trained completely. 

4 RESULTS 

Here, we take a simple example of five jobs (n=5), 
with: 41 =O , 32 =O , 23 =O , 44 =O , 45 =O , 

]5,1[=∀i , 15=id , 0=ir , },,{ 321 MTMTMTMT = , 
],1[ ni =∀ , ],1[ iOj∈∀ ,

ijPRk ∈∀ , |]|,1[ MTh∈∀ , 

|]|,1[' MPk ∈∀ ， 1=−
ijkp , 3k =

+
ijp , 1'' == hkkhkk τσ , and 

−
khl , 0=+

khl . The colony size is taken from 10 to 100 
respectively, the max evolvement generation is 
9000, crossover probability is 0.8 and mutation 
probability is 0.15. Other parameters are: b=0.01, 
l0=0.8. We run the program for 100 times, we got the 
pareto solutions sets, among which the best 
makespan is 9 and the minimum storage is 0. 

Fig.2  shows  results  for  a  population  size 100,  
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and a evolvement generation 1000. The Pareto 
solutions are the rectangular solutions; the others are 
the dominated ones. For manufacturing systems that 
required no storage (like in the TSF), the solutions 
correspond to makespans 12, 13, 14 or 15. For other 
systems that allow storage, we obtain solutions with 
better makespan. For this example the best 
makespan is 9 with storage 1. 

 
Figure 2: A resolution set with the population size 100, 
and with the evolvement generation 1000. 

Fig. 3 and 4 respectively present a solution with 
and without storage. The dotted (resp. blanked) 
squares are transportation tasks (resp. operations); 
their width represents the associated times. In Fig. 3, 
the dotted line for P(4,2) on MP3 means that P(4,2) 
can start between time 3 and time 5. The blank 
spaces between two transportation tasks represent 
the empty movements or waitness of the resource. 
The minimum storage corresponds to the time 
between T(1,3) and P(1,4) with time windows [6,7]. 
In Fig. 4, as all the processing times are bounded, 
the minimal storage for this solution can reach 0. 

 
Figure 3: The time windows for a solution with makespan 
9 and minimal storage 1. 

5 CONCLUSIONS 

We define a general model which enables us to solve  
several  kinds  of  manufacturing  schedule problems  
with  transportation constraints. To  reach  this  goal,  

we use pareto-immune-genetic algorithm to schedule  
both processing and transport operations. In this 
paper, we report our first results for a simplified 
model of a production system with or without 
storages, and with bounded processing times. In the 
future, we will complete this model with the 
additional constraints (the configuration of the 
transport network and the conflicts between 
transport resources). We will also try to improve our 
solving algorithm and to compare it with efficient 
algorithms developed for each of the considered 
systems. 

 
Figure 4: The time windows for a solution with makespan 
9 and minimal storage 0. 
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