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Abstract: The implementation of a recursive algorithm for the estimation of parameters of a linear single-input single-
output errors-in-variables system is re-considered. The objective is to reduce the computational complexity
in order to reduce the computation time per recursion, which, in turn, will allow a wider applicability of the
recursive algorithm. The technique of stationary iterative methods for least squares is utilised, in order to
reduce the complexity from cubic to quadratic order with respect to the model parameters to be estimated. A
numerical simulation underpins the theoretically obtained results.

1 INTRODUCTION quadratic order, whilst Section 5 presents numerical
examples. Section 6 contains concluding remarks as

In the case of linear time-invariant (LTI) errors-in- well as direction for further work.

variables (EIV) models not only the output signals

of the system, but also the input signals are as-

sumed to be corrupted by additive measurement noise

(Soderstrom, 2007b). An EIV model representation 2 PROBLEM STATEMENT

can be advantageous, if the aim is to gain a better \ ) . . .

understanding of the underlying process rather than” discrete-time, LTI single-input single-output

prediction. One interesting approach for the identi- (SISO) EIV system is considered, which is defined

fication of dynamical systems within this framework by

guthe so:called Frisch scheme_ (Beghellll et al., 1990; A(qfl)yoi _ B(qfl)uO“ (1)
Oderstrom, 2007a), which yields estimates of the

model parameters as well as the measurement noisavherei is an integer valued time index and

variances. Recently, recursive Frisch scheme algo- . . T

rithms have been developed in a series of papers by AG™) 1+ag " +..+a,q ™, (2a)

the authors (Linden et al., 2008b; Linden et al., 2007 B@?l) 2 bigt+..+by,g™ (2b)

Linden et al., 2008a). This paper considers a fast im-

plementation of the algorithm presented in (Linden are polynomials in the backward shift operatpr,

et al., 2008a), which reduces the computational com- which is defined such tha¢q™ = x_1. The noise-

plexity from cubic to quadratic order with respect to free inputug and outputyg are unknown and only

the model parameters to be estimated, hence allowingthe measurements

a wider range of applicability of the proposed algo-

rithm.

The paper is outlined as follows. The problem of Yi = Yo, +Vi (3b)
EIV system identification is formulated in Section 2,
where the required notation is also introduced. The
Frisch scheme, being one particular EIV system iden-
tification approach is reviewed in Section 3, where
non-recursive and recursive implementations are dis-
cussed. Section 4 develops the novel algorithm which A1 The dynamic system (1) is asymptotically stable,
reduces the computational complexity from cubic to i.e. A(g~1) has all zeros inside the unit circle.

Ui = Ug; + Gi, (3a)

are available, where; andy; denote the input and
output measurement noise, respectively. Such an EIV
setup is depicted in Figure 1.

The following assumptions are introduced:
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Uo:
0 System

Ui -~

Figure 1: Errors-in-variables setup.

A2 All system modes are observable and control-
lable, i.e. A(q~1) andB(g~?!) have no common
factors.

A3 The polynomial degreess, and n, are knowna
priori with ny < nj.

A4 The true inputlg, is a zero-mean ergodic process
and is persistently exciting of sufficiently high or-
der.

A5 The sequenceg andyi are zero-mean, ergodic,
white noises with unknown varianceg andoy,
respectively.

A6 The sequencasg andy; are mutually uncorrelated
and uncorrelated withg, andyg,, respectively.

A notational convention within this paper is that co-
variance matrices of two column vectegsandwy are
denoted

Sww 2 E [viw], LEEMV ], @)

whereE[-] denotes the expected value operator. In ad-

Problem 1. Given an increasing number of k sam-
ples of noisy input-output datgus, ya, ..., U, Yk}, de-
termine an estimate of the augmented parameter vec-
tor

207 o]

= [a1 an, b1 bn, Oy cg]T. (10)
Throughoutthis paper, the convention is made that

estimated quantities are marked by a ~ whilst time de-

pendent quantities have a sub- or supersdgig.g.

Z'g) for a sample covariance matrix corresponding to

2.

3 REVIEW OF THE FRISCH
SCHEME

One possibility to address Problem 1 is the so called
Frisch scheme (Beghelli et al., 1990; Soderstrom,
2006), which defines a set of admissible solutions
for the estimates of the input and output measure-
ment noise variances as well as the parameter vec-
tor. In order to single out one particular solution,
different model selection criteria have been proposed
within the literature, leading to different variants of
the Frisch scheme (Hong et al., 2007). The criterion

dition, vectors consisting of covariance elements are which is considered here is the Yule-Walker (YW)

denoted

&vc = Evici]

®)

model selection criterion described in (Diversi et al.,
2006) and the corresponding Frisch scheme algorithm
is denoted Frisch-YW.

with ¢; being a scalar. The parameters are elements

within a vector, which is defined by

02 b'|'=[a .. ay, b1 .. by,
(6a)
e2[@ b'|"=[1 0" . (6b)

This allows an alternative formulation of (1)-(3) given
by

$56=0, (72)
i = do + &, (7b)
where the regression vector is defined by
w2 of] ®)
= [-Yi1 —Yina U1 Uiny] T,
G260l 2w o) (9)

The noise-free regression vectdis, do, and the vec-
tors containing the noise contributiofis, §; are de-
fined in a similar manner. The EIV identification
problem is now stated as:

3.1 Non-recursive Frisch Scheme

The estimates of the (non-recursive) Frisch-YW are
characterised by the input measurement noise vari-
anceaog, whose estimate, denotéxg, is obtained by
the nonlinear set of equations (Beghelli et al., 1990;
Diversi et al., 2006)

A -1
o= (5-500) &,  (1a)
05 = Amin (Ax) , (11b)
6k =arg minV. (11c)
where
oyl 0
Sp(0) = | " 12

3(0) 0 Gl |’ (12a)

A ~ - ~ -1 .
A2 85, — 550, |55, —0uln,| g, (120)

1 2 1 sk zk 12
Vie= 5 lIn(®)12 = 512248 — &y l12, (12c)
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and Anmin denotes the minimum eigenvalue operator. proximate algorithm based on the Rayleigh quotient

The instrument vector ,denotég, is defined by has been proposed in (Linden et al., 2007). This leads
k= [kanbfl kantknz}-r (13) to A1

wheren; > na + Ny + 1 denotes the number of instru- ék,; =85+ R [07 Ina AkO } B_1, (16a)

ments which is user specified. The quantji{9) de- 2 0 Oiilng

notes the nonlinear least squares residual correspond- §kT L

ing to a certairB. Once thegy has been estimated, ”}E/ — ﬁiﬁ (Zq; a1 +Z¢ " b, 1) , (16b)

this value is substituted in (11b) and (11a), in order to ak_% -3

obtalncrk and#y, respectively. Note that (11a)-(11b)
form the core of the Frisch scheme, whilst (11c) is the Wheref, 1 denotes an intermediate parameter esti-
YW model selection criterion with the corresponding mate, which makes use of the most recent estimate of
YW cost function, denotel. Also note thaBy de- ag (which is determined before the updaten@ftakes
pends orok andc”r)';, where the latter is also a function place).
of 6% defined by (11b), henc¥y is nonlinear indk.

Update of ag. For the update of the input measure-
3.2 Recursive Frisch Scheme ment noise varianceg, a steepest-gradient algorithm

has been proposed in (Linden et al.,, 2008b). Re-
Update of 6. The recursive Frisch scheme pre- cently, an alternative approach for the (approximate)
sented in (Linden et al., 2008b) is based on the iter- minimisation of (12c¢) has been suggested in (Lin-
ative/recursive bias compensating least squares (RB-den et al., 2008a). There, the cost functidnis
CLS) approach (Sagara and Wada, 1977; Soderstrommaodified by replacing in (12c), which is nonlinear
2007b; Zheng and Feng, 1989). Assuming the noisein og due to (11a) and (11b), by the approximation
covariances have already been obtained, the parameLe(Sk 1), which is obtained by making use of lin-
ter vector is computed via earisations of (11a) and (11b) around the latest esti-

Bk = 65 + PZp (6k)Ok_1, (14) matesd_1. These linearisations have been developed

A 4 in (Soéderstrom, 2007a) and are given b
WhereekS andP are the least squares (LS) estimate ( ) g y

. i . A A n R R -1
and cor_respondmg (scale_d_) error covariance n_1atr|x, B~ Le(Bi 1) 2 81+ (Z{f, _ qu(ﬁk—l))
respectively. Both quantities are computed via the

well known recursive least squares (RLS) algorithm (17a)
Ljung, 1999 A
u LSg ) X (ék K01+ [cjléakl]> ,
BkS = 85, + L (e — 0083, ) (15a) by %0 Skbr 1
P10k R a . by 11 /. .
= ¥4 15b KL 4 k-1 Tke17H k=1_ gk
o7 P10+ % (15b) g~ Loy(Bk-1) =05 ~+ S <0u O'u)

17b
1 A 1060] A1 | o (17b)
A= 1— vk Pe1— o7 P10 +1 yk - (15¢) For a convenient notation, introduce
4 a Ak Sk
. 1) = — 240k 1
The quanting, is scaled such thik = 5. K11, whilst O-1) = &gy~ 290k (183)
the scaling factoy is chosen to be % A in the case Ak_ bl bk 1. R
- i i i ; + + oy
of exponential forgetting, witiA being the forgetting 511 A, U o |’
factor.
~ bk 1bk 1ék 1
A —
Update of oy. For the determination ady, a conju- KOk-1) = | & tlJT(k i J (18b)

gate gradient subspace tracking algorithm (cf. (Feng L
and Owen, 1996)) has been utilised in (Linden etal., %4 (6x_1) = Z'(; —25(0k-1). (18¢c)
2008b). In order to reduce the computational com-

plexity from cubic to quadratic complexityan ap- Using this notation, the quantity; given by (17b) can

be eliminated in (17a) yielding a linear expression for
1The complexity with respect to the number of parame- 8 which only depends 0@
ters to be estimated is considered. Note that the conjugate

gradient algorithm in (Linden et al., 2008b) is of cubic arde Lo(Sk_1) =Bk 1+ %o (Gt (Sk1)
due to the inverse computation within the Schur comple- 1A a Ak
ment (12b) and not due to the subspace tracking algorithm. +Zgo (Ok-1)K(Fk-1)0g: (19)
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Substituting® in (12c) with Lg(Sx_1) allows the ap-
proximate cost function to be defined

. 1 q
Vllm 2 > ||fk (Le(ﬁkfl)) H;’

which can be minimised analytically at each time in-
stancek. Differentiating with respect t@ and setting
equal to zero gives

IT(35) (85, B 1+ ZpkEr (B )] — &)

(20)

o=

—J7 (65)2I2¢Z$01(6’k_1)K(1§k_1) ’
(21)
where the Jacobia¥(6¥) is given by
N ~ dlg
ky _ Sk
J(6g) = qu)d_fré’ (22)

whilst the total derivative okg is obtained from (19)
as

(23)

The resulting algorithm, which consists of (14)-(16)
and (21) is referred to as recursive Frisch scheme
(RFS) within the subsequent development.

4 FAST RECURSIVE FRISCH
SCHEME ALGORITHM

It is observed that for the computation of the input
measurement noise variance in (21), the matgixis
required to be inverted. A matrix inversion is gener-
ally of cubic complexity with respect to its dimension,
which is here equal ta; + np, the number of param-
eters to be estimated. Indeed, this matrix inversion is
the bottleneck within the RFS approach described in
Section 3.2, since the remaining operations are only
of quadratic complexity with respect to the model pa-

rameters. Since the intended use for such a recursiveyq by assuming théng ~ %1 gk
u 1

scheme lies in an online computation of the system
parameters, it would certainly be attractive to reduce
the computational burden of the input measurement
noise computation to quadratic order. This would
allow a wider application of the algorithm for cases
where less computational power is available. The de-
velopment of such an algorithm is the topic of this
section.

4.1 First Bottleneck

The first bottleneck is due the computation of the in-
verse within the total derivative afy, which has been

given in Section 3.2 by (23). However, by making use
of stationary iterative methods for solving LS prob-
lems (Bjorck, 1996, Chapter 7), Equation (23) can be
re-expressed as
«dle _
® dak
where the matrix splitting is given naturally by (18c).

An iterative/recursive way to computég /d6¥ could
therefore be given by

LK 2P [K(ék—l) + qu(akfl)l-e_ll} ’

dLg A
— =K(J_
a5k (dk-1),

b3 T5(6k-1) (24)

(25)

where Lg denotes the recursively computed deriva-
tive andP = [i‘d;]‘l is given by the matrix inversion
lemma of the RLS algorithm, which is already com-
puted for the determination 6.

4.2 Second Bottleneck

The second bottleneck is due to the matrix inverse
within the computation of (19), therefore, an (approx-
imate) recursive expression fhg(dx_1) is required,
which is of quadratic complexity only. Firstly, intro-
duce the notatiotg(Sx_1) £ L§, where the index

is chosen to reflect the fact thlag corresponds to the
linearisation at time instande (although it depends
on the estimateéd,_; with time indexk — 1). Sec-
ondly, assume that all pagk have been computed
using the expression (19), which means tat, can

be replaced with.§ in (19). Thirdly, from (18a) and
(18b) it holds

ot

1(Sk_1) +K(Sk_1)8K g

R N S

B 1Bes o B b
+ a‘l,lgk—l -1 65714* a‘l,lgk—l -1 65
0
0 | Ak
+ | O-~7 26
[bk—l d (26)
K~ 65 and using
Bk_1 = L&™1, one obtains
1(Bh-1) +K(Hi1)8 ~ &, — ShLE™
~
a§ln 0 :| k-1
+ | L
0  G6Kln,| °
(27)

Finally, by substituting (18c) and (27) into (19), it
holds

(35— 25(6 1) | L = |55 - Z5(60 1) | LE
FE ST e nE0l T (@9)
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which simplifies to
(55— Z5(610)] L = —Zp(Bc 1)Ll 2+ &
+355GLS (29)

Thus, by using_‘é‘l ~ Lg, a recursive computation of
the linearised®-equation (17a) is given by

L ~ (5] €5, + (5] 25 (G0LE Y, (30)
which interestingly is, indeed, the RBCLS algorithm
given in (14) (i.e. simply replac with L in (14)).

Since the recursive computation lof is |dent|cal to

the RBCLS computation oy, the latter, more fa-
miliar, notation can be utilised. Substituting the lin-
earised\nin-equation (17b), the RBCLS equation be-
comes

b= 05 ¢ !
k k Kbk_
A ALS ~k a1
& Bc=06f +Pk[A crg+Pk[ ] (31)
X Ak_ +l3$ 1?1( 105 ! L 1 10u ;
Q131 131
which simplifies to
B = Pa (1) + Pk (1) 8% (32)

wherek (§y_1) is defined by (18b) and

R bl b1
(k1) = E¢y [ako l} 1 755715:: 10‘2‘1] .
19k~

k
¥ a

(33)
4.3 Fast Update of &%
Using the previous results, a fast implementation for

the update o6¥ can be realised. With the Jacobian at
time instancé being given by (cf. (22))

VEDINES (34)
it is therefore possible to compul as
_ 9T [$k A _ 2k
0=y [z<¢ek f Ezy} (35)

and by substitutind given in (32), the fast update
for X is finally given by

37 8, - 25, R 1)
JTZ ¢PkK(19k 1)
Note that only matrix vector multiplications are re-

quired for the fast computation 6{j hence the com-
putational effort is reduced towards quadratic com-
plexity. The fast RFS algorithm, which consists of

(14)-(16) and (36) is referred to as FRFS within the
subsequent development.

05 =

X

(36)
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5 NUMERICAL EXAMPLES

It is of interest to compare the RFS estimates with
those obtained by the FRFS and also to compare the
computation time of both algorithms.

5.1 Estimation of oy

A LTI SISO system withng = np = 2 and given by

6=[-15 07 1 0"
o=[21 01]"

(37a)
(37b)

is simulated for 1000 samples using a zero mean,
white and Gaussian distributed input signal of unity
variance. The RFS and FRFS algorithms are applied
to estimatel usingn; = na+np+ 1, whilstA = 1 is
chosen (i.e. noforgetting). The estimatesgtndoy

are projected into the intervalg, o'®] and[0, o'®Y,
where the maximal admissible values for the input
and output measurement noise variances are chosen
to beoi™ =20 = 0.2 andoy'® = 20y = 4.2, respec-
tively. The estimates afy are compared in Figure 2.
Here it is observed that the projection facility (which

—---true

& RFS

o —FRFS

P YRS | SRRRUEEREREEE SRR L (R T 1] PO et SRR
0.05

200 400 600 800 1000

k
Figure 2: Estimates afg for using the RFS, and FRFS.

setsdk = 0~ L if the estimate is not within the speci-
fied mterval) seems to be more often active for the fast
algorithm (see arounkl= 420). After approximately
500 recursions, however, the FRFS estimate is barely
distinguishable from the RFS, although the FRFS so-
lution seems to be slightly more erratic. Hence, at
least in the example considered here, the FRFS ap-
pears to be able to approximate the estimate;aib-
tained by the more computationally demanding RFS
algorithm.

5.2 Comparison of Computation Time

Naturally, it is of major interest to compare the com-
putation time per recursion of the FRFS algorithm
with that of the RFS scheme. Therefore, the algo-
rithms are applied to systems with an incrementally
increasing model ordeamn=n; =ny = 1,...,30 and

the computation time per single recursion is recorded
for each identification task. The results are presented
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in Figure 3, which clearly shows the relative reduction 17th Int. Symp. on Math. Theory of Networks and Sys-
of computational complexity for the FRFS approach. tems pages 391-395.

For a model order ah= 30, the RFS requires around Feng, Y. T. and Owen, D. R. J. (1996). Conjugate gradi-
ent methods for solving the smallest eigenpair of large

x10 symmetric eigenvalue problemmt. J. for Numerical
3 RFS , | Methods in Engineering39:2209-2229.
) —FRFS Hong, M., Soderstrom, T., Soverini, U., and Diversi, R.
£l 1 (2007). Comparison of three Frisch methods for
= errors-in-variables identification. Technical Report
1 ‘ ‘ ' ‘ | 2007-021, Uppsala University, Uppsala, Sweden.
5 10 B 20 25 30 Linden, J. G., Larkowski, T., and Burnham, K. J. (2008a).
An improved recursive Frisch scheme identification
Figure 3: Computation time per single recursion with in- algorithm. InProc. 19th Int. Conf. on Systems En-
creasing model orden. gineering pages 6570, Las Vegas, USA.

Linden, J. G., Vinsonneau, B., and Burnham, K. J. (2007).
3.5ms, whilst the FRFS requires less than 2.0ms. The Fast algorithms for recursive Frisch scheme system

fact that the slope of the curve corresponding to the identification. InProc. CD-ROM 22nd IAR & ACD
FRFS algorithm is lower than that of the RFS ap- Workshop Grenoble, France.

proach illustrates that the computational complexity Linden, J. G., Vinsonneau, B., and Burnham, K. J.
is reduced from cubic to quadratic order; this under- (2008b). ~ Gradient-based approaches for recursive

Frisch scheme identification. Preprints of the 17th

pins the theoretical results obtained in this paper. IFAC World Congresspages 1390-1395. Seoul, Ko-

rea.
Ljung, L. (1999). System lIdentification - Theory for the

6 CONCLUSIONSAND FURTHER user. PTR Prentice Hall Information and System Sci-
WORK ences Series. Prentice Hall, New Jersey, 2nd edition.

Sagara, S. and Wada, K. (1977). On-line modified least-

. . P - squares parameter estimation of linear discrete dy-
The _Fnsgh sphemt_a for_the |d_ent|f|cat|on of lin namic systemsint. J. Contro| 25(3):329—343.
ear time-invariant single-input single-output errors-

P - _Soderstrom, T. (2006). Statistical analysis of the HFrisc
in-variables systems has been reviewed. Thejwell scheme for identifying errors-in-variables systems.

known non-recursive case as well as a recently devel- Technical report 2006-002, Uppsala University, De-
oped recursive algorithm has been discussed. Since partment of Information Technology, Uppsala, Swe-
the latter is of cubic computational complexity with den.

respect to the number of parameters to be estimated gpderstrom, T. (2007a). Accuracy analysis of the Frisch
several approximations have been introduced, in or- scheme for identifying errors-in-variables systems.
der to reduce the complexity from cubic to quadratic IEEE Trans. Autom. Contr52(6):985-997.

order. This theoretical result is in agreement with the Saderstrom, T. (2007b). Errors-in-variables methodsyis
measured computation time which has been obtained tem identification Automatica 43(6):939-958.
for a numerical simulation. This simulation has also zheng, W. X. and Feng, C. B. (1989). Unbiased parameter

shown that the fast algorithm is able to approximate estimation of linear systems in the presence of input
the solution of the computationally more demanding and output noiselnt. J. of Adaptive Control and Sig-
algorithm satisfactorily. nal Proc, 3:231-251.

Further work could concern the convergence prop-
erties of the recursive algorithm.
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