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Abstract: In this paper, we propose a fuzzy system to act as a control mechanism for the evolutionary process of 
search of a Cultural Algorithm with Evolutionary Programming (CAEP) applied to real-valued function 
optimization. The fuzzy system uses population knowledge to adjust the Influence Factor that represents the 
intensity of the influence of the Variation operator of the CAEP model, therefore adjusting the search 
process. This paper also presents a comparative analysis of the proposed influence function using well-
known benchmarking functions. 

1 INTRODUCTION 

Fuzzy Systems have been used as control 
mechanisms in many applications. From the control 
of industrial processes to self adapting air-
conditioners, fuzzy control systems have been 
successfully employed due to their capability of 
processing uncertain, imprecise knowledge. 

Cultural Algorithms (CA) are a class of 
evolutionary computational models proposed by 
Reynolds, derived from observing the cultural 
evolution process in nature (Reynolds, 1994). CA 
categorizes the population experience in several 
knowledge sources stored in a belief space and 
utilizes this knowledge to guide the further evolution 
of the population. 

The use of fuzzy reasoning as a controller of the 
process of acquiring experimental knowledge was 
proven to be successful in increasing the 
performance of a cultural algorithm with 
evolutionary programming (CAEP) system (Chung, 
1997). 

The fully-fuzzy Cultural Algorithms framework 
approach managed to obtain even better results in 12 
of the functions that the crisp version of the 
framework could not always provide the solution in 

the allotted number of generations (Zhu, 1998). The 
fully fuzzified approach for the Cultural Algorithm 
with Evolutionary Programming (CAEP) system 
consisted of a fuzzy acceptance function, a fuzzy 
representation of the knowledge contained within 
the belief space and a fuzzy influence function (Zhu, 
1998). 

Still, we believe there is a chance for further 
improvement in the fuzzy influence function 
proposed in (Zhu, 1998), as a control mechanism for 
the search process. The proposal of this paper 
utilizes a fuzzy inference system to regulate the 
intensity of the EP variation operator based on 
imprecise search optimization knowledge, more 
specifically cultural influence level knowledge. 

2 CULTURAL ALGORITHMS 

As stated above, Cultural Algorithms are a class of 
evolutionary computational models proposed by 
Reynolds, derived from observing the cultural 
evolution process in nature (Reynolds, 1994). CA 
has three major components: a Population Space, a 
Belief Space and a Communication Protocol that 
determines  how  knowledge  is exchanged between  
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the first two components. 
The population space can support any 

population-based computational model, such as 
Genetic Algorithms and Evolutionary Programming 
(Reynolds et al., 2005). The belief space is a 
knowledge repository, gathered from the behaviour 
and individual experiences of the members of the 
population space. Saleem (Saleem, 2001) defines 
five different knowledge sources, stored and 
manipulated within the belief space: Situational 
Knowledge, exemplars of successful and 
unsuccessful behaviours in the population space; 
Normative Knowledge, defining the range of 
acceptable or desirable behaviours; Domain 
Knowledge, such as knowledge about domain 
objects, their properties and relationships; History 
Knowledge, that stores temporal patterns of 
behaviour; and Topographical Knowledge, that 
stores spatial patterns of behaviour of the search 
space. 

The communication protocol defines how the 
members of the population space contribute to the 
knowledge gathering within the belief space and 
how the knowledge stored in the belief space 
influences the individuals in the population space. 
To achieve this, two distinct channels are defined: 
the Acceptance Function selects the individuals 
whose behaviours and experiences will contribute to 
update the knowledge in the belief space; and the 
Influence Function defines how the knowledge 
stored in the belief space influences the operators 
that modify the individuals in the population space. 
Chung (Chung, 1997), Zhu (Zhu, 1998) and 
Rodrigues (Rodrigues, 2007) state that the influence 
function works as a self-adaptation mechanism for 
the evolutionary process, for it adapts the population 
operators according to the gathered knowledge. 

The Cultural Algorithm, therefore, is a dual 
inheritance system that characterizes evolution in 
human culture at both the macro-evolutionary level, 
which takes place within the belief space, and at the 
micro-evolutionary level, which occurs in the 
population space (Reynolds et al., 2005). 

Figure 1 depicts the main components of the 
Cultural Algorithms framework and their 
relationships, adapted from (Saleem, 2000). 

 
Figure 1: Cultural Algorithms Framework (Saleem, 2000). 

3 THE CAEP FRAMEWORK 

The CAEP (Cultural Algorithm with Evolutionary 
Programming), as defined by Chung (Chung, 1997), 
is a Cultural Algorithm framework with 
Evolutionary Programming as its population 
component, and the global knowledge that is learned 
by the population expressed as Normative and 
Situational knowledge sources. It was successfully 
used by Chung in real-valued function optimization. 
In the following subsections, the CAEP framework 
is briefly explained. 

3.1 Evolutionary Programming 

Evolutionary Programming (EP) can usually be 
described, as in (Fogel, 1996): 

൅1ݐݔ ൌ  ሻሻ (1)ݐݔሺݒሺݏ

where ݐݔ is the population of solutions in the 
iteration t, v() is the variation operator used to 
generate new solutions and s() is the selection 
operator that determines which candidate solutions 
will survive to the next population ݐݔ൅1. 

3.2 Belief Space Structure 

The formal definition of the belief space in the 
CAEP framework is < E, N[1,…,n] >, where E is the 
set of exemplars of desirable behaviour and 
represents the situational knowledge. N[1,…,n] is 
normative knowledge component, which consists of 
a set of interval information for each n parameter. 
Each interval in the N set is denoted as < I, U, L >, 
where I denotes a closed interval of real numbers x, 
represented as: 

I = [l,u] = {x | l ≤ x ≤ u} (2)

where l (lower bound) and u (upper bound) are 
initialized as the domain values. Lj represents the 
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performance score for the lower bound l for the 
parameter j and Uj represents the performance score 
for the upper bound u for the parameter j (Chung, 
1997). 

3.3 Acceptance Function 

The acceptance function selects the individuals that 
will contribute with the formation of the knowledge 
in the belief space. There are many possible classes 
of acceptance functions. Chung (Chung, 1997) 
described a few of these functions. 

The acceptance function used in the tests of the 
influence function described in this paper is the Top 
20%. This function is static in nature and consists in 
selecting the top 20% of the individuals in the 
population space. It was chosen for its simplicity and 
because it provided one of the best results in 
Chung’s tests (Chung, 1997). 

3.4 Adjusting the Belief Space 

In the belief space, the situational knowledge 
consists of the current and previous best individuals 
found so far. Formally, it is represented as ൏
,ሬԦ௧ܧ ሬԦ௧ିଵܧ ൐  and is adjusted by the following rule: 

ሬԦ௧ାଵܧ ൌ ቊݔԦ௕௘௦௧
௧ , ݂݅ ݂ሺݔԦ௕௘௦௧௧ ሻ ൏ ݂൫ܧሬԦ௧൯

                  ,ሬԦ௧ܧ ݁ݏ݅ݓݎ݄݁ݐ݋          
 (3)

where ݔԦ௕௘௦௧௧  is the best individual (solution 
parameter vector) found in the population time t 
(Chung, 1997). 

The normative knowledge component, N, is 
updated using the individuals selected by the 
acceptance function, which are used to calculate the 
current acceptable interval for each of the 
parameters of the individuals. In the following, i 
represents the individual with the lowest value for 
parameter j and k denotes the individual with the 
highest value for parameter j. The update rules for 
the left boundary and its fitness score for parameter j 
are: 

௝݈
௧ାଵ ൌ ቊ

௜.௝௧ݔ , ௜.௝௧ݔ ݂݅   ൑ ௝݈
௧ ݎ݋ ݂ሺݔ௜௧ሻ ൏ ௝௧ሻܮ

௝݈
௧,                      ݁ݏ݅ݓݎ݄݁ݐ݋         

 (4)

 

௝௧ାଵܮ ൌ ቊ
݂ሺݔ௜ሻ,   ݂݅ ݔ௜.௝௧ ൑ ௝݈

௧ ݎ݋ ݂ሺݔ௜௧ሻ ൏ ௝௧ሻܮ
                       ,௝௧ܮ ݁ݏ݅ݓݎ݄݁ݐ݋            

 (5)

where ௝݈
௧ denotes the lower limit of the acceptable 

interval for parameter j at generation (iteration) t and 
 ௝௧ represents the performance score for it. Theܮ

update rules for the right boundary and its fitness 
score for parameter j are: 

௝௧ାଵݑ ൌ ቊ
௞.௝௧ݔ , ݂݅ ௞.௝௧ݔ ൒ ௜௧ሻݔሺ݂ ݎ݋ ௝௧ݑ ൏ ௝ܷ

௧ሻ
,௝௧ݑ ݁ݏ݅ݓݎ݄݁ݐ݋            

 (6)

 

௝ܷ
௧ାଵ ൌ ቊ

݂ሺݔ௜ሻ, ݂݅ ௞.௝௧ݔ ൒ ௜௧ሻݔሺ݂ ݎ݋ ௝௧ݑ ൏ ௝ܷ
௧ሻ

௝ܷ
௧, ݁ݏ݅ݓݎ݄݁ݐ݋            

 (7)

where ݑ௝௧ denotes the upper limit of the 
acceptable interval for parameter j at 
generation (iteration) t and ௝ܷ

௧ represents the 
performance score for it. 

3.5 Cultured EP Algorithm 

The following pseudo-code was proposed by Chung 
(Chung, 1997) for a basic “cultured” EP algorithm 
and constitutes the skeleton algorithm for the CAEP 
framework. Steps (3) and (8), shown in bold 
characters, are the procedures added in order to 
introduce the cultural aspect in the EP algorithm. 
Note that step (4) represents the step where the 
influence function is applied for the CAEP 
framework and is where the self-adaptation occurs 
(Chung, 1997). 

 
(1) Generate an initial population of p candidate 

solutions from an uniform distribution within 
the given domain for each parameter from 1 to 
n; 

(2) Assess the performance score for each parent 
solution using the objective function; 

(3) Initialize the belief space with the given 
problem domain and candidate solutions; 

(4) Generate p new offspring by applying the 
variation operator, v(), as modified by the 
influence function. Now, there are 2p solutions 
in the population; 

(5) Assess the performance score for each offspring 
using the given objective function f; 

(6) For each individual, select c competitors at 
random from the population of 2p size. Next, 
conduct pair-wise competitions between the 
individual and the competitors and count the 
number of wins wi for that individual; 

(7) Select the p solutions with the greatest number 
of wins (wi) to be the parents of the next 
generation; 

(8) Update the belief space by accepting individuals 
using the acceptance function described in 3.3. 
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The belief space is adjusted according to the 
rules presented in 3.4. 

(9) The process returns to step 4 unless the 
available execution time is exhausted or an 
acceptable solution has been found. 

3.6 Chung’s Influence Functions 

The knowledge stored in the belief space can 
influence the evolutionary variation operator v in 
two ways: (1) determining the size of the mutation 
change, called step size, and (2) defining the 
direction of the variation, positive or negative 
(Chung, 1997). Chung proposed three different 
influence functions: The CAEP(Ns), CAEP(Ns+Sd), 
and the CAEP(Nsd). Chung showed that the 
CAEP(Nsd) had the best results. Thus, this influence 
function is described in the following. 

3.6.1 CAEP(Nsd) 

This version utilizes the normative knowledge to 
determine both the size and the direction of the 
variation. The basic idea is to perturb small in a 
random direction if an individual’s parameter value 
is in the acceptable range; otherwise, perturb the 
parameter value towards the left or right boundary of 
the acceptable range for that parameter in the belief 
space. For all individuals i = 1…p and parameters j 
= 1…n: 

௣ା௜,௝ݔ ൌ ൞
௜,௝ݔ ൅ ห݁ݖ݅ݏ൫ܫ௝൯ כ ௜ܰ,௝ሺ0,1ሻห, ௜,௝ݔ ݂݅ ൏ ௝݈

௧

௜,௝ݔ െ ห݁ݖ݅ݏ൫ܫ௝൯ כ ௜ܰ,௝ሺ0,1ሻห, ௜,௝ݔ ݂݅ ൐ ௝௧ݑ

௜,௝ݔ ൅ ߚ כ ௝ܫ݁ݖ݅ݏ כ ௜ܰ,௝ሺ0,1ሻ, ݁ݏ݅ݓݎ݄݁ݐ݋
 (8) 

where ௝݈௧ and ݑ௝௧ represent the lower limit and upper 
limit for the parameter j in the generation t, 
respectively. β is set to 0.2. 

4 THE FUZZY INFERENCE 
INFLUENCE FUNCTION (FIS-
NSD) 

Many works have been able to achieve some 
improvements in real-valued function optimization 
by making some aspects of Cultural Algorithms 
fuzzy. Chung (Chung, 1997) proposed a fuzzy 
acceptance function, based on a fuzzy inference 
engine to determine the percentage of accepted 
individuals in each generation, taking in 
consideration the current generation and the success 

ratio of the algorithm as the input of the engine, and 
was able to improve the overall performance of the 
algorithm in 34 benchmark functions; Zhu (Zhu, 
1998) proposed a fully fuzzy cultural algorithm and 
was able to improve the results in Chung on 12 
benchmark functions. 

We propose an influence function based on those 
proposed by Chung and Zhu, and incorporating a 
fuzzy inference engine to better represent imprecise 
search optimization knowledge, more specifically 
cultural influence level knowledge. 

We used the influence function Nsd proposed by 
Chung as the base mechanism to influence the 
variation operator. The following is the rule that 
defines the proposed influence function. For all 
individuals i = 1…p and parameters j = 1…n: 

௣ା௜,௝ݔ

ൌ ൞
௜,௝ݔ ൅ ࢏࣓ כ ห݁ݖ݅ݏ൫ܫ௝൯ כ ௜ܰ,௝ሺ0,1ሻห, ௜,௝ݔ ݂݅ ൏ ௝݈

௧

௜,௝ݔ െ ࢏࣓ כ ห݁ݖ݅ݏ൫ܫ௝൯ כ ௜ܰ,௝ሺ0,1ሻห, ௜,௝ݔ ݂݅ ൐ ௝௧ݑ

௜,௝ݔ ൅ ࢏࣓ כ ߚ כ ௝൯ܫ൫݁ݖ݅ݏ כ ௜ܰ,௝ሺ0,1ሻ, ݁ݏ݅ݓݎ݄݁ݐ݋
 (9) 

where ωi represents the influence factor that 
modifies the intensity in which the variation operator 
is applied to the ith individual. This influence factor, 
similar to the step adjustment coefficient described 
by Zhu (Zhu, 1998), is designed to adjust the search 
process in a search optimization knowledge-based 
heuristic.  

As stated in (Chung, 1997), the age of an 
individual is important information because if an 
individual is old, that means the it might be trapped 
in a local optimum. So, in order to escape, a larger 
perturbation might be necessary.  

Another important parameter to be considered is 
the performance evaluation of an individual. If its 
fitness evaluation is considered to be poor, then it 
could mean that the individual is farther from 
finding the global optimum than the best individuals 
in the population, so it might be necessary that the 
change we apply in this individual is greater than 
that we apply in the best ones. The fitness evaluation 
rule of an individual is defined as a real value 
between 0 and 1.  

The main idea is to regulate the intensity of the 
change in the variation operator applied to a parent 
individual using a fuzzy inference system. The fuzzy 
inference engine receives as input two variables, 
corresponding to the age (in number of generations) 
of the individual and the fitness evaluation of the 
individual, to determine the influence factor ωi for 
each individual i, from i = 1…p. The fuzzy 
inference system is shown in figure 2. 
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Figure 2: Fuzzy Inference System used to determine ωi. 

The antecedent membership functions are linear 
functions for the fuzzification process and are shown 
in the figures 3 and 4. In the fuzzy inference system, 
a set of input parameters, representing the age of the 
individual and its fitness evaluation, are mapped into 
one or more degrees of membership, e.g. Young, 
Adult and Old; Poor, Average and Good. 

After the fuzzification process, the engine makes 
use of the rules shown in figure 4 to infer the degree 
of membership of the fuzzy output and provide a 
real-valued output ωi. The membership function for 
the output variable InfluenceFunction is shown in 
figure 5. 

The basic knowledge represented in the rules 
designed in the fuzzy inference system is the 
following: if the individual is Old or its fitness 
evaluation is Poor, then the influence factor applied 
in the variation operator for that individual is High; 
if the individual is Young or its fitness evaluation is 
Good, then the influence factor concerning this 
individual is Low. 

 
Figure 3: Membership Function for the Age parameter. 

 
Figure 4: Membership Function for the Fitness Evaluation 
parameter. 

 
Figure 5: Membership Function for the output parameter, 
Influence Factor ωi. 

The fuzzy inference rule base used in the fuzzy 
inference system is shown in table 1. 

Table 1: The Fuzzy Inference Rules used in the FIS. 

 Poor Average Good 
Young Medium Medium Low 
Adult High Medium Medium 
Old High High Medium 

5 TESTS DESCRIPTION 

The approach was tested using a set of 14 of the 
well-known 25 CEC ‘05 benchmarking functions 
(Suganthan et al., 2005), both unimodal (F01 to F05) 
and multimodal - basic (F06 to F12) and expanded 
(F13 and F14). All functions were used with 
dimensionality n = 30. 

According to Chung’s results, the best influence 
function is the CAEP(Nsd). So, we used this CAEP 
configuration to compare with the proposed 
CAEP(FIS-Nsd) influence function. Both CAEP 
configurations use the top-20% as the acceptance 
function, a population size of 60 individuals, iterated 
tournament as the selection operator, and were 
executed for 25 runs, each run set to 300000 
function evaluations (FEs) at maximum, equivalent 
to 5000 generations. 

6 TESTS RESULTS 

The results are shown in tables 2 and 3, depicting the 
minimum number of FEs used to solve the function, 
the average number of FEs required, the average 
fitness value of the best solutions and the success 
rate, for each CAEP configuration. 
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Table 2: Results for the 14 Functions for the CAEP(Nsd) 
configuration. 

Function MIN FEs AVG FEs BEST 
Fitness 

AVG 
Fitness 

Success 
% 

F01 12360 12712.8 -450 -450 100
F02 155340 139003.2 -450 -450 100
F03 300000 300000 4.48E5 2.29E6 0
F04 300000 300000 -449.9996 -449.96 0
F05 300000 300000 1553.32 2315.67 0
F06 300000 300000 390.00 410.95 0
F07 300000 300000 4516.28 4516.28 0
F08 300000 300000 -119.14 -119.06 0
F09 300000 300000 -319.05 -260.31 0
F10 300000 300000 -173.88 -167.66 0
F11 300000 300000 95.47 117.13 0
F12 300000 300000 2.75E5 3.82E6 0
F13 300000 300000 -116.52 -115.85 0
F14 300000 300000 -287.01 -286.91 0

Table 3. Results for the 14 Functions for the CAEP(FIS-
Nsd) configuration. 

Function MIN FEs AVG FEs BEST 
Fitness 

AVG 
Fitness 

Success 
% 

F01 10320 10886.4 -450 -450 100
F02 151020 162852 -450 -450 100
F03 300000 300000 3.26E5 4.45E5 0
F04 268268 294892,8 -450 -449.996 36
F05 300000 300000 1964.69 2412.47 0
F06 300000 300000 390.34 397.56 0
F07 300000 300000 4516.28 4516.28 0
F08 300000 300000 -119.29 -119.10 0
F09 300000 300000 212.17 -186.38 0
F10 300000 300000 -173.91 -159.71 0
F11 300000 300000 128.62 129.48 0
F12 300000 300000 1562.40 14900.4 0
F13 300000 300000 -116.78 -116.42 0
F14 300000 300000 -286.68 -286.64 0

7 FINAL REMARKS 

We observed that the addition of a fuzzy inference 
system to regulate the intensity of the influence 
function applied to the individuals alone can 
improve the performance of the CAEP(Nsd) 
configuration. However, the contribution is only 
perceived in unimodal functions, as can be seen in 
the results. For improving the performance in 
multimodal functions, we envision the addition of 
other knowledge sources, such as historical, 
topographic and domain knowledge, and fuzzy 
influence functions that make use of these 
knowledge sources to the CAEP framework as 
future work. 
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