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Abstract: We are concerned with the control of a 3-DOF robot arm actuated by pneumatic rubber muscles. The 
system is highly non-linear and somehow difficult to model therefore resorting to robust control is 
required.The work in this paper addresses this problem by presenting two types of robust control. One uses 
neural network control, which has powerful learning capability, adaptation and tackles nonlinearities; in our 
work the learning performed on-line is based on a binary reinforcement signal without knowing the 
nonlinearities appearing in the system and no preliminary off-line learning phase is required. The other 
control law is a Classical variable structure which is robust against parameters variations and external 
disturbances. Experimental results together with a comparative study are presented and discussed. 

1 INTRODUCTION 

For most robotic applications, the common actuator 
technology is electric with very limited use of 
hydraulics or pneumatics but electrical systems 
suffer from relatively low power/weight ratio, 
especially in the case of human-friendly robot or 
human coexisting and collaborative systems, such as 
in medical and welfare fields. Therefore, sharing the 
robot working space with its environment is 
problematic. Conversely, the human arm is not very 
accurate, but its lightness and joint flexibility due to 
the human musculature give it a natural capability 
for working in contact. A novel pneumatic artificial 
muscle (PAM) actuator (Caldwell et al., 1993; 
Bowler et al.), which has achieved increased 
popularity to provide these advantages, has been 
regarded during the recent decades as an interesting 
alternative to hydraulic and electric actuators and 
applied to construct a therapy robot where high level 
of safety for humans is required. However, the 
complex nonlinear dynamics of the PAM 
manipulator makes it a challenging and appealing 
system for modeling and control design. As a result, 
a considerable amount of research has been devoted 
to the development of various position control 
systems for the PAM manipulator. The fine control 
performance could be obtained by using some 
control strategies such as sliding mode control (Cai 

and Yamaura, 1997; Carbonell et al., 2001; Tondu 
and Lopex, 2000; Hamerlain, 1995), adaptive 
control and so on. However, these systems were 
based on the assumption that the process to be 
controlled should be linear and past of the research 
results are just considered with step reference input. 
Furthermore, intelligent control techniques have 
emerged to overcome some deficiencies in 
conventional control methods in dealing with 
complex real-world systems in more recent years. 
Fuzzy controllers (Balasubramanian and Rattan, 
2003) have been successfully implemented for many 
linear and nonlinear processes. However, there were 
obviously steady-state error, and it also was very 
hard to implement in practice because of the 
difficulty in constructing the control rule’s bases. In 
addition, neural network control has been 
successfully used in many commercial and industrial 
applications in recent years. An adaptive controller 
based on the neural network was applied to the 
artificial hand, which was composed of the PAM 
(Folgheraiter et al., 2003). Nonlinear PID control to 
improve the control performance of 2 axes 
pneumatic artificial muscle manipulator using neural 
network (NN) has been proposed by Tu Diep (Thanh 
and Kwan, 2006).  

The work in this paper addresses this problem by 
showing the ability of the NN to learn unmodeled 
nonlinear dynamics through reinforcement learning.  
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In this paper, we will explore a new type of 
reinforcement learning algorithm (Kim and Lewis, 
1997), in which the learning signal is merely a 
binary "+1" or "-1", from a critic rather than an 
instructive correction signal. Compared with 
existing NN learning methods, where learning is 
performed in a trial-and-error manner, the NN 
weights in our scheme are tuned on-line, with no 
off-line learning phase required, in such a fashion 
that closed-loop performance is guaranteed. The 
experiments were carried out in practical 3 axes 
PAM manipulator and the effectiveness of the 
proposed control algorithm was demonstrated and 
compared with sliding mode control, which suggests 
its superior performance and disturbance rejection. 

2 ACTUATOR AND 
MECHANICAL STRUCTURE 

The three degrees of freedom (DOF) of the robot 
manipulator prototype illustrated in figure 1 are 
considered. It consists of a base joint, a shoulder 
joint and an elbow joint, all of which are revolute. 

 
 

 
Figure 1: Experimental robot arm. 

Since the pneumatic artificial rubber muscles 
(PAM) are contractile devices, in order to have a 
bidirectionally actuated revolute joint, two PAM 
have to be used in what is generally called an 
antagonistic setup. This is illustrated in figure 2. 
 

 
Figure 2: Working principle of a joint. 

The muscles in this application were designed to 
function as biceps. As the internal air pressure 
increases, the actuator expands in its radial direction 
and contracts its length. The (PAM) selected as the 
actuator for this robot arm is the MAS-40 fluidic 
muscle manufactured by FESTO (Pomiers, 2003).  

3 DIRECT REINFORCEMENT 
ADAPTIVE LEARNING 
NEURAL NETWORK 
CONTROL 

3.1 Neural Networks 

Here we employ a simple “two-layer” feedforward 
neural network (NN) to approximate a general 
smooth non linear function on a compact set 

nR (Sadegh, 1993). According to the NN 
approximation property: 

( ) )()( xxVWxf TT εσ +=  (1) 

where x= [1 x1 x2 … xn] is the input to NN, σ( ) is an 
active function, W and V are defined as the 
collection of respectively, NN weights for output 
and hidden layer and ɛ(x) is the NN approximation 
error. 

The NN in the remainder of the paper is 
considered with the first layer weight V fixed. This 
makes the NN linear in the parameters. Selecting a 
constant V result in the NN output ( )χσTWy = . 

There exist constant weights W so that the 
nonlinear function to be approximated can be 
represented as: 

( ) )()( xWxf T εχσ +=  (2) 

with ;)( Nx εε < Nε  is a known value.  
Then, the functional estimate can be given by 

)(ˆ)(ˆ χσTWxf =  Where Ŵ is provided by a 
certain tuning algorithm. In particular in Barron’s 
paper (Barron, 1993) it was shown that neural 
networks can serve as universal approximators for 
continuous functions more efficiently than 
traditional functional approximators, even though 
there exists a fundamental lower bound on the 
functional reconstruction error of 
order n

kN

2

)1( where kN is the number of neurons in 

the hidden layer. 
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3.2 Controller Design 

In this paper, the detailed system dynamics and the 
nonlinearities in the controlled system are assumed 
to be unknown. It is only supposed that the system 
belongs to a general class having a canonical 
structure: 

1

32

21

)()()(
xy

tutdxgx

xx
xx

n

=
++=

=
=

&

M

&

&
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with state [ ]TnxxxX K21= , )(tu  is the control 
input to the plant, d(t) the unknown disturbance with 
a known upper bound bd, g(x) an unknown smooth 
function and output y. 

Define the reference signal as 
T

n

dddd xxxX ][
)1( −

= KK&   A standard use in robotics is 
the filtered tracking error 

)()( tetr TΛ= Where ][ 21 n
T λλλ K=Λ is an 

appropriately chosen coefficient vector such that 
1

2
1

1 λλ +++ −
−

− Ln
n

n ss   is Hurwitz ( 0)( →te  
exponentially as 0)( →tr ).  

The tracking error vector is defined as 
XXte d −=)( . The full filtered tracking error 

)(tr  is not allowed to be used for tuning the action 
generating NN weights. Only a reduced 
reinforcement signal R is allowed.  

R = sgn(r); 1 0
sgn( )

1
if x

x
otherwise

+ ≥⎧
= ⎨−⎩

 

The time derivative of the measured performance 
signal can be written as:  

)()(),( tdtuXXgr d ++=&            (4)  

where ),( dXXg  is a fairly complex nonlinear 

function of X and dX  .The control input )(tu  used 
to control the plant is given by (Kim and Lewis, 
1997): 

)(),(ˆ)( tvXXgrKtu dv +−−=  (5) 

where ),(ˆ dXXg
 

is provided by the NN. The 

performance measurement gain matrix is v
T

v KK =  
and )(tv   is a robustifying vector that will be 

determined later to offset the NN functional 
reconstruction error )(xε  and disturbances )(td . 

From (4), the time derivative of the performance 
measure signal )( tr  can be rewritten as: 

( , ) ( ) ( )v dr K r g X X d t v t= − + + +& %  (6) 

where ˆ( , ) ( , ) ( , )d d dg X X g X X g X X= −%  
The continuous nonlinear function ),( dXXg  

can be represented by a NN with some constant 
"ideal" weight W and some sufficient number of 
input basis function )(σ  as: 

( )( , ) ( )T
dg X X W xσ χ ε= +  (7) 

with Nx εε <)( . 
We assume that the ideal weight W  is bounded 

by known positive values (Lewis et al., 1995; 
Kosmatopoulos, 1990) so that 

MF
W W≤ where 

MW  is a known value. 
Let the NN functional estimate for the 

continuous nonlinear function ),( dXXg  be 
given by: 

)(ˆ),(ˆ χσT
d WXXg =  (8) 

where the current value Ŵ is provided by the 
weight tuning algorithm. From (3) and (4) we have 
the following performance measure: 

)()()()(~ tvtdxWrKr v ++++−= εχσ&  (9) 

with the weight estimation error WWW ˆ~
−= . 

The robustifying term is given by (Kim and 
Lewis, 1997): 

R
RKtv z−=)(  (10) 

with bdK z ≥  And reinforcement learning rule for 
tuning the action generating NN weights is given by 
(Kim and Lewis, 1997): 

WFkRFW T ˆ)(ˆ −= χσ&
            (11) 

with TFF =  for the learning rate and 0>k  for 
the speed of convergence. Then the errors r and W

~
 

are Uniformly Ultimately Bounded (UUB) (Kim and 
Lewis, 1997). Moreover, the performance measure 

)(tr  can be made arbitrarily small by increasing the 
fixed control gain vK . 
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Proof (Kim and Lewis, 1997). Define the 
Lyapunov function candidate: 
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Substituting now from the error system (9) and 
using (11) gives: 

)ˆ~()(
1

WWtrxRrKRL TT
v

T
m

i

++−≤ ∑
=

ε&  

Using the inequality: 

{ } )~(~)~(~)ˆ~(
FMF

TT WWWWWWtrWWtr −≤−=
 

and nr T ≤)sgn(
 
results in: 

N
MM

Fv nWkWWkrKnL ελ ++−−≤
4

)
2

~()(
2

2
min

&
 

which is guaranteed negative as long as either: 

)(
4

min

2

v

N
M

Kn

n
W

k
r

λ

ε+
≥  

Or  

k
nWW

W NMM

F

ε
++≥

42
~ 2

 
According to a standard Lyapunov theory 

extension (Lewis et al., 1993; Narendra and 
Annaswamy, 1987), this demonstrates the UUB of 
both r  

and 
F

W~ .
 

4 VARIABLE STRUCTURE 
CONTROL 

Sliding mode control (SMC) is a type of variable 
structure control where the dynamics of a nonlinear 
system is changed by switching discontinuously on 
time on a predetermined sliding surface with a high 
speed, nonlinear feedback (Young et al., 1999). 
Actually, sliding mode controller design has two 
steps: the first step involves obtaining a sliding 
surface for desired stable dynamics and the second 
step is about providing the control law to reach this 
sliding surface. The system trajectories are sensitive 
to parameter variations and disturbances during the 

reaching mode whereas they are insensitive in the 
sliding mode (Hung et al., 1993). Although CVS 
(Classical Variable Structure) control is robust 
against modelling errors, it however requires an 
approximate model. Knowledge of the assumed 
model parameter variation bounds is also required. 

The identification of each joint dynamics is 
based on the estimation of coefficients of a 
presumed linear model. This is achieved by fitting 
the best linear curve to the input-output data using 
an ARX model (Autoregressive with exogenous 
input) in MATLAB. Joint dynamic parameters are 
identified using various step input signals. The 
measured response for the joint angle variation θ 
(radians) corresponding to various step of the 
pressure between the two muscles is shown in 
(figure 3). 
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Figure 3: Step response of robot arm (joint 1). 

In a linear approximation, the decoupled model 
for the system dynamics is given in the following 
form:  

uBqAqAq ... 21 =++ &&&  (12) 

Where 1 2 3[ , , ]Tq q q q= is the displacement 
vector 1 2,A A and B are the estimated gain matrices 
of velocity position and control. These for a 
decoupled system are: 

]25.117.016.0[1 diagA =  
]55.0294.0219.1[2 −−= eediagA

]323.2227.0257.0[ −−−= eeediagB  
The sliding mode occurs on a switching 

surface ( ) 0S x = , which forces the original system 
to behave as a linear time invariant system, which 
can be designed to be stable. The switching surfaces 
are chosen as: 

( , )i i i i i iS e e e eλ= +& &  (13) 
1 3i≤ ≤   
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Where 0iλ f , i i ide q q= − with idq  is the 
desired position. For ideal sliding to occur, the 
invariance conditions 0),(0),( == iiiiii eeSandeeS &&&  
must be satisfied. This yields the equivalent control:  

])[( 1221
1

ididiidiiiiiiiieq qqaqaeaeabU &&&& ++++−= − λ (14) 

Now, due to modelling errors, the estimated 
equivalent control is given by 

])[( 1
*

2
*

2
*

1
*1**

ididiidiiiiiiiieq qqaqaeaeabU &&&& ++++−= − λ (15) 

where 
* *

,i i jb a  are estimated mean parameters. 

The control iU is then fixed as 
*

i ieq iU U U= + Δ  

while iUΔ is the high frequency component which 
ensures the sliding mode and consequently the 
system insensitivity to parameter variations ,errors 
modelling and perturbations. 

The control iU  is discontinuous across the 

switching surfaces ( , ) 0i i iS e e =&   
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The discontinuous component can take several 
forms in literature the form retained is established by 
Harashima et al. (Harashima et al., 1986) as: 

)sgn().( iiiiiii SeeU γβα ++=Δ &  (16) 

5 EXPERIMENTAL RESULTS 

Experimental results of both DRAL and CVS 
control laws applied to a 3-DOF robot arm driven by 
pneumatic artificial muscles are presented. 

5.1 Tracking Trajectory 

We present a simultaneous control of all three robot 
axes for tracking a sinusoidal reference trajectory; 
joint coupling is significant. 

Number of hidden neurons is 20 and activation 
functions are sigmoid. Experimental parameters are 
as follows: 
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Figure 4: Position and signal of control of joint 1. 

   

Figure 5: Position and signal of control of joint 2. 

  
 

Figure 6: Position and signal of control of joint 3. 

The performance of the DRAL controller shows 
that the trajectory following ability is fairly good. 
Due to its position in the robot arm the second joint 
is more difficult to control because of interactions 
between axes (see Figure 1), moreover, the tracking 
errors converge to small values as expected from the 
stability analysis. Though robot non linearity and 
system dynamics are completely unknown to the 
DRAL, the algorithm has good properties to cancel 
the nonlinearities in the robot system, it can also be 
improved by supplying NN with more input signals 
(in this work we have considered that NN have to 
approximate unknown second order dynamics).  

5.2 Comparative Study 

In order to show the ability of the DRAL to control 
unknown highly non linear systems our 
experimental results are compared with those 
obtained using sliding mode control. Both reference 
and tracking are considered. 

We summarize our concluding remarks in the 
tables below. 
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Figure 7: Position and SMC signal control joint 1. 

   
 

Figure 8: Position and DRAL signal control joint 1. 

Table 1. 

 DRAL VSS 
Response 

Time 
1.5s 4 s 

 
Chattering 

 

 
Insignificant 

 

Exist in the 
transient part 

 
 

Control 
Not energetic 

Umax=0.53bar 
Energetic 

Umax=2bar 
 

Static error 0.02 degree 0.26 degree 

 

   
 

Figure 9: Position and SMC signal control joint 1. 

   
 

Figure 10: Position and DRAL signal control joint 1. 

 

Table 2. 

 Control Trajectory 

DRAL Umax=0.59bar Smooth 

 
VSS Energetic 

Umax=0.9bar

 
Incremental 

 
Among the disadvantages of pneumatic artificial 

muscles we can underline frictions between a rubber 
tube and the synthetic braid which result on 
incremental trajectory tracking as shown with VSS 
control (Fig 9), conversely with DRAL we have 
attenuated this drawback since the trajectory 
following is fairly smooth (Fig 10), which proves the 
ability of neural network to learn unmodeled 
nonlinear dynamics.  

6 CONCLUSIONS 

Due to nonlinearities and uncertainties the exact 
dynamic characteristics of PAM robot manipulator 
are very difficult to obtain, therefore resorting to 
robust control is required. Neural network has 
powerful capability of learning, adaptation and 
tackling nonlinearity, the proposed neural network 
controller using reinforcement learning for on line 
identification of plant dynamics are simple to apply 
to any control system in order to minimize the 
position error without knowledge of the plant to be 
controlled, the algorithm does not require any off-
line training or learning phase, the algorithm has 
proven its performances through experiments and 
comparative study with sliding mode control. Since 
the traditional SMC design is a model-based control 
approach, the partial knowledge of model dynamics 
deteriorates the control performance; on the other 
hand we have proven in this work that NN can 
approximate any unknown complicated nonlinear 
dynamics consequently, our future investigation will 
focus on implementation of hybrid control law 
combining these two methods. 
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