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Abstract: This paper describes the path planning for the mobile robots, based on the Markov Decision Problems. The 
presented algorithms are developed for resolving problems with partially observable states. The algorithm is 
applied in an office environment and tested with a skid-steered robot. The created map combines two 
mapping theory, the topological respectively the metric method. The main goal of the robot is to reach from 
the home point to the door of the indoor environment using algorithms which are based on Markovian 
decisions. 

1 INTRODUCTION 

The first step in mobile robot navigation is to create 
or to use a map and to localize itself in it (Thrun, 
2003). An autonomous agent has to have the 
following abilities: map learning or map creating, 
localization and path planning. The map 
representation can be metric or topological 
(Borenstein, 1996). In the case of the metric 
representation, the objects are replaced with precise 
coordinates, the disadvantage of this representation 
is that the precise distances can be very hard 
calculated, the map inaccuracies and the dead-
reckoning errors are appearing often. The 
topological representation only considers places and 
the relations between them, its disadvantages would 
be the unreliable sensors which can not detect 
landmarks and perceptual aliasing. The second step 
in an agent’s navigation process is the localization, 
which is strongly dependent to the map learning 
phase. This problem is common known as, 
Simultaneous localization and mapping (SLAM). 
SLAM is of one of the most important researched 
subfields of robotics (Fox, 2003). To plan a route to 
a goal location, the agent must be able to estimate its 
position. The most well known methods to do this, 
are the relative and absolute position measurements 
(Thrun, 2004). For the relative position 
measurements the most used methods are the 
odometry and inertial navigation, respectively for 
the absolute position estimation, the active beacons, 
artificial and natural landmark recognition and map-
based positioning (Thrun, 2003). Path planning is 

defined as follows: is the art of deciding which route 
to take, based on and expressed in terms of the 
current internal representation of the terrain. 

The definition of the path finding: the execution 
of this theoretical route, by translating the plan from 
the internal representation in terms of physical 
movement in the environment. 

2 PATH PLANNING PROCESS 

The effectiveness of a search can be measured in 
three ways. Does it bring a solution at all, it is a 
good solution (the one with a low path cost), and 
what is the search cost associated with the time and 
memory required to find a solution. The total cost of 
a search is defined as the sum of the path cost and 
the search cost. Route finding algorithms are used in 
a variety of applications, such as airline travel 
planning or routing in computer networks. In the 
case of the robot navigation, the agent can move in a 
continuous space with an infinite set of possible 
actions and states. In case of a circular robot which 
is moving on a flat surface, the space is two-
dimensional, but in case of a robot that has arms and 
legs, the search space will be many-dimensional.  

2.1 Markovian Processes 

These kinds of processes integrate topological and 
metric representation as well, utilizing both action 
and sensor data in determining the robot position 
(Cassandra, 1996). Bayes rule is used to update the 
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position distribution after each action and sensor 
reading (Koenig, 1996). In a Markov model actions 
occur in discrete time. To solve a Markov Decision 
Problem requires calculating an optimal policy in a 
stochastic environment with a transition model 
which satisfies the Markovian property. 

2.2 Markov Decision Problem 

The problem of calculating an optimal policy in a 
stochastic environment with a known transition 
model is called a Markov decision problem 
(MDP). It can be expressed, that a problem which 
has the Markov property, its transition model from 
any given state depend only on the state and not on 
previous history. Knowledge of the current state is 
all that is required in making a decision. A transition 
model is one which gives, for each state s and action 
a the resulting distribution of states if the action a 
was executed in s. A Markov decision process is a 
mathematical model of a discrete-time sequential 
decision problem (Littman, 2009). MDP is defined 
as a four tuple 〉〈 RPAS ,,,  (Regan, 2005), where S  
is the finite set of environment states, A is the set of 
actions, P  is the set of action dependent transition 
probabilities, R is the reward function. 

RASR →×:  is the expected reward for taking 
each action in each state. To maximize the expected 
reward over a sequence of decisions is the main goal 
of this problem. In an ideal case, the agent should 
take actions that maximize future rewards. In an 
MDP, the expected future reward is dependent only 
on the current state and action, so it must exist a 
stationary policy which will guarantee that the 
maximum expected rewards are received, if taken 
starting from the current state. The goal of any 
method to solve a MDP is to identify the optimal 
policy. The optimal policy is one that will maximize 
the expected reward starting from any state. If we 
would enumerate all of the possible policies for  a 
state space, and then pick the one with the maximum 
expected value function, the method would be 
intractable, because the number of policies is 
exponential in the size of the state space. The 
traditional approach to solving sequential decision 
problems is dynamic programming. For applying 
this type of programming we need precise 
information about P , the transition probabilities and 
R , the reward function. Unfortunately, dynamic 

programming is computationally expensive in large 
state spaces. 

2.2.1 Value Iteration Algorithm 

This algorithm is used to calculate the optimal 
policy for the given environment. The main idea of 
the algorithm is to calculate the utility for each of 
the states, note with U(state). These utility values 
are used for select an optimal action in each state. 

∑ ⋅+←+ )(max)()(1 jUMiRiU t
a
ijat  (1)

Where R is called the reward function, a
ijM  is 

the transition model, the probability of reaching state 
j if action a is taken in state i, and U is the utility 
estimate. It’s an iterative algorithm, as ∞>−t , the 
utility values will converge to stable values. 
Equation (1) is the basis for dynamic programming, 
which was developed by Richard Bellman (Russell, 
1995). Using this type of programming sequential 
decision problems can be solved. 

function VALUE_ITERATION (MDP)      
input: MDP with states S, 

transition model T,  
reward function R 

   repeat 
          U = U’ 
          for each state s do 

∑ ⋅+←+ )(max)()(1 jUMiRiU t
a
ijat

 

until close enough(U,U’) 
return U. 

2.2.2 Policy Iteration Algorithm 

After the utility values are calculated for all the 
states, the corresponding policy is calculated using 
the equation (2). 

∑ ⋅=
j

a
ija

jUMipolicy )(maxarg)(  (2)

The basic idea of the algorithm is that by picking 
a policy, then calculate the utility of each state given 
that policy. The policy is updated after the new 
utility is inserted in the equation (3). The RMS 
(Root Mean Square) (Russell, 1995) method is used, 
to know how many iterations has to be done. The 
RMS error of the utility values are compared to the 
correct values. 
  function POLICY_ITERATION (MDP)      

input: MDP with states S,  
transition model T,  

       reward function R 
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repeat 
   U  =  Policy_Evaluation(π ,U,MDP) 
   unchanged?=true 
for each state s do 

∑ ⋅=
j

a
ija

jUMipolicy )(maxarg)(
 

unchanged?=false 
until unchanged? 
return π . 

2.3 Partially Observable Markov 
Decision Problem (POMDP) 

This problem like the simple MDP is part of the 
sequential decision problems family. This can occur 
if the agent’s environment is an inaccessible one, 
which means that, there is not enough information in 
order to determine the state or the associated 
transition probabilities, which means that the agent 
cannot directly observe that state. As a solution to 
this problem a new MDP has to be constructed, 
where the probability distribution plays the role of 
the state variable. It will end in a new state space, 
which will have real value probabilities, but they are 
infinite. For real-time applications even MDPs are 
hard to compute, and POMDP need approximations 
in order to obtain the optimal policy. Due to the fact 
that the agent doesn’t have direct access to the 
current state, the POMDP algorithms need the whole 
history of the process, which means that it will lose 
it’s Markovian property. This step is replaced by 
maintaining a probability distribution over all of the 
states, it gives us the same result as if we would 
keep the entire history. Between decisions the state 
can change, unlike in an MDP where state changes 
occur just due decisions. A variety of algorithms 
have been developed for solving POMDP. The 
Whitness algorithm (Littman, 1994) finds the 
solution using value iteration, it has been used with 
16 states. In case of a more complex state space this 
algorithm would not be efficient. Another approach 
by (Littman, 1995), is a hybrid one, which is able to 
determine high quality policies with approximately 
100 states. The realistic problems usually require 
thousands of states, so questions to this field remain 
open (Regan, 2005).  

3 EXPERIMENTAL RESULTS 

The described algorithm in this paper was tested 
using MobileSim simulator. The Pioneer AT robot’s 
starting point is the Home Point situated in the first 

cell of the map. The robot has to reach the goal point 
which is the door of the room. The first step was to 
create the map of the room, where to robot will 
navigate. The size of the room is 7m wide and 8.5m 
long. The area of the room was divided in cells with 
area of 21m . In Figure 1, the created map can be 
seen, with the most representative points, like the 
Home Point and the Goal Point. The other visible 
objects from the map, are obstacles like desks, 
shelves and supportive walls. 

 
Figure 1: The map of the office environment. 

The cells which represent an obstacle, their 
utility is zero, for the other cells, the iterative 
algorithm computes until the value between two 
consecutive utility value, for the same cell, is not 
more than 0.015. The initial value for a cell is -0.04, 
the utility value for the Goal Point is 1, and for a 
state which should be avoided, it has a value of -1.  
In a real world environment a state with utility -1, 
can be a whole in the ground or a state, from where 
the robot would get easily lost and use all of its 
power, due to this fact the agent must be able to 
reach his goal. The path shown in Figure 2, is the 
most shortest, what the robot can have. In order to 
avoid to get close to the state which has a utility of -
1, the presented algorithm was applied to obtain 
another path. The scope of the path which will be 
obtained is to not have immediate neighbours to the 
cell which has utility of -1.  

 
Figure 2: The shortest path. 
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After 20 iterations of the Value Iterative 
algorithm, the final utility values were obtained. In 
Figure 3, the policies are represented, which were 
obtained after applying the Policy Algorithm. 

 
Figure 3: The optimal policy values. 

The cells with a higher utility value are more 
valuable for this algorithm than the states with a 
lower utility value.  As shown in Figure 3, the 
optimal path has been found, the robot achieving to 
the door without getting close to the cell with utility 
-1, state which gets the lowest global reward. 
In Figure 4, is represented the found path after 
testing with MobileSim. 

 
Figure 4: The found path using the presented algorithms. 

The agent obtained an autonomous behaviour as 
presented in Figure 4 successfully avoids obstacles 
and the state with utility -1, it reach to the goal point 
which is the door of the office environment. As 
shown in Figure 2, the shortest path is not the path 
with the least cost (LaValle,  2006). 

4 CONCLUSIONS 

The main focus of this paper was to present the 
algorithms which are solving MDPs for path 
planning in mobile robots navigation. In a well 
known environment and with all the states 

observable, the agent is able to avoid obstacles and 
to navigate to the desired point. 

5 FUTURE WORK 

It is intended to create the map of the environment in 
a dynamic way. By the advance of the robot, the 
map would be created using the fusion of the data 
obtained by multiple sensors. The map will contain 
dynamic objects as well, human beings, which will 
have to be recognized and inserted in the map and to 
determine the projected positions for them. 
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