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Abstract: The effectiveness of evolutionary optimized fuzzy controllers for production scheduling has been proven in 
the past. The objective of the control/scheduling task in this context, is to continuously adjust the production 
rate in a way that: 1) satisfies the demand for final products, 2) keeps the inventory as low as possible. The 
evolutionary optimization identifies fuzzy control solutions which simultaneously satisfy those restrictions. 
The important question here is: How robust and generic is the outcome of the evolutionary process? In this 
paper we face this question by testing the evolutionary tuned fuzzy controllers under several demand 
patterns, as the actual demand might be different from those used for evolution\optimization. Extensive 
simulations of a supervisory controller identify the performance of the evolutionary-fuzzy strategy in 
comparison to a pure knowledge based one. 

1 INTRODUCTION 

As the manufacturing industry moves away from the 
mass production paradigm towards the agile 
manufacturing, the life cycle of products gets shorter 
while the need for a wide variety of them increases. 
Keeping large inventories in stock tends to be 
unattractive in today’s markets. The same holds for 
the unfinished parts throughout the manufacturing 
system, widely known as Work-In-Process (WIP), as 
it represents an already made expense with unknown 
profitability due to the rapidly changing demand. In 
a highly changing demand environment, the 
accumulated inventories are less desirable than ever. 

The work-in-process inventory is measured by 
the number of unfinished parts in the buffers 
throughout the manufacturing system and it should 
stay as small as possible (Conway et al., 1998), (Bai 
and Gershwin, 1994). 

Traditionally, inventory control methods in this 
field can be roughly grouped into mathematical 
modelling approaches, computerized planning 
methods, such as material requirement planning 
(MRP), and heuristic scheduling strategies. Many 
control policies (CONWIP-constant WIP, base stock 
method etc.|) aim in keeping WIP at low levels 
(Gershwin, 1994). However, an exact optimal value 
of WIP cannot be determined in realistic 
manufacturing conditions. Therefore, the problem of 

WIP determination and control is amenable to an 
artificial intelligent treatment, as suggested in 
(Custodio et al., 1994), (Tsourveloudis et al., 2000) 
and recently in (Ioannidis et al., 2004) and 
(Tsourveloudis et al., 2006). The supervisory 
controller suggested in (Ioannidis et al., 2004) is used 
to tune a set of lower-level distributed fuzzy control 
modules that reduce WIP and synchronize the 
production system's operation. The overall control 
objective is to keep the WIP and cycle time as low as 
possible, while maintaining quality of service by 
keeping the backlog to an acceptable level. 

Fuzzy logic has been used in tandem to 
Evolutionary Algorithms (EA) so as to keep the WIP 
and cycle time as low as possible, and at the same 
time to maintain high utilization (Tsourveloudis et 
al. 2006, Tsourveloudis et al., 2007). The objective 
in those works was to optimize the control policy in 
a way that satisfies the (random) demand for final 
products while keeping minimum WIP within the 
production system. During the evolution, the EA 
identifies those set of parameters for which the fuzzy 
controller has an optimal performance with respect 
to WIP minimization for several demand patterns. 

The use of evolving genetic structures for the 
production scheduling problem, has recently gained 
a lot of acceptance in the automated and optimal 
design of fuzzy logic systems (Tedford and Lowe, 
2003, Gordon et al. 2001). However, a potential 
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problem is that the evolutionary (or genetically) 
evolved fuzzy controllers might perform optimal 
only under the conditions involved in the evolution 
process. In this paper we examine the performance 
of evolutionary optimized controllers in contrast to 
heuristically designed fuzzy controllers. For 
comparisons purposes we test the controllers in 
conditions different from the ones they have been 
designed for. In this way, some useful insights 
regarding the design robustness of the evolutionary 
tuned fuzzy controllers may be drawn. 

The rest of the paper is organized as follows. 
Section 2 describes the evolutionary fuzzy 
scheduling concept that is used for WIP 
minimization. Two control approaches are 
presented: the distributed and the supervised one. 
Section 3 describes the comparison scenarios and 
presents experimental results for production lines 
and networks. Issues for discussion and remarks as 
well as suggestions for further development are 
presented in the last section. 

2 EVOLUTIONARY-FUZZY 
SCHEDULING 

A production network consists of machines 
(operation stations) and buffers (storage areas). 
Items are received at each machine and wait for the 
next operation in a buffer with finite capacity. WIP 
may increase because of unanticipated events, like 
machine breakdowns and potential consequent 
propagation of these events. For example, a failed 
machine with operational neighbours forces to an 
inventory increase of the previous storage buffer. If 
the repair time is big enough, then the broken 
machine will either block the previous station or 
starve the next one. This “bottleneck” effect will 
propagate throughout the system. 

Clearly, production scheduling of realistic 
manufacturing plants must satisfy multiple 
conflicting criteria and also cope with the dynamic 
nature of such environments. Fuzzy logic offers the 
mathematical framework that allows for simple 
knowledge representations of the production 
control/scheduling principles in terms of IF-THEN 
rules. The expert knowledge that describes the 
control objective (that is WIP reduction) can be 
summarized in the following statements 
(Tsourveloudis et al, 2000, Tsourveloudis et al., 
2006): 

If the surplus level is satisfactory then try to 
prevent starving or blocking by increasing or 
decreasing the production rate accordingly, 

else 

If the surplus is not satisfactory that is either too 
low or too high then produce at maximum or zero 
rate respectively. 

In fuzzy logic controllers (FLCs), the control 
policy is described by linguistic IF-THEN rules 
similar to the above statements. The essential part of 
every fuzzy controller is the knowledge acquisition 
and the representation of the extracted knowledge 
with certain fuzzy sets/membership functions. 
Membership functions (MFs) represent the 
uncertainty modelled with fuzzy sets by establishing 
a connection between linguistic terms (such as low, 
negative, high etc) and precise numerical values of 
variables in the physical system. The correct choice 
of the MFs is by no means trivial and plays a crucial 
role in the success of an application. If the selection 
of the membership functions is not based on a 
systematic optimization procedure then the adopted 
fuzzy control strategy cannot guarantee minimum 
WIP level. 

The evolutionary-fuzzy synergy attempts to 
minimize the empirical/expert design and create 
MFs that fit best to scheduling objectives 
(Tsourveloudis et al., 2006). In this context, the 
design of the fuzzy controllers (distributed or 
supervisory) can be regarded as an optimization 
problem in which the set of possible MFs constitutes 
the search space. Evolutionary Algorithms (EAs) are 
seeking optimal or near optimal solutions in large 
and complex search spaces and therefore have been 
successfully applied to a variety of scheduling 
problems with broad applicability to manufacturing 
systems (Tedford and Lowe, 2003). The objective is 
to optimize a performance measure which in the 
EAs context is called fitness function. In each 
generation, the fitness of every chromosome is first 
evaluated based on the performance of the 
production network system, which is controlled 
through the membership functions represented in the 
chromosome. A specified percentage of the better 
fitted chromosomes are retained for the next 
generation. Then parents are selected repeatedly 
from the current generation of chromosomes, and 
new chromosomes are generated from these parents. 
One generation ends when the number of 
chromosomes for the next generation has reached 
the quota. This process is repeated for a pre-selected 
number of generations. 

2.1 Distributed Evolutionary-fuzzy 
Control 

The architecture of the distributed evolutionary-
fuzzy WIP control scheme is extensively discussed 
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in (Tsourveloudis et al., 2006) and (Tsourveloudis et 
al., 2007). The control objective of the distributed 
scheduling approach, as earlier stated, is to satisfy 
the demand and, at the same time, to keep WIP as 
low as possible. This is attempted by regulating the 
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where, represents a fuzzy 
inference system that takes as inputs the level ijb ,  of 
the upstream buffer, the downstream buffer level 

lib , , xi is the surplus (cumulative production minus 
demand) and si is a non fuzzy variable denoting the 
state of the machine, which can be either 1 
(operative) or 0 (stopped). 

The fitness function F(xi) of each individual xi, 
which associates the demand with the cumulative 
production of the manufacturing system is: 

  
(2) 

where, t is the current simulation time, D(t) is the 
overall demand and PR(t) is the cumulative 
production of the system.  

As earlier stated, the objective of the evolution 
process is to optimize the shape of the fuzzy 
membership function. Indeed, after the evolution 
process the shape of the membership functions is 
altered. The best individual is considered to be the 
one with the biggest fitness. The fittest individuals 
are selected and they undergo mutations. The fittest 
controllers and their mutated offsprings are forming 
the new population. After some generations the 
algorithm converges and the best individuals 
represent near optimal solutions. 

2.2 Supervised Evolutionary-fuzzy 
Control 

In control systems literature a supervisor is a 
controller (supervisory controller) that utilizes 
available data to characterize the overall system's 
current behavior, potentially modifying the lower 
level controllers to ultimately achieve desired 
specifications. The supervisory controller in this, 
and also in our past works, is used to tune the 
distributed controllers in a way that improves 
performance without dramatic changes in the 
structure of the control architecture, as justified in 

(Ioannidis et al., 2004). The concept of the 
supervised evolutionary-fuzzy WIP control scheme 
is shown in Figure 1. The fitness function in the 
supervisory approach case was chosen to be the 
following:  

( ) 1
I bF c WIP c BL

−
= +  (3) 

where, WIP  and BL  are the mean work-in-process 
and mean backlog (=cumulative production minus 
demand), respectively. The cI, cb are weighting 
factors that represent the unit costs of inventory and 
backlog, respectively. Assuming that the capacity of 
a production system is given, equations (2) and (3) 
show that the evolved MFs are highly based (in 
terms of their support and shape) on the demand 
values. Obviously, the value of demand is crucial for 
WIP and backlog determination in (3). Some of the 
questions arise here concerning demand, are:  
• What happens when actual demand is different 

(in both magnitude and changing pattern) than 
the one considered during controller’s 
evolution? 

• Is the evolved controller robust enough to 
absorb random variations of demand? 

• Does the original (without MF optimization) 
heuristic fuzzy controller perform better in 
unknown demands? 

Since there are no analytical solutions to those 
questions, in what follows we will examine and 
compare the performance of both evolutionary and 
heuristic fuzzy controllers through simulation, for a 
variety of test cases. 

Evolutionary Algorithm 

MiB j,i B i,l

M i
Controller

Supervisory  
Controller

Production Control Module  

: Information Flow : Material Flow  
Figure 1: Supervisory control: Evolutionary-fuzzy 
concept. 
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3 TESTING AND RESULTS 

The evolutionary-fuzzy approaches suggested in 
(Tsourveloudis et al., 2007), are tested and 
compared to the heuristic fuzzy approaches initially 
suggested in (Tsourveloudis et al., 2000). In the all 
simulations performed we assume that the machines 
fail randomly, with a failure rate pi. This rate is 
known and set before the simulation starts. Also, 
machines are repaired randomly with rate rri. The 
resources needed for repairs are assumed to be 
available. The times between failures and repairs are 
exponentially distributed. All machines operate at 
known, but not necessarily equal rates. Each 
machine produces in a rate ri ≤ µi, where μi is the 
maximum processing rate of machine Mi. We also 
assume that the flow of parts within the system is 
continuous.  

In the production network shown in Figure 2, the 
circles represent buffers and squares are machining 
stations. This network is identical to the one 
discussed in previous works (Tsourveloudis et al., 
2000, 2006a, 2006b, 2007). For simplicity it is 
assumed that this network produces one part type. 
Lines and networks producing multiple part types 
have been discussed in (Tsourveloudis et al., 2000), 
(Ioannidis et al., 2004) and it has been shown that 
have similar behavior to the single-part-type 
systems. One important observation made in 
(Ioannidis et al. 2004, Tsourveloudis et al. 2006, 
2007) was that the evolutionary tuned fuzzy 
controllers achieved a substantial reduction of WIP 
in almost all test cases. 
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M2 M5

M4 
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Subsystem 1 (line) 
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Subsystem 3 (line) 

Subsystem 4 (assembly) 

Subsystem 5 (assembly) 

 
Figure 2: Layout of the production network. 

Here we further investigate the performance of the 
evolutionary tuned fuzzy controllers, keeping 
unaltered the controllers’ design but with demand 
patterns that are significantly changed. In practice, 
demand is the main uncertainty of almost all 
production system/networks. Changes in demand 
may cause significant problems in balancing 
production lines 

3.1 Supervised Control of Networks 

The objective is to examine the robustness of the 
supervised control approach. The simulation testbed 
used for this test case was developed in SIMULINK 
and its main blocks are shown in Figure 3. 

 

Production system subsystem 

Supervisor subsystem 

Production system’s simulator 

 
Figure 3: SIMULINK model of the supervisory control. 

The performance of the evolutionary-fuzzy 
supervised approach was examined for various 
demand patterns other than the one used during the 
optimization of the membership functions. During 
the evolution procedure, demand was considered 
either one (one product per time unit) or zero (no 
demand at the time unit) and the selection between 
those two values was triggered in a random order. 
During our testing different demands were used: 

Demand Pattern 1 (DP1): The system accepts 
orders of 1 product per time unit. The time unit is set 
equal to 0.05 of the simulation step. This is similar 
to the demand pattern used for the optimization of 
the controller. 

Demand Pattern 1.5 (DP1.5): The system accepts 
orders for 1.5 products per time unit, which is set 
0.05 of the simulation step. 

Demand Pattern 3 (DP3): The system accepts 
orders for 3 products per time unit, which is also set 
0.05 of the simulation step. 

Figure 4 presents the mean WIP and Backlog for 
the above mentioned demand patterns. As it can be 
seeing, the mean WIP of DP1 is higher than the 
other two demands, but it fully satisfies the 
requested demand. DP1.5 and DP3 fail in satisfying 
demand in the same test run. It also can be seen, in 
Figure 4, that when the demand is 3 times higher 
(DP3) than the one used for the evolution (DP1), 
then it cannot be satisfied as the backlog 
accumulates rapidly (DP3-BL). 
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Figure 4: WIP and Backlog levels of the supervisory 
control for various demand sizes.  

However, when demand is increased for 50%, 
(DP1.5) the unsatisfied demand (DP1.5-BL) is 
almost zero which shows that the supervisor works 
satisfactorily for demand changes of this magnitude: 
+50% of the demand used during the evolution of 
the fuzzy supervisory controller. This important 
observation was also noted through a series of 
simulation runs for demands lower than the one used 
in the evolution. In this case, a slight increase in the 
mean WIP levels was observed.  
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Figure 5: WIP and Backlog levels for changing demand 
rates. 

Not only the magnitude but also the frequency of 
demand changing was examined. Figure 5 presents 
the WIP and Backlog mean levels when the DP1.5 
demand pattern changes every 0.05, 0.5, and 5 time 
units respectively. It can be observed that in lower 
demand rates the controller keeps the backlog orders 
close to zero, while in higher rates although the 
controller keeps WIP in low levels, fails in satisfying 

the demand (5-BL in Figure 5). 

4 CONCLUSIONS 

WIP itself cannot represent adequately of production 
system's performance. One has to take into account 
also the accumulated orders backlog. It is also 
known that when demand is very high one may 
consider that service rate and thus backlog is more 
important than WIP. When demand can be easily 
satisfied and backlog is in low levels, a substantial 
reduction of WIP may be more important than a 
small increase in backlog. What we have seen so far 
is that with the aid of the evolutionary-fuzzy 
controllers the system’s performance becomes more 
balanced in terms of mean WIP and backlog. WIP is 
substantially reduced in the evolutionary-fuzzy 
approach compared to the empirical selected fuzzy 
controllers. The same observation holds for the 
supervisory control of production networks where 
significantly increased demands were 
accommodated. 

The heuristic fuzzy control approach cannot 
achieve the performance of the evolutionary-fuzzy. 
However, it is still better than previously reported 
“bang-bang” control approaches. Even when 
compared to the evolutionary-fuzzy approach it is 
much simpler in the design process as it steps on the 
human expertise/knowledge regarding the 
production system. In others words, one should very 
fast design, built and put to work a fuzzy controller 
with membership functions that represent the expert 
knowledge in contrast to the evolutionary-fuzzy 
system whose parameters are automatically set by 
the optimization procedure. 

The evolutionary-fuzzy controllers are capable of 
maintaining low WIP levels for product demands 
other than the ones used during the optimization. 
Therefore, the evolutionary algorithms clearly 
represent a successful approach towards the 
optimization of robust scheduling approaches.  
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