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Abstract: The man-machine cooperative system is attracting great attention in many fields, such as industry, welfare
and so on. The assisting system must be designed so as to accommodate the operator’s skill, which might
be strongly affected by the fatigue. This paper presents a new fatigue recognizer based on the Electro Myo-
Gram (EMG) signals and the Stochastic Switched ARX (SS-ARX) model which is one of the extended model
of the standard Hidden Markov Model (HMM). Since the SS-ARX model can represent complex dynamical
relationship which involves switching and stochastic variance, it is expected to show higher performance as
the fatigue recognizer than using simple statistical characteristics of the EMG signal and/or standard HMM.
The usefulness of the proposed strategy is demonstrated by applying to a peg-in-hole task.

1 INTRODUCTION

The man-machine cooperative system is attracting
great attention in many fields, such as manufacturing,
medicine, welfare and so on. The main purpose of
assisting system is to reduce physical burden of the
operator. Since a human skill is strongly affected by
fatigue of the operator, the assisting system must be
designed so as to accommodate with the change of
skill characteristics caused by fatigue. To meet this
requirement, fatigue must be detected and evaluated
based on some quantitative manner. One of the ba-
sic ideas to evaluate the degree of fatigue is to mea-
sure physiological signals, such as the density of lac-
tic acid in blood. This approach, however, requires
the operator to stop the task, to take special examina-
tion and to be injured for sampling.

Recently, Electro Myo-Gram (EMG) signal is rec-
ognized as a promising one to measure the degree
of physical fatigue without any special examination.
EMG signal can be easily detected by only putting
the probe on surface of the corresponding muscle.
The relationship between the fatigue and the change
of features such as Muscle Fiber Conduction Veloc-
ity (MFCV), magnitude, spectrum of EMG and so
on are reported (Sadoyama and Miyano, 1981; Lip-
pold et al., 1960; Arendt-Nielsen and Mills, 1988;
D. K. Kumar and Bradley, 2003). Although these
previous researches enable us to characterize the re-
lationship between fatigue and the statistical charac-

teristics of the EMG signal, their applications have
been restricted in simple monotonous motion because
those measures are developed under the Maximal Vol-
untary Contraction (MVC) condition. If the target
task is more complex, fatigue recognition based on
these features turns difficult cause of large variance
of the measured signals in dynamic motion. To over-
come this problem, a model-based approach, which
can reflect the effect of the dynamic motion, must be
exploited for the fatigue recognition.
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Figure 1: SS-ARX model (three states).

This paper presents a new fatigue recognizer
based on the EMG signals and the Stochastic
Switched ARX (SS-ARX) model. The SS-ARX
model (Sekizawa et al., 2007) can be regarded as an
extension of standard Hidden Markov Model (HMM)
wherein each Auto Regressive eXogenous (ARX)
model is embedded in each discrete state of the
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HMM. In the proposed framework, we pay attention
not only to the measured signal itself but also to the
dynamic relationship between the EMG signals and
motion, i.e. movement of the tool. Since the SS-
ARX model can represent complex dynamics, which
involves switching and stochastic variance, it is ex-
pected to show higher performance as the fatigue rec-
ognizer using standard HMM. This advantage is more
emphasized when the target task becomes much more
complex. Furthermore, we demonstrate the useful-
ness of the proposed strategy by applying to a peg-in-
hole task. A comparison with standard HMM is also
discussed.

2 STOCHASTIC SWITCHED ARX
MODEL

SS-ARX model is defined as the system wherein one
autoregressive exogenous (ARX) models is switched
to the other one according to the state transition prob-
ability(Sekizawa et al., 2007). Figure 1 shows the SS-
ARX model with three states.

This model can be regarded as the model wherein
each ARX model is embedded in each discrete state
of standard HMM. In the following, the definition
and three important problems of the SS-ARX model
are briefly reviewed (see detail in (Sekizawa et al.,
2007)).

2.1 Parameters in SS-ARX Model

The parameters in SS-ARX model are specified as
follows:

• Si: Discrete state(i=1,2, · · · ,N)

• ai j: State transition probability(i=1,2, · · · ,N; j=
1,2, · · · ,N)

• πi: Initial state probability(i=1,2, · · · ,N)

• θi: Parameters in ARX assigned toSi (i =
1,2, · · · ,N)

• σi: Variance of equation errorei,t in ARX model
assigned toSi(i=1,2, · · · ,N)

N denotes the number of discrete states. We denote
the set of parameters in the SS-ARX model byλ=
(πi,ai j,θi,σi).

2.2 Three Fundamental Problems

To address several fundamental problems listed be-
low, the measured signal and its occurrence probabil-
ity are defined for SS-ARX model as follows: First
of all, a measured signalol,t at time t is defined as

combination of the outputyl,t and the regressorψl,t ,
that is,ol,t =(yl,t ,ψl,t ). Wherel is index of observed
sequences, i.e. the index of trials. Then, its occur-
rence probabilitybi(ol,t) is defined by assumption of
the Gaussian distribution of the equation error, and is
given by

bi(ol,t) =
1√

2πσi
exp

{

−
(θT

i ψl,t − yl,t)
2

2σ2
i

}

. (1)

Based on these definitions, the following three
fundamental problems can be addressed for SS-ARX
model.

1. Evaluation problem
The probabilityP(Ol|λ) that the measured signal
sequenceOl =(ol,0,ol,1, · · · ,ol,t , · · · ,ol,T ) occurs
from the modelλ=(πi,ai j,θi,σi), that probability
is called as likelihood, is calculated. This prob-
lem can be solved by applying Forward algorithm
(Rabiner, 1989).

2. Decoding problem
The most likely underlying state se-
quence s = (sl,0,sl,1, · · · ,sl,t , · · · ,sl,T ), which
yields the measured signal sequence
Ol = (ol,0,ol,1, · · · ,ol,t , · · · ,ol,T ), is found for
the modelλ=(πi,ai j,θi,σi). This state estimation
can be realized by applying Viterbi algorithm
(Rabiner, 1989).

3. Estimation problem
The model parameter λ = (πi,ai j,θi,σi),
which gives the highest occurrence prob-
ability for the measured signal sequence
Ol=(ol,0,ol,1, · · · ,ol,t , · · · ,ol,T ), is estimated.

EMG1

EMG2X

Z

Y

Figure 2: Data acquisition of peg-in-hole task.

The solution for problems 1 and 2 are same as
ones for standard HMM. However, the parameter es-
timation algorithm for the SS-ARX model requires
some extension to the one for standard HMM. The
concrete parameter estimation algorithm for the SS-
ARX model can also be derived based on the EM al-
gorithm. The resulting parameter update law ofθθθi is
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given as follows:

θ′i =

{

T

∑
t=0

L

∑
l=1

klψl,tψ
T
l,tα(l, i,t)β(l, i,t)

}−1

×
{

T

∑
t=0

L

∑
l=1

klψl,tyl,tα(l, i,t)β(l, i,t)

}

(2)

wherekl is defined by 1/P(Ol|λ), andα(l, i,t) and
β(l, i,t) are the forward probability and the backward
probability of SS-ARX model, which resemble them
of HMM respectively. Other update laws and its
derivation are written in our previous study (Sekizawa
et al., 2007).

Note that this model is applicable not only to the
linear dynamics but also to a certain class of nonlinear
dynamics, which may include switching mechanism.
This benefit strongly motivates us to apply to the mod-
eling and recognition of complex human skill.

3 EXPERIMENT SETUP AND
DATA ACQUISITION

The fatigue recognizer is realized using SS-ARX
model, and applied to the peg-in-hole task shown in
Fig. 2. The peg-in-hole task is widely known as the
typical skill which involves the switching in the dy-
namics caused by change of the contact configuration
(Hirana et al., 2004; Ricker et al., 1996). In this work,
the peg is supposed to move only onX −Z plane. The
mechanical arm in Fig. 2 provides no assisting force.
As shown in Fig. 2, examinee holds the peg by grasp-
ing the end of the arm. There is no clearance between
the rubber hole and peg. This implies that much force
is required to accomplish the peg insertion. The ex-
aminees execute the task following the scenario de-
picted in Figure 3.

HoleHoleHoleHole

PegPegPegPeg

Contact

Sliding
Up righting

Step. I Step. II Step. III

Terminate

Step. V

Insert

Step. IV

Figure 3: Typical motion of peg.

Table 1: Model parameters of examinee A (case of non-
fatigue).

State transition probability
ai j i = 1 i = 2 i = 3 i = 4

j = i 0.962 0.956 0.959 1
j = i+1 0.038 0.044 0.041 0

ARX-model parameters

θi1 θi2 θi3 θi4 σi

state1 0.404 0.134 0.042 0.549 0.005
state2 0.466 -0.166 0.031 0.472 0.006
state3 0.961 -0.088 0.006 -0.012 0.010
state4 0.189 -0.008 -0.014 0.014 0.004

Table 2: Model parameters of examinee A (case of fatigue).

State transition probability

ai j i = 1 i = 2 i = 3 i = 4
j = i 0.978 0.923 0.950 1

j = i+1 0.022 0.077 0.050 0

ARX-model parameters
θi1 θi2 θi3 θi4 σi

state1 0.945 -0.091 0.006 0.052 0.007
state2 1.071 0.347 0.229 -0.200 0.013
state3 0.984 0.029 -0.056 -0.021 0.005
state4 0.180 0.002 0.040 0.003 0.003

Step. I The peg goes down vertically until it con-
tacts with the surface of stage.

Step. II The peg slides to top of hole on the surface
with keeping contact.

Step. III The operator uprights the peg for preparing
the insertion.

Step. IV The peg is inserted firmly to the end of the
hole.

Step. V Terminate.

Furthermore, the operators are well trained so as
to be able to ignore the effect of experiences. The data
for parameter estimation and recognition are acquired
by the procedure shown in Fig. 4.

As a whole, twenty five data are acquired for ver-
ification of recognition. Examinees are expected to
be more fatigued in the latter trials. Three examinees
followed this procedure.

During the experiment, the position of the pegpZ
and two EMG signals at different locations shown in
Fig. 2 (Extensor carpi ulnaris and Triceps brachii
muscle) are measured every 1[msec]. The reason why
these muscles are chosen is that these are well related
with a force along with direction of peg insertion. The
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Figure 4: Data acquisition procedure.
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Figure 5: Example of signalsEMG1, EMG2 andpZ (exam-
inee A, case of non-fatigue).

EMG signals are amplified with a gain of 1000 (Bio-
metrics Ltd; SX230). Examples of measured EMG
signals are shown in Fig. 5 together withpZ.

In addition, the EMG signals are transformed to
feature values by using the moving integral and nor-
malized using the minimum and maximum values in
trial 1 of DatasetNF , and also decimated by 20. In
the following,E1 andE2 are used to denote the nor-
malized feature values of theEMG1 andEMG2, re-
spectively.

4 PARAMETER ESTIMATION
RESULTS

In this section, the parameters of SS-ARX model are
estimated based on learning data and the parame-
ter update algorithm described in section 2. First of
all, the signals and parameters appearing in the ARX
model in the statek are defined as follows:

yt=pZ(t) (3)

ψt={pZ(t −1),E1(t −1),E2(t −1),1} (4)

θT
k ={θk1,θk2,θk3,θk4} (k = {1,2, · · · ,N}) (5)

θθθk is the coefficient vector in the ARX model at
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Figure 6: State transition, feature value of EMG, and
pZ(examinee A).

statek. For reduction of the computational burden
and complexity, the analysis is restricted in the mo-
tion alongZ-axis which requires much more muscle
force than other direction in the insertion task. Fur-
thermore, the number of states is set to beN = 4 by
try and error, and the left-to-right SS-ARX model is
adopted.

The parameters of SS-ARX model of non-fatigue
case,λNF is estimated using Data setNF . On the
other hand, the parameters of SS-ARX model of fa-
tigue case,λF is estimated using Data setF . 500
sets of initial parameters for the SS-ARX model were
tested in the parameter estimation algorithm to find
semi-optimal parameters. The parameter estimation
results are shown in Tables 1 and 2.

Although we can see big difference in parameters
between two models, this is partly because the physi-
cal meaning of the state in each model differs.

In Figs. 6 and 7, the estimated state transition, nor-
malized feature values of EMG signals, and the com-
parison between the observedpZ and calculated one
using the estimated model are depicted from the top.
The top figure represents the estimated state transi-
tion using Viterbi algorithm (Note that the state tran-
sition is not measured explicitly in our framework).
The bottom figure indicates that the observed output
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Figure 7: State transition, feature value of EMG, and
pZ (examinee B).

agree well with the calculated output. Thus, the accu-
racy of the SS-ARX model can be verified.

Also, the steps in the motion of the peg (II to V)
are superimposed in the bottom figure. Intuitively, the
state transition scenario must be associated with the
switching occurred in the real task. Thus, we can see
that the state definition ofλF is different from one
of λNF . In addition, we can see the big difference in
the profiles of theE1 andE2 in the case of examinee
A, however, the differences are not clear in the case
of examinee B as shown in Fig. 7. In this case, it
seems almost impossible to discriminate fatigue and
non-fatigue cases only by looking at the profiles of
E1 andE2 and the state transition in each case. How-
ever, Since the SS-ARX model explicitly includes the
dynamic relationship betweenE1, E2 and pZ, the fa-
tigue recognition can be realized even in such a case
as shown in the next section.

5 FATIGUE RECOGNITION

In this section, fatigue is recognized using the two
models estimated in the previous section. The log-
likelihood values of the measured data over the two

Results
Fatigue or Non-fatigue

No fatigue model ( λNF ) Fatigue model ( λF )

Recognition    

Observation

P(Ol|λNF) P(Ol|λF)

DLL = log{P(Ol | λNF)}-log{P(Ol | λF)}

Figure 8: Proposed Recognition Scheme

models are computed and compared to recognize the
degree of fatigue of examinee. The illustrative dia-
gram of the proposed scheme is shown in Fig. 8. The
degree of fatigue of each examinee is evaluated by
the difference of two log-likelihood values (denoted
by DLL) given as follows:

DLL = log

{

P(Ol |λNF)

P(Ol|λF)

}

= log{P(Ol |λNF)}− log{P(Ol|λF)} (6)

whereOl is the measured sequence. log{P(Ol |λ)},
which is log-likelihood of the measured sequence
over the model, can be easily calculated by using For-
ward algorithm introduced in section 2.

We can see the clear tendency that theDLL goes
down according to increase of the trial number. In ad-
dition, the trial when theDLL across zero is regarded
as the turning point from ‘non-fatigue trial’ to ‘fatigue
trial’. Thus, the degree of fatigue of the examinee can
be evaluated in quantitative manner.

Table 3: Correlationr between theDLL and trial number.

Exam. SS-ARX HMM
Exam.A -0.80 -0.77
Exam.B -0.83 -0.25
Exam.C -0.77 -0.62
Exam.D -0.62 -0.65
Exam.E -0.93 -0.85

Finally, some discussions on the comparison with
the standard HMM are given in the following. For the
comparison, the number of states of the HMM were
set to 8 (left-to-right structure), although the proposed
SS-ARX model has 4 states. In the numerical exper-
iments, the 4-state HMM did not work at all as the
fatigue recognizer. The measured signalsE1, E2 and
pZ were vector quantized by using 32 symbols. Here,
a correlation of five examinees between theDLL and
data number, which is regarded as a typical index to
evaluate the relationship between theDLL and degree
of fatigue, is calculated and shown in Table 3. This
result implies that the growth ofDLL calculated by
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Figure 12:pZ and state transition of trial 1 of examinee B(in
the case of HMM).

SS-ARX has stronger correlation with the increase of
trial number compared with that of standard HMM
(except examinee D.) This comes from the fact that
the HMM cannot capture the accurate dynamic char-
acteristics underlying the measured signals compared
with the SS-ARX model.

The recognition performances of the standard

HMM and the SS-ARX model are compared using the
profile of examinee B in the following. The recogni-
tion result of the HMM of examinee B is shown in
Fig. 11. Also, the calculatedpZ and estimated state
transition obtained by Viterbi algorithm are shown in
Fig. 12.

In Fig. 11, obtainedDLL does not related to trial
number apparently. According to this result, it is al-
most impossible to discriminate between fatigue tri-
als and non-fatigue trials. Therefore, the degree of
fatigue does not seem to be recognized by standard
HMM for examinee B.

6 CONCLUSIONS

This paper has presented a new fatigue recognizer
based on the EMG signals and the stochastic switched
ARX (SS-ARX) model. Since the SS-ARX model
can represent complex dynamics which involves
switching and stochastic variance, high performance
as the fatigue recognizer was achieved. And the use-
fulness of the proposed strategy was demonstrated by
applying to a peg-in-hole task. The design of adap-
tive assisting system which can accommodate with
the change of skill characteristics caused by fatigue
is our future work.
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