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Abstract: In this work classical and modern control theory methods are applied for rigorous mathematical analysis and
design of different computer architecture circuits such as clock generators, synchronization systems and others.
The present work is devoted to the questions of analysis and synthesis of feedback systems, in which there
are controllable delay lines. In the work it is mathematically strictly shown thatRC-chain can be used as a
controllable delay line for different problems of circuit engineering if the chain is sequentially connected with
hysteretic relay. This relay is either artificially introduced or shows itself as non-ideality of logic elements.
The possibility of phase-locked loop application for time delay control is considered.

1 INTRODUCTION

The work is devoted to the questions of analysis and
synthesis of feedback systems, in which there are con-
trollable delay lines. First of all this is a class of con-
trollable clock generators and clocked circuits, which
perform the functions of summators (Cormen et al.,
1990).

In clocked circuits it is necessary that the delay
was by the one tact. For this purpose we need in a spe-
cial setting of parameters of delay lines, which will
be described in details. The generators, constructed
on logic elements and delay lines, are not high-stable
with respect to frequency (Ugrumov, 2000). There-
fore, for their stabilization and synchronization by
phase-locked loops it is necessary to introduce a con-
trollable parameter in delay line. A class of such delay
lines, the block-scheme of which is shown in Fig. 1,
is considered.

Figure 1: Delay line.

TheRC-chains are often used in circuit engineer-
ing as delay lines (Ugrumov, 2000). We assume that

the relation between the inputu and the outputx is
described by the following standard equation ofRC-
chain

RC
dx
dt

+x= u(t), (1)

whereR is a resistance,C is a circuit capacitance.
The relation between the inputx and the output

v is described by the graph of “relay with hystere-
sis”function, which is shown in Fig. 2. Hereµ1 andµ2

Figure 2: Relay with hysteresis.

are certain numbers from the interval(0,1). The the-
ory and practice of application of such relay blocks in
feedback systems is well described in (Popov, 1979;
Krasnosel’skii and Pokrovskii, 1983).

In the present work we consider only the func-
tionsu(t), which takes the values either 0 or 1 on cer-
tain intervals. Therefore, the solutionsx(t) of equa-
tion (1) are continuous, piecewise-differentiable and
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piecewise-monotone functions. It follows that the
graph in Fig. 2 correctly defines the outputv(t). Fur-
ther it will be shown that the hysteretic effect is of
great importance for synthesis both of clock genera-
tors and of clocked summators. This effect always
occurs in real (non-ideal) logic elements. Since the
output of delay line is often the input of logic ele-
ment, it is convenient to connect such hysteretic ef-
fect with RC-chain and to consider it in the frame of
block-scheme in Fig. 1. In some cases for improve-
ment of a quality of delay line operation it is possible
to introduce additional block “relay with hysteresis”,
which provides a required delay time and stability of
system operation.

We can show here the analogy with a classical
study of Watt’s regulator by I.A.Vyshnegradskii (An-
dronov and Voznesenskii, 1949; Leonov, 2001). Re-
call a main conclusion of Vyshnegradskii: “without
friction the regulator is lacking”. But if a friction “is
not sufficient”, then it is possible to introduce a spe-
cial correcting device, dashpot, which provides a sta-
ble operation of system. In the case now being con-
sidered the friction is replaced by hysteretic effect and
the above classical scheme of reasoning is repeated.
This becomes especially clear if we consider the syn-
thesis of clock generators.

For clocked summators it turns out rational the in-
troduction of two-stage delay lines, which shift a unit
impulse for the one tact. The latter permits us to use a
three-bit summator for any summation, confining our
attention to a minimal number of circuit elements.

The application of methods and technique of
the classical control theory (Burkin et al., 1996;
Leonov et al., 1996, Popov, 1979; Krasnosel’skii and
Pokrovskii, 1983; Andronov and Voznesenskii, 1949)
permits us to find the solution of considered problems,
applying very simple mathematical constructions.

2 DELAY LINES FOR SYNTHESIS
OF CONTROLLABLE CLOCK
GENERATORS

Consider the block-scheme in Fig. 3 and, recall the

Figure 3: Clock generator on Block AND-NOT and delay
line.

table for Block AND-NOT output

u1 u2 u
0 0 1
0 1 1
1 0 1
1 1 0

Truth table of Block AND – NOT

Let u2(t) = 0 for t < T, T > 0. Thenu(t) = 1
for t < T and at the inputx(t) there occurs (after a
transient process) the signalx(t) = 1. Suppose,x(t) =
1 on [0,T]. Thenu1(t) = 1 on [0,T] and a system is
in equilibrium:

1 = u1(t) = x(t) = u(t), u2(t) = 0.

The inclusion of clock generator is realized by
the change ofu2 from the state 0 to the state 1:
u2(t) = 1, ∀t > T. Then on the certain interval(T,T1)
we haveu(t) = 0. This implies thatu1(t) = 1 for
t ∈ (T,T1), where

T1 = T +RCln
1
µ1

(2)

andu1(t) = 0 on a certain interval(T1,T2).
Really, from equation (1) it follows that on(T,T1)

we havex(t) = e−αt , α = 1/RC. In this caseu1(t) =
1 for t ∈ (T,T1), whereT1 is from relation (2), and
u1(t) = 0 for t ∈ (T1,T2), whereT2 will be determined
below. From the latter relation it should be thatu(t) =
1 for t ∈ (T1,T2). This implies the following relation

T2 = T1 +RCln 1−µ1
1−µ2

, x(T2) = µ2.

In the case whenµ1 = 1−µ2, µ2 ∈ (1/2,1), we obtain
τ = T1−T0 = T2−T1 = RCln µ2

1−µ2
,

T0 = T +RCln 1
µ2

,

and 2τ-periodic sequence at the outputu:
u(t) = 0, ∀t ∈ [T0,T0 + τ),
u(t) = 1, ∀t ∈ [T0 + τ,T0 +2τ).

Thus, the block-scheme in Fig. 3 is a clock generator
with the frequency

ω =
1
2τ

=

(
2Rln

µ2

1−µ2

)−1

C−1. (3)

We compare this frequency with the frequency of har-
monicLC-oscillator:

ω = 1/
√

LC (4)

At present it is developed different methods of
control of a frequency of harmonic oscillators by
means of a slow (with respect to the high frequency
ω) change of parameterC. It is especially widely ex-
tended the phase-locked loops (Viterbi, 1966; Lind-
sey, 1972). In the past decade similar constructions
are actively developed and applied to the clock gener-
ators with frequency (3) (Solonina et al., 2000).
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3 DELAY LINES FOR CLOCK
IMPULSES

Consider the delay line, the block-scheme of which is
shown in Fig. 1. Letu(t) be 2τ-periodic sequence of
impulses:

u(t) = 0,∀t ∈ [0,τ), u(t) = 1,∀t ∈ [τ,2τ). (5)

If we choose the initial datax(0,x0) = x0 so that the
relation

τ = RCln
x0

1−x0
, x0 ∈ (1/2,1), (6)

is satisfied, thenx(τ,x0) = 1− x0, x(2τ,x0) = x0.
In this case the graph of 2τ-periodic functionx(t) is
shown in Fig. 4.

x
0

1-x
0

t 2t 3t 4t t
. . . .

Figure 4: Periodic output of RC-chain.

It is well known (Leonov, 2001) that for all other
solutions of equation (1)x(t,y0) the following relation

lim
t→+∞

(x(t,x0)−x(t,y0)) = 0 (7)

is satisfied. If we choosex0 > µ2, 1− x0 < µ1, then
relation (7) implies that after transient process, at the
output v (of delay line) we obtain 2τ-periodic se-
quence of impulses:

v(t) = 0, ∀t ∈
[
RCln x0

µ1
,τ+RCln x0

1−µ2

)
,

v(t) = 1, ∀t ∈
[
τ+RCln x0

1−µ2
,2τ+RCln x0

µ1

)
.

(8)
Note that forµ1 = 1−x0+ε, µ2 = x0−ε, whereε > 0
is a small parameter, from (8) we have

v(t) = 0, ∀t ∈ [τε,τ+ τε),

v(t) = 1, ∀t ∈ [τ+ τε,2τ+ τε),
(9)

where

τε = RCln

(
x0

1−x0+ ε

)
−−→
ε→0

τ. (10)

Recall thatx0 ∈ (1/2,1) andτ is determined from
relation (6).

Thus, the block-scheme in Fig. 1 realizes asymp-
totically the time delayτ: after transient process (see
relation (7)) at the outputv we observe relation (9), in
which case relation (10) is satisfied.

Consider now a certain extension of the above
case. Letu(t) be a certain sequence of clock impulses
(not necessarily 2τ-periodic) such that

u(t) = 0, ∀t ∈ [2kτ,(2k+1)τ), k = 0,1, . . .

and on each of intervals((2k+ 1)τ,2k+ 2)τ) it can
take the value either 0 or 1.

Now we consider the case when the delay line op-
erates in working conditions after transient process.
In this case, taking into account the above reasoning,
we can assume that for the certain fixedk there occur
the following restrictions:

u(t) = 1, ∀t ∈ [(2k+1)τ,2(k+1)τ)
x((2k+1)τ) ∈ (0,1−x0),

wherex0 satisfies relation (6).
We shall show that in this case it can be made such

a choice of parameters of delay line, for which asymp-
totically (atε → 0) the delay time of unit impulse isτ.
For this purpose we can take the obvious inequalities

x(t,(2k+1)τ,0)≤ x(t,(2k+1)τ,x((2k+1)τ)≤
≤ x(t,(2k+1)τ,1−x0), ∀t ≥ (2k+1)τ.

Herex((2k+1)τ,(2k+1)τ,y0) = y0. By the previous
relationsµ1 = 1−x0+ ε, µ2 = x0− ε we obtain

v(t) = 0, ∀t ∈ ((2k+1)τ,(2k+1)τ+ τε),

v(t) = 1, ∀t ∈ ((2k+1)τ+ τ̃ε,(2k+1)τ+ τε + ˜̃τε).

Here

τ̃ε = RCln(
1

1−x0+ ε
), ˜̃τε = RCln(

x0− ε
1−x0+ ε

).

Choosingx0 = 1−
√

ε, we obtain the following for-
mulas for parameters of delay line, which shifts unit
impulse with accuracy up to

√
ε for timeτ:

µ1 =
√

ε+ε,µ2 = 1−µ1,RC= τ/ ln
1√
ε
. (11)

This implies that for the asymptotical shift of unit im-
pulse for time 2τ it is necessary to apply two-stage
delay line with parameters (11) (Fig. 5). We proceed

Figure 5: Two-stage delay line.

now to the clocked circuits for bit summation (Cor-
men et al., 1990) (Fig. 6). HereΣ is a standard sum-

Figure 6: Clocked summator.

mator, at the input of which we have three bits,c0 = 0.
As the delay line we can use a two-stage delay line
with parameters (11) (Fig. 5). The time between the
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arrival of the signalsa j and a j+1 (and alsob j and
b j+1) is equal toτ. It is easily seen that the output
sksk−1 . . .s0 is a sum of two numbersak−1ak−2 . . .a0
andbk−1bk−2 . . .b0. Thus, the delay line considered
permits us to construct the summators with minimal
number of circuit elements.

4 CONCLUSIONS

In the present work it is mathematically rigorously
shown thatRC-chain can be used as a controllable de-
lay line for different problems of circuit engineering
if the chain is sequentially connected with hysteretic
relay. This relay is either artificially introduced or
shows itself as non-ideality of logic elements.
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