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Abstract: This paper deals with plane extraction from a single moving camera through a new optical-flow cumulative 
process. We show how this c-velocity defined by analogy to the v-disparity in stereovision, could serve 
exhibiting any plane whatever their orientation. We focus on 3D-planar structures like obstacles, road or 
buildings. A translational camera motion being assumed, the c-velocity space is then a velocity cumulative 
frame in which planar surfaces are transformed into lines, straight or parabolic. We show in the paper how 
this representation makes plane extraction robust and efficient despite the poor quality of classical optical 
flow. 

1 INTRODUCTION 

Our work deals with obstacle detection from moving 
cameras. In this application, most of real-time 
implemented approaches are based on stereovision. 
Yet stereo analysis shows two main drawbacks. 
First, it tends to group objects which are close to 
one-an-other. Second, height thresholds limit the 
detection implying to miss small obstacles close to 
the ground for example. Motion information is only 
exploited afterwards for detected objects. Motion 
analysis, on the other hand, allows the detection of 
any moving object. Therefore, we propose to exploit 
the ego-motion of the camera to distinguish between 
various moving objects. To that aim, we have 
established a correspondence with a very efficient 
stereovision technique based on the v-disparity 
concept (Labayrade, Aubert and Tarel, 2002). Our 
conjecture is that such result is general. Thereby we 
show how to extend the technique to detect planes 
along an image sequence shot from a moving 
vehicle. The apparent velocity from the scale change 
occurring to image data takes place of the disparity 
leading to the so-called c-velocity frame. In this 
paper we propose a complete plane detection 
process. Peculiar emphasis is placed on the 
parabolas detection in the c-velocity space. 

The paper is organized as follows: in the next 
section we take a look at ego-motion based object 
detection. Then we recall some pertaining relations 
between 2D and 3D motion. The fourth part is 
devoted to the computation of constant velocity 

curves in the image plane – analogue in our c-
velocity frame of the lines of the v-disparity, and we 
explain the cumulative process. The fifth section 
details how parabolas – 3D planes – are extracted in 
the c-velocity space using a Hough transform 
enriched by a K-mean technique. After the section 
devoted to results we conclude with discussions and 
future work. 

2 PREVIOUS WORK 

Recent years have seen a profusion of work on 3D 
motion, ego-motion or structure from motion 
estimation using a moving camera. It was followed 
by numerous classifications of existing methods 
based on various criteria. A classification commonly 
accepted groups existing techniques into three main 
categories: discrete, continuous and direct 
approaches.  

- Discrete approaches (Hartley, 1995) are based 
on matching and tracking primitives that are 
extracted from image sequences (point, contour 
lines, corners, etc.). They are usually very effective. 
However, they suffer from a lack of truly reliable 
and stable features, e.g. time and viewpoint 
invariant. Moreover, in applications where the 
camera is mounted on a moving vehicle, 
homogeneous zones or linear marking on the ground 
hamper the extraction of reliable primitives.  
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- Continuous approaches exploit optical flow 
(MacLean, Jepson and Frecker, 1994). The 
relationship between the computed optical flow and 
real theoretical 3D motion allows - through 
optimization techniques - to estimate the motion 
parameters and depth at each point. Results are 
dependent on the quality of the computed optical 
flow.  

- In direct approaches (Stein, Mano and Shashua, 
2000), motion is determined directly from the 
brightness invariance constraint without having to 
calculate explicitly an optical flow. Motion 
parameters are then deduced by conventional 
optimization approaches.  

- A large group of approaches (Irani, Rousso and 
Peleg, 1997) - which can be indifferently discrete, 
continuous or direct - exploits the parallax generated 
by motion (motion parallax, affine motion parallax, 
plane+parallax). These methods are based on the 
fact that depth discontinuities make it doable to 
separate camera rotation from translation. For 
instance, in "Plane+parallax" approaches, knowing 
the 2D motion of an image region where variations 
in depth are not significant permits to eliminate the 
camera rotation. Using the obtained residual motion 
parallax, translation can be exhibited easily. 

3 PRELIMINARIES 

Consider a coordinate system O XYZ at the optical 
centre of a pinhole camera, such that the axis OZ 
coincides with the optical axis. We assume a 
translational rigid straight move of the camera in the 
Z direction. That does not restrict the generality of 
computations. Moreover, the origin of the image 
coordinates system is placed on the top left of the 
image. If 0 0( , )x y  are the coordinates of the 
principal point, then the ego-motion ( , )u v  becomes: 

( ) ( )0 0 and z zT T
u y y v x x

Z Z
= − = −  

The previous equations describe a 2D motion 
field that should not be confused with optical flow 
which describes the motion of observed brightness 
patterns. We will assume here that optical flow is a 
rough approximation of this 2D motion field. In 
order to tackle the imprecision of optical flow 
velocity vectors, we propose to define a Hough-like 
projection space which – thanks to its cumulative 
nature –allows performing robust plane detection. 

4 NEW CONCEPT: C-VELOCITY 

In stereovision, along a line of a stereo pair of 
rectified images, the disparity is constant and varies 
linearly over a horizontal plane in function of the 
depth. Then, in considering the mode of the 2-D 
histogram of disparity value vs. line index, i.e. the so 
called v-disparity frame, the features of the straight 
line of modes indicate the road plane for instance 
(Labayrade, Aubert and Tarel, 2002). The 
computation was then generalized to the other image 
coordinate and vertical planes using the u-disparity 
by several teams including ours on our autonomous 
car.  

In the same way we have transposed this concept 
to motion. Our computations build on the fact that 
any move of a camera results into an apparent shift 
of pixels between images: that is disparity for a 
stereo pair and velocity for an image sequence. The 
v-disparity space draws its justification, after image 
rectification that preserves horizontal – iso-disparity 
– lines, from inverse-proportional relations between 
first image horizontal-line positions vs. depth, 
second depth vs. disparity. We show here under how 
to exhibit the same type of relation in the ego-
motion case between w  (≅ disparity) and the iso-
velocity function index c (≅ line index v). 

2 2 2 2
0 0( ) ( )

( , ) ( , )

zTu v y y x x
Z

K f x y f x y c
K

= + = − + −

= × ⇒ = =

w

w
w

 

The translation ZT being that of the camera, 
identical for all static points, if depth Z is constant 
the iso-velocity curves are circles. c varies linearly 
with the velocity vector. Beyond that “punctual” 
general case, Z can be eliminated in considering 
linear relations with (X,Y) i.e. plane surfaces well 
fitting the driving application for instance.  

4.1 The Case of a Moving Plane 

Suppose now the camera is observing a planar 
surface of equation (Trucco and Poggio, 1989): 

T d=n P , with ( , , )x y zn n n=n  the unit normal to 
the plane and d the distance "plane to origin". Let us 
assume that the camera has a translational motion 

( )0,0, ZT=T . We study four pertaining cases of 
moving planes and establish the corresponding 
motion field. a) Horizontal: road. b) Lateral: 
buildings. c)Frontal1: fleeing or approaching 
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obstacle, with (0,0, )o
ZT=T . d) Frontal2: crossing 

obstacle, with ( ,0,0)o
XT=T . 

 

 
Normal 
vector 

Associated  
3D motion 

Dist. to the 
origin 

a)  (0,1,0)=n
 ( )0,0, ZT=T  dist. dr 

b)  (1,0,0)=n
 ( )0,0, ZT=T  dist. db 

c)  (0,0,1)=n
 ( )0,0, o

Z ZT T= +T  dist. do 

d)  (0,0,1)=n
 

( ),0,o
X ZT T=T  

 
dist. do 

 
The corresponding motion fields, after [2] for 

instance, become those listed in the table below for 
each case. Let ow , rw  and bw  be 
respectively the module of the apparent velocity of 
an obstacle point, a road point and a building point. 
We choose to group all extrinsic and intrinsic 
parameters in a factor K and make it the unknown: 

 

a)  
0 0

2
0

( )( )

( )

Z

r

Z

r

T
u y y x x

f d
T

v x x
f d

= − −
×

= −
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b)  

2
0

0 0

( )

( )( )

Z

b

Z

b

T
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f d
T

v y y x x
f d

= −
×
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0

0

( )

( )

o
Z Z

o
o

Z Z

o
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d

T T
v x x
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+
= −
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d)  
0

0

( )

( )

o
Z X

o o

Z

o

T T fu y y
d d
T

v x x
d

= − −

= −
 

 

a)  
 

4 2 2
0 0 0( ) ( ) ( )r K x x y y x x= − + − −w

b)  
 

4 2 2
0 0 0( ) ( ) ( )r K y y y y x x= − + − −w

c)  
 

2 2
0 0( ) ( )r K y y x x= − + −w  

d)  

 
Z

2 2
0 0

 if T  

( ) ( )  otherwise

o
o X

o

K T

K x x y y

=

= − + −

w

w

 

Each type of w  leads to the corresponding 
expression of c and then to the related iso-velocity 
curve. For instance in the case of a building plane: 

4 2 2
0 0 0( ) ( ) ( )c y y y y x x

K
= = − + − + −

w

 
The final formula above proves that c is constant 

along iso-velocity curves and proportional to w , 
same as the disparity is proportional to the line value 
v. Thus, as explained in introduction, the c-velocity 
space will be a cumulative space that is constructed 
in assigning to each pixel ( , )x y  the corresponding c 
value through the chosen model, and in 
incrementing the resulting ( ),c w  cell were w is 

the velocity found in ( , )x y . The latter w is 
computed thanks to a classical optical flow method. 
A study of the function ( , )c x y  that corresponds to 
each plane model – in particular for the road and the 
building model – led us to the following 
conclusions: first, each previous curve intersects the 
x axis (road model) or y axis (building model) in the 
image plane in: 0y c±  or 0x c±  respectively. 
Second, for a standard image size, the range of 
variation of c is very large. For instance, for an 
image size of 320×240: max 32000c =  (road model) 
and 24000 (building model). As a consequence and 
for implementation reasons, we propose to deal for 
these two models with the relations between ||w|| and 

c  (see Figure 1).  
 

 
 
 
 
 
 

Figure 1: The c-velocity space that depends on the chosen 
relation between c and w: Linear for the obstacle model 
and parabolic for the road and the building model. 

4.2 Cumulative Curves 

For each point ( , )x yp =  in the image, there is an 
associated c value depending on the chosen plane 
model (see left column of Figure 2). We can 
calculate it once off-line because it only depends on 
( , )x y . Also, it is possible for implementation 
facilities and by analogy to image rectification (that 
makes all epipolar lines parallel) to compute the 
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transformation that makes all the c-curves parallel to 
the image line, that is the intensity function ( , )I c y  
for road and obstacle model and ( , )I x c  for building 
model (see right column of Figure 2). 

 

       
a) Obstacle model 

 
b) Road model 

  
c) Building model 

Figure 2: Left: for each model, the corresponding c-values 
for each point of the image. Right: images constructed 
using the geometric transformation that makes all c-curves 
parallel. 

5 1D HOUGH TRANSFORM AND 
K-MEAN CLUSTERING FOR 
PARABOLAS EXTRACTION 

Planes are represented in the c-velocity space by 
parabolas that could be extracted using a Hough 
transform. The distance p between each parabola 
and its focus or its linea directrix is then cumulated 
in a one dimensional Hough transform (see Figure 
3). The classes of the histogram split by K-mean 
clustering. Of course, any other clustering approach 
could be applied. 

( ) ( )22 1
4 4

c
w K c p

K w
= ⇒ = − = −
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Figure 3: Example of a 1D Hough transform on the c-
velocity space for detecting parabolas. For each (c,w) cell, 
a p value is cumulated. 

6 EXPERIMENTAL RESULTS 

In Figure 4, we have considered an image sequence 
in which one can see 6 moving planes: 2 planes 
corresponding to buildings, 2 planes corresponding 
to cars parked on the sides, a frontal moving 
obstacle (a motorcycle crossing the road) and the 
road plane. We have used the Lukas & Kanade 
method for optical flow estimation (Lucas and 
Kanade, 1981). In this sequence, velocity vectors are 
in majority on vertical planes. In the building c-
velocity space, we get as expected 4 parabolas (see 
Figure 4.b). We have studied in the effects of 3 
kinds of perturbations that have a consequence on 
the thickness of the parabolas. First, inter-model 
perturbation, second the imprecision on optical flow 
and third the possible pitch, yaw or roll of the 
camera. We use 2 kinds of confidence factors. First 
one is related to the translational motion hypothesis; 
it is the difference Δfoe between the coordinate of 
image centre and the position of the Focus of 
expansion (for its estimation see section 6.1, results 
on Figure 6). Second one is related to possible 
contamination by planes of other models; it is the 
variance σ of each K-mean class. Points far from the 
mean belong probably to another plane model 
(Figure 4.c). 
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a) Top image: optical flow, here Δfoe=7. Bottom: 
resulting vertical plane detection. Planes have a 
label according to K-mean clustering. 

 
b) Resulting c-velocity for building model. Each 
vote is normalized by the number of points in each 
c-curve. 

 
c) Results of parabolas extraction using a 1D 
Hough transform followed by a K-mean clustering 
(4 classes). In white the points that are discarded: 
they probably belong to another plane model. σmean 
= 10. 

Figure 4: Example of results obtained from a database of 
the French project “Love” (Logiciel d’Observation des 
VulnérablEs). 

 
 

 
 

 
Figure 5: Results of a building detection (top left image in 
red). The crossing obstacle here is – as expected – not 
detected in the building c-velocity space. 

6.1 FOE Estimation 

Several methods exist (Sazbon, Rotstein and Rivlin, 
2004). For sake of further real on board 
implementation, we favor here a method coherent 
with the present computations. All pixels are asked 
to vote for a global intersection point of apparent 
velocity vectors within a regular Hough space.  

Indeed, in the case of a translational motion, each 
velocity vector with angle θ  is directed toward the 
FOE. Let us assume that 0 0( , )x y are the FOE 
coordinates in the image. Then we have: 

1 1 0

0
tan tan

x xv
u y y

θ − − ⎛ ⎞−⎛ ⎞= = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠
 

The above relation means that we can extract the 
FOE by estimating the intersection of all velocity 
vector lines. In practice, we have carried out a voting 
space where each velocity vector votes for all the 
points belonging to its support line. The FOE 
corresponds then to the point with maximum votes. 
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Figure 6: Voting space for FOE determination. 

6.2 Results on Synthetic Images 

In the following toy example, we generate a 
synthetic velocity vectors field of a moving 3D 
scene with 3 planes: a vertical one (on the left of the 
image), an horizontal one (on the bottom of the 
image) and a frontal plane with its own motion 
parameters (a crossing obstacle), see Figure 7.a.  
 

 
a) Velocity vectors field of a moving scene with a 
building, a road and an obstacle plane. 

  
b) Associated c-velocity spaces (left: building, 
right: road). The parabolas indicate the expected 
moving planes. The constant segment 
corresponds to the obstacle; it appears in all the 
c-velocity spaces because of its constant velocity. 

Figure 7: Results on synthetic images. 

The results confirm that this simulated ego-
motion (Figure 7,b) transforms a road plane and a 
building plane into a parabola in the corresponding 

c-velocity space. Likewise the obstacle in the middle 
of the road is a segment with its own constant w. 

7 CONCLUSIONS 

First results are very encouraging and confirm that 
the cumulative process is efficient in retrieving 
major entities of a moving scene environment. Our 
future work deals with implementing an iterative 
approach that deals with all the c-velocity spaces. 
Each detected plane from a given space could be 
discarded from the other spaces in order to reduce 
inter-model perturbation. On the other hand, we 
propose to progressively generalize the approach to 
more complex structures than planes and to more 
complex motion models, including rotations for 
instance. 
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