
USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS 
TO MINIMISE WIRELESS SENSOR RESOURCE UTILISATION 

David Lowe, Steve Murray and Xiaoying Kong 
Centre for Real-time Information Networks, University of Technology 

Sydney, PO Box 123 Broadway NSW 2007, Australia 

Keywords: Wireless Sensor Networks, State Observers, Control, Optimisation. 

Abstract: A major trend in the evolution of the Web is the rapidly growing numbers of web-enabled sensors which 
provide a rich ability to monitor and control our physical environment. The devices are often cheap, 
lightweight, rapidly deployed and densely interconnected. The current dominant models of Web-based data 
monitoring are not well-adapted to the operational needs of these devices, particularly in terms of resource 
utilization. In this paper we describe an approach to the optimization of the resources utilized by these 
devices based on the use of synchronized state-observers. By embedding state observers with a minimized 
footprint into both the sensors and the monitoring Web client, we show that it is possible to minimize the 
utilization of limited sensor resources such as power and bandwidth, and hence to improve the performance 
and potential applications of these devices. 

1 INTRODUCTION 

One of the key future directions for the evolution of 
the Web is a growing integration of real-time 
embedded devices into the Web infrastructure, 
facilitating the monitoring and control of the 
physical environment. This functionality is strongly 
supported by the increasing availability of cheap, 
small, but powerful sensors and actuators.  

There is increasing attention on the mechanisms 
for “Web-enabling” these devices, as well as the 
development of rich applications that leverage the 
real-world data which becomes available. Indeed the 
related concept of a Sensor Web is now well 
established (Delin, 2002), with a considerable body 
of literature on the architecture and protocols for 
managing the devices and the resultant real-time 
data streams, though the integration of the 
SensorWeb with the World Wide Web is less well 
developed.  

The sensor devices however often have a number 
of performance and operational constraints which 
may often conflict with current approaches to the 
design of Web applications. To illustrate this 
consider, for example, a simplified application 
involving the embedding of a network of wireless 
moisture sensors into a residential garden. The 
application then makes available across the Web a 

map of the state of the garden (see Figure 1 for a 
simplified diagram of a representative architecture). 
A typical design of the Web interface for an 
interactive application such as this might be to 
implement an AJAX-based application with the Web 
client pulling content from the network of sensors 
(via the data aggregator) as needed by the user. 
Whilst this approach provides a rich user experience, 
it places requirements on the wireless sensor 
network that may lead to suboptimal performance. 
In this scenario the communications radio in the 
sensors would be required to remain active, in order 
to respond to requests for content – leading to 
unnecessarily excessive power usage. A simple 
improvement would be to allow the sensors to 
periodically push content to the content aggregator 
node, which then caches the data and responds to 
client requests. Even this approach however means 
that data communications will be occurring when 
they are not necessarily required.  

The above scenario is typical of numerous 
applications involving embedded devices – 
particularly wireless sensor networks (WSNs). The 
sensor devices are designed to be extremely low 
power, thereby enabling them to operate for 
considerable periods (often years) off a single 
battery cell.  This low power usage is achieved 
through having the sensors operate on a very low 

5
Lowe D., Murray S. and Kong X. (2009).
USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE UTILISATION.
In Proceedings of the International Conference on Wireless Information Networks and Systems, pages 5-12
DOI: 10.5220/0002187300050012
Copyright c© SciTePress



 

duty cycle, where they spend most of the time in an 
extremely low-power “sleep” mode, only waking 
periodically to take a sensor reading (and transmit it 
if necessary). This makes it infeasible to rely on a 
design which requires them to respond to content 
requests. 

In this paper we consider an architecture based 
on synchronized state observers that addresses these 
issues and facilitates the optimization of resource 
usage in web-enabled sensor networks. In the 
following section we describe related work, 
considering in particular both the growing trend to 
embed sensors directly into the Web infrastructure, 
as well as approaches to data monitoring 
optimization through the use of a classical technique 
from control theory – state observers.  

In section 3 we provide an overview of our 
proposed architecture, and describe how it addresses 
the design constraints. In section 4 we then outline a 
prototype evaluation that demonstrates the 
performance gains that can be achieved through our 
proposed approach. Finally, in section 5, we 
consider the implications of this approach and 
outline directions for future work.  

2 BACKGROUND 

2.1 Integrating Sensors into the Web 

Improvements in sensor hardware, communications, 
and electronics miniaturization have led to a 
growing availability of cheap, small, and 
functionally rich sensors. As these sensors are 
combined with wireless and/or mobile 
communications and embedded software, it has 
become increasingly possible to connect these 
devices either directly into the Web infrastructure, or 
to make their data available on the Web through 
appropriate gateways. By embedding these devices 
into the physical world, and making the resultant 
environmental data available on the Internet, a 
diverse range of monitoring and control applications 
become possible. The result can be a network that is 
often referred to as a Sensor Web: “The Sensor Web 
is to sensors what the Internet is to computers, with 
different platforms and operating systems 
communicating via a set of shared, robust 
protocols.” (Delin, 2002).  

The information provided by sensors can be 
incredibly diverse: location, speed, vibration, 
temperature, humidity, light, sound, pollutants, etc.  
This information, in turn, enables extremely rich 
monitoring and control applications, many of which 

however only become feasible when the sensors are 
small and cheap – which in turn places constraints 
on the resources available to the sensors.  

Zigbee 
Network 

WiFi 
Network 

Internet

Sensors 

Web Server 

Web Client

Data 
Aggregator 

 
Figure 1: Representative architecture of a typical Web-
enabled wireless sensor network. 

As an example, consider the following scenario: 
a building incorporates a network of temperature and 
humidity sensors to support monitoring of the 
building environment. To enable them to be rapidly 
and cheaply deployed, without requiring cabling, 
they are designed as a Zigbee wireless mesh network 
("The Zigbee Alliance," 2008) with each sensor 
node being battery powered. A significant design 
objective on the sensor modules is therefore to 
minimize their power utilization in order to 
maximize their battery life. As an example, a Zigbee 
module might use as little as 1 µA when in deep 
sleep, 10 mA when operating, and 40 mA when 
transmitting or receiving data. A typical scenario 
would have each set of samples requiring the 
module to be awake for 5ms and transmitting for 
1ms. If it sampled continuously, a standard high-
performance Lithium “coin” battery would last 
approximately 50 hours. Conversely, transmitting a 
data sample only every 10 seconds, and sleeping the 
remainder of the time would give a 1:2000 duty 
cycle and an operating life of over 10 years 
(ignoring shelf-life characteristics of the battery, 
which can vary enormously, from less than a year to 
>> 10 years, depending on the environment and the 
battery type). Note that other factors, such as the 
requirements for data routing, will moderate these 
extreme examples somewhat.  

Power minimization in turn requires the module 
to minimize the time in which it is operational. 
Similar resource constraints exist in terms of 
minimization of communication bandwidth, CPU 
cycles, and other resources.  

 
 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

6



 

2.2 Sensor Network Architectures 

Research on the design of architectures which 
leverage sensor network technologies has considered 
both the architecture of the individual sensors and 
the broader network architecture. In terms of the 
former, considerable attention has been given to 
aspects such as minimization of the software 
footprint of the sensor module, optimization of the 
sensor design, development of low-power devices, 
etc. (Polastre, Hill, & Culler, 2004).  

In terms of the broader architecture of sensor 
networks, considerable effort has gone into 
designing communication topologies and protocols 
that are both robust (e.g., self-healing routing) and 
minimize power and bandwidth overheads 
 (Krishnamachari, Estrin, & Wicker, 2002). By 
adapting the routing topologies it is possible to 
obtain significant performance improvements. 
Consider, for example, approaches such as data-
centric routing (Krishnamachari et al., 2002) (which 
uses in-network aggregation of data flows) and 
dynamic adaptation of sensor sampling rates 
(Ganesan, Ratnasamy, Wang, & Estrin, 2004; 
Polastre et al., 2004), which are used to improve 
performance, minimize network traffic, and reduce 
energy consumption.  

Whilst these aspects are important, they have 
typically been developed without a clear 
consideration of the specific characteristics of the 
design of the applications which will often be used 
to leverage the data. For example, where the data is 
used within a Web-based application then one of the 
key aspects is consideration of the nature of 
interactivity in Rich Web Applications, and in 
particular the use of technologies such as AJAX, 
Flex and Silverlight to pull content to the Web client 
as needed in response to user interactions.  

The integration of Sensor networks into Rich 
Web Applications is typically done through 
continuous collection of the sensor data into a 
central repository (whether or not it happens to be 
needed at that time) and then either pulling the 
content to the browser or streaming it from the 
server. In either case, it means that data is collected 
from the sensors which may not be needed at a 
particular point in time (with the associated wastage 
of sensor module resources).  

Some work on middleware for sensor networks 
can assist in this area. Approaches to lightweight 
publish-subscribe models (see, for example (Costa, 
Picco, & Rossetto, 2005; Gaynor, Moulton, & 
Welsh, 2004; Huang & Garcia-Molina, 2004)) can 
provide a mechanism for retrieving sensor content to 

the Web server, and then to the browser, only when 
the sensor data is changed (or, rather, when the 
sensor node determines that the data warrants 
publishing). Whilst this is an improvement it still 
neglects the interplay between client and server (and 
ultimately sensor). For example, the level of 
information granularity – both spatial and temporal – 
that is relevant to a particular client session will 
change over time, and will influence the information 
that needs to be published by the sensor.  

We believe that one of way of addressing this 
problem is through the use of concepts from 
classical control theory, and in particular the use of 
distributed synchronized state observers.  

G(z) 

GEst(z) 

L(z)

Actual System

Modeled System

Observer Compensator 

u(k) input  y(k) 

Plant output 

xO(k) 
Observed state 

x(k) 
Plant state 
(not observable) 

‐ 

+ 

+ 

+ 

yO(k) 
Observer output 

 
Figure 2: General form of a Luenberger observer. 

2.3 State Observers 

In classical control theory, we manipulate the inputs 
to a system being controlled in order to achieve 
system output behaviours that meet performance 
requirements. Appropriate modeling allows us to 
design controllers which use the error between a 
desired system output and the actual output to 
generate the system input. This is straightforward 
when the system outputs can be reliably measured 
(and if the system behaviour is readily modeled – 
particularly if the behaviour is linear, though there 
are sophisticated techniques for dealing with non-
linear systems). However in many cases some of the 
system outputs cannot be directly observed or 
accurately measured. (This may be for a range of 
reasons – the output variables may be of a form that 
is not easy to measure, they may be inaccessible, or 
the sensors may themselves introduce errors). In 
these cases, one solution is to use a state observer. A 
state observer is a model of a real system that gives 
us access to an estimate of the internal state of the 
system. As shown in Figure 2, with a Luenberger 
Observer (Ellis, 2002), the observable outputs of the 
physical system are compared to the equivalent 

USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE
UTILISATION

7



 

outputs from the state observer and used to correct 
any errors in the observer using a compensator. 
Traditionally state observers have been used to gain 
access to estimates of the variables which determine 
the state of the system, when these variables cannot 
be directly accessed (in Figure 2, we would use xo(k) 
in our system control, rather than x(k), which cannot 
be directly accessed). It is, however, equally 
applicable to use estimates, when gaining access to 
the actual system variables is inappropriate due to 
resource requirements, as may be the case with 
sensor networks.  

We could use this concept by implementing a 
state observer in the Web Server, and which 
provides data to the Web clients as requested, but 
this raises questions of maintaining the accuracy of 
the observer. To address this, we can use data from 
the sensors as input to the observer compensator, 
however this compensation may often not be 
necessary (when the observer is accurately tracking 
the real system state and hence does not require 
correction) and is therefore a waste of sensor 
resources.  

We therefore propose an architecture which 
utilizes synchronized distributed observers, so that 
each sensor includes an embedded copy of the 
observer, and can hence determine locally on the 
sensor if the observer is deviating and requires 
correction.  The sensors therefore only provide data 
when it is required to keep the observer 
synchronized. More simplistic versions of this 
approach have been used previously. For example, 
numerous approaches have adopted variations of 
using constant sampling rates in the sensors, but 
only transmitting sensor data when the change 
exceeds some threshold (a form of adaptive delta 
modulation – see, (Ishwar, Kumar, & Ramchandran, 
2003; Li & Fang, 2007)). A state observer however 
has the potential to allow a much more intelligent 
variation of the transmission thresholds based on a 
system model.  

3 A WEB-ENABLED SENSOR 
OBSERVER 

3.1 System Architecture 

Figure 3 shows the basic architecture which we have 
adopted. In this architecture, we implement as part 
of the sensor module a slightly modified Luenberger 
observer, with a quantizer included in the 
compensation so that small corrections to the 

modeled system are ignored, until the model error 
reaches a level that requires correction. This 
minimizes the data flow associated with the 
correction to the modeled system. 

G(z) 

GEst(z) 

L(z)

Actual System

Modeled System 

Observer Compensator 

u(k) input y(k) 
Plant output 

xO(k) 
Observed state 

yO(k) 
Observer output 

 Quantizer

GEst(z) 

Modeled System 

yO(k) 
Observer output 

Sensor

Data Aggregator / Web 
Server

yErr(k) yComp(k) 

uO(k)

+

+

+ 

‐ 

 
Figure 3: Distributed Synchronised State Observer 
Architecture. 

An identical model of the system is then 
incorporated into the data aggregator or Web server, 
which then provides data to the Web client. Indeed it 
may even be possible to incorporate the observer 
directly into the Web client, thereby minimising 
Web traffic and improving client interactivity. 

The consequence of this is that the 
communication that needs to occur from the sensor 
nodes is reduced, thereby reduce resource usage. It 
also has the potential to provide a more responsive 
and accurate client side interaction (since the Web 
client can use the model to support more rapid 
interactions).  

3.2 Design Modeling 

The proposed architecture can be modeled as 
follows. The standard form for the linear relation, at 
time k, between the input vector u(k), system  state 
vector x(k) (which may not be directly measurable) 
and the vector of observable outputs y(k) in a 
discrete system is: 

)()()(
)()()1(

kDukCxky
kBukAxkx

+=
+=+                     (1) 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

8



 

Where A, B, C and D are matrices that define the 
model of the system dynamics, and are obtained 
through conventional control system modelling 
techniques. 

Assuming that we are able to construct a 
sufficiently accurate representation of this system, 
then for a normal Luenberger observer we have:  

)()()(
)()()1(

kDukCxky
kBukAxkx

OOO

OOO

+=
+=+                        (2)  

where xO and yO are the estimates of the system state 
and the system output, and uO is the input to the 
observer. But: 

( )
( )

( )( ))()()(
)()(

)()()(

kykyLkuQ
kLykuQ

kykuQku

O

Err

CompO

−+=
+=

+=
              (3) 

Where Q is the quantization function and L is the 
Luenberger compensator matrix. (Note that the 
derivation of these is beyond the scope of this paper, 
but is well covered in most control texts). Therefore, 
merging equations (2) and (3) gives: 

( ))()(
)()()1(

kykyQBL
kQBukAxkx

O

OO

−
++=+                  (4) 

For the observer to provide an accurate 
representation of the system state, we need the 
observer state error to approach zero as ∞→k . i.e.:  

( )

( ) ( )
( ) ( )

( ) )(
)()()()(

)()()()(
)()(

)()()()(
)1()1()1(

)()()(

keQBLCA
kxkxQBLCkxkxA

kykyQBLkxkxA
kBukAx

kykyQBLkQBukAx
kxkxke

kxkxke

OO

OO

OO

O

O

−=
−−−=

−−−≈
−−

−++=
+−+=+

−=

   (5) 

The observer will therefore converge when the 
eigenvalues of QBLCA− all have negative real 
values.  

However, in the case of typical environmental 
monitoring, we will be sensing a system that we are 
not controlling. We would therefore treat u(k) as a 
disturbance input which we cannot directly monitor. 
For example, if we are designing a Web interface to 
a system that monitors temperatures throughout a 
building, then someone opening a window may lead 
to the entry of cold air, and hence temperature 
fluctuations. Given that our only information is the 

sensor data, we therefore can consider how rapidly 
our observer can track these variations. In this case: 

( ))()(
)()(

kykyQL
kQLyku

O

ErrO

−=
=                     (6)  

And therefore: 

( ))()()()1( kykyQBLkAxkx OOO −+=+  (7)  

And hence: 

( ) )()()1( kBukeQBLCAke −−≈+  (8)  

The stability criteria remain the same, but we can 
now determine the responsiveness of the system to 
disturbance rejection, and hence the ability of the 
observer to track variations.  

Appropriate selection of the model parameters, 
as well as the observer compensator and quantizer, 
will therefore allow us to select the minimal data 
stream rate between the sensor observer and the 
Web client observer that achieves the desired 
observer accuracy. Where applications require less 
accuracy, we can tune the compensator and 
quantizer to reduce the data rates.  

3.3 Design Considerations 

Given the baseline architecture, we can now move to 
consideration of the issues this raises, and how it 
relates to the design of Web-based monitoring. In 
particular: 

1. How accurately can we model the system being 
monitored, and what are the consequences (in 
resource utilization) of inaccuracies in the model. 

2. What are consequences for sensor and client 
synchronization of typical network impacts on 
the data stream – i.e., network delays, packet 
drops, etc. 

3. What additional information needs to be passed 
between the sensor observer and the Web client 
observer in order to ensure that synchronization 
is retained in the event of network delays, packet 
drops and other forms of disturbances? 

4. To what extent is it possible to implement a 
typical state observer directly within a Web page, 
so that it operates on the client-side, and hence 
provides improved interactivity? 

5. What additional processing burden does the 
implementation of the observer place on both the 
sensor module and the Web client, and how do 
these additional resources compare to those 

USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE
UTILISATION

9



 

saved through possible reductions in the data 
stream which must be communicated? 

In the latter part of this paper we will focus on a 
consideration of the last two of these questions – as 
an initial demonstration of the potential resource 
savings is a crucial first step in justifying the 
approach. It is only worth deeper analysis of issues 
such as model robustness and error correction if the 
approach clearly shows merit in terms of reducing 
resource utilization in Web-enabled sensors (or 
conversely, enabling accuracy improvements for a 
given resource usage level).  Consideration of the 
first three of these design considerations is ongoing 
and will be reported in subsequent publications. 

4 PERFORMANCE 
EVALUATION 

In order to evaluate the approach – and in particular 
the potential ability to optimize the trade-off 
between accuracy of the web-monitoring of 
distributed sensor data and the resources required for 
this monitoring, we have implemented (in 
MATLAB) a simulation of a simple thermal system 
and associated sensor configuration, as well as an 
associated prototype of a Web interface that 
incorporates a Web client-side state observer. 

This initial implementation (which is much 
simpler than that which would typically exist in a 
real system – but nevertheless allows evaluation of 
the approach) comprised a simulation of a simple 
model of a two-room house, which had a specified 
thermal resistance between the rooms and between 
each room and the outside environment. Both rooms 
also had substantial thermal capacitance. The system 
state could therefore be modelled by the following 
variables:  

[ ]TE kTkTkTkTkTkx )()()()()()( 2211
&&=  (9)  

Where )(kTE  is the external temperature, )(1 kT  
and )(2 kT  are the temperatures in the two rooms, 
and )(1 kT&  and )(2 kT&  are the corresponding rates of 
temperature change. Only two system values are 
actually measured directly by sensors – the external 
temperature )(kTE and the temperature in one of the 
rooms )(2 kT - so y(k) is given by:  

[ ]TE kTkTky )()()( 2=                      (10)  

 

4.1 Implementation 

The aim was to allow monitoring of these 
temperatures within a Web browser. Figure 4 shows 
the architecture for the simulation. In this 
implementation we have constructed the client 
observer using Javascript embedded within the Web 
page. The system state output from the client 
observer (i.e. estimates of the temperature values 
and rates of temperature change) is used to support 
rendering of, and interaction with, the sensor data. 

Web Browser

Web Server 

Simulated Sensor Network

Zigbee Network 
Coordinator 

Temperature
Sensors

Data 
Repository

AJAX 
Controller 

Display 

Observer 
Model 

Observer 
Model

 
Figure 4: Example architecture for a typical Web client 
state observer. 

The Javascript also uses an AJAX-like approach 
to query the Web server for any new quantized 
observer compensator data which, when available, is 
used as input to the Web client observer in order to 
correct its modelled state. Whilst this example is 
relatively simplistic, it does demonstrate the general 
approach and allows evaluation of the performance. 

4.2 Data Flow Improvements 

The client-side implementation allows evaluation of 
the improved interactivity that is enabled by 
including the state observer directly within the web 
pages (such as zooming into sensor trend data or 
interpolating spatially between sensor values). The 
more substantial benefits however are potentially 
achieved through reduction in the sensor data rates. 
In order to evaluate this, we analysed the outputs of 
the simulated system under varying circumstances, 
and in particular considered the data transmissions 
associated with the quantized observer compensator 
data that are required to correct both the sensor 
observer and the client observer. 

In our simulated system we introduced various 
disturbances to the system (equivalent to sudden 
temperature variations that were not predicted by the 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

10



 

simple model used), and looked at the level of data 
that was required to be transmitted by the sensor in 
order to retain synchronization between the sensor 
observer and the Web client observer. We also 
considered the implications on these data flows of 
inaccuracies in the observer model.  

Figure 5 shows the Matlab model used for the 
simulations to compare the system output and 
observer transmission rates under conditions of a 
disturbance to the system. 

4.3 Resource Usage 

We can see the implications of this reduction in data 
flow by considering the implications in terms of the 
average power usage in a typical sensor 
configuration. 

Table 1: Typical data rates associated with different 
configurations of simulated temperature monitoring. 

Configuration 

Data 
Rate 

(transmit
s / day) 

Baseline system with no observers 
No sensor-side or client-side observer, 
and system transmits raw sensor data 
from both temperature sensors (rate=1 
sample/sec) 

86,400 

System with implemented observers  
No disturbances, )(kTE  stable, observer 
is completely accurate (Note: 
resynchronization transmissions occur 
every 10 minutes) 

144 
(0.2%) 

No disturbances, )(kTE  stable, observer 
has minor inaccuracies that lead to drift 

462 
(0.5%) 

No disturbances, )(kTE stable, observer 
has major inaccuracies that lead to drift 

2,712 
(3.1%) 

External temperature )(kTE sinusoidally 
varying by 10 degC with 24 hour period, 
observer has minor inaccuracies that lead 
to drift 

3,842 
(4.4%) 

Internal temperature )(2 kT varying in a 
square wave by 10 degC with a 2 minute 
period 

7,563 
(8.8%) 

 
In our scenario, the base sampling rate was 1 

sample (from each sensor) per second. A typical 
Zigbee-based single temperature sensor that 
immediately transmitted each sensor value would 
operate on the following 1 second cycle:  
• Reading sensor + housekeeping: 10mA, 0.4 

mSec 
• Transmitting data: 40mA, 1 mSec 

• Asleep: 0.001mA, remainder of time 

Giving an average power usage of 0.045mA (or 
approximately 92 days from a 100mAh battery).  

The data rate required with the state observer 
implemented depended upon a number of factors, 
but a typical scenario would reduce the transmitted 
data to an average of approximately one sample 
every 15 seconds (though, as observed above, this 
was highly dependant upon the volatility of the data 
and the accuracy of the model). The additional 
processing time to implement the observer in the 
sensor module will depend substantially upon the 
particular module used, though a quick prototype on 
a Jennic JN5139 Zigbee module indicated that the 
observer could be implemented in approximately 
140 µSec per cycle. This gives:  
• Reading sensor + housekeeping: 10mA, 0.54 

mSec. 
• Transmitting data: 40mA, 1 mSec (every 15th 

sample) 
• Asleep: 0.001mA, remainder of time 

This gives an average power usage of 0.009mA 
(or approximately 460 days on a 100mAh battery) – 
a very significant improvement.  

In cases where the sensor data is very volatile, 
and the observer is not able to track, and hence there 
is absolutely no reduction in sensor data that is being 
transmitted, the increased power usage due to the 
inclusion of the observer minimal – a 3% increase 
from 0.045mA to 0.046mA.  

5 CONCLUSIONS 

In this paper we have considered an architectural 
model that includes into the client-side Web pages a 
distributed state observer that is synchronized with 
identical observers in real-time wireless sensors. 
Whilst still preliminary, our initial results have 
demonstrated that significant gains may be possible 
in terms of minimizing resource utilization within 
the sensors (by limiting the data that has been 
wirelessly transmitted – potentially at significant 
power cost) and potentially also improving the 
interactivity of the client-side experience (though 
this needs further consideration).  

Further work on the development of this 
approach will consider the extent to which we can 
construct useful models of the dynamics of the 
physical systems being monitored by the sensors, 
and the implications of these models as the sensors 
become more distributed. 

 

USING SYNCHRONIZED LIGHTWEIGHT STATE OBSERVERS TO MINIMISE WIRELESS SENSOR RESOURCE
UTILISATION

11



 
Figure 5: Example temperature tracking simulation and associated data rates. 

Further work will also consider how reliably the 
multiple observers can remain synchronized in the 
presence of network delays, data loss, etc.  

Finally, we are also constructing a more 
substantial physical implementation of a sensor 
network which can be used as a test bed 
environment to validate our model simulations.  

ACKNOWLEDGEMENTS 

The authors wish to acknowledge the Centre for 
Real-Time Information Networks (CRIN) at the 
University of Technology, Sydney, in supporting 
this research project. 

REFERENCES 

Costa, P., Picco, G. P., & Rossetto, S. (2005). Publish-
subscribe on sensor networks: a semi-probabilistic 
approach. 

Delin, K. A. (2002). The Sensor Web: A Macro-
Instrument for Coordinated Sensing. Sensors, 2(1), 
270-285. 

Ellis, G. (2002). Observers in Control Systems: A 
Practical Guide: Academic Press. 

Ganesan, D., Ratnasamy, S., Wang, H., & Estrin, D. 
(2004). Coping with irregular spatio-temporal 

sampling in sensor networks. SIGCOMM Comput. 
Commun. Rev., 34(1), 125-130. 

Gaynor, M., Moulton, S. L., & Welsh, M. (2004). 
Integrating Wireless Sensor Networks with the Grid. 
IEEE INTERNET COMPUTING, 32-39. 

Huang, Y., & Garcia-Molina, H. (2004). 
Publish/Subscribe in a Mobile Environment. Wireless 
Networks, 10(6), 643-652. 

Ishwar, P., Kumar, A., & Ramchandran, K. (2003). 
Distributed Sampling for Dense Sensor Networks: A" 
Bit-Conservation Principle". 

Krishnamachari, B., Estrin, D., & Wicker, S. (2002). 
Modelling Data-Centric Routing in Wireless Sensor 
Networks. 

Li, H., & Fang, J. (2007). Distributed Adaptive 
Quantization and Estimation for Wireless Sensor 
Networks. Signal Processing Letters, IEEE, 14(10), 
669-672. 

Polastre, J., Hill, J., & Culler, D. (2004). Versatile low 
power media access for wireless sensor networks. 
Paper presented at the 2nd international conference on 
Embedded networked sensor systems.  

The Zigbee Alliance. (2008).   Retrieved 22-Oct, 2008, 
from http://www.zigbee.org/en/index.asp. 

WINSYS 2009 - International Conference on Wireless Information Networks and Systems

12


