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Abstract: The purpose of this paper is to enable a developer to easily employ external sensors emitting a one-
dimensional signal for flexible robot manipulation. To achieve this, the sensor must be calibrated using data 
tuples describing the relation between the positional change of the supervised object and the resulting 
sensor value. This information is used for adaptation methods, thus enabling robots to react flexibly to 
changes such as workspace variations or object drifts. We present a sensor-independent method to 
incrementally generate new data tuples describing this relation during multiple task executions. This 
method is based on the Secant method and is the only generally applicable solution to this problem. The 
method can be integrated easily into robot programs without detailed knowledge about its functionality. 

1 INTRODUCTION 

Industrial robots are able to perform complex tasks 
with utmost precision and at high speed without 
exhibiting symptoms of fatigue. However, these 
tasks are nearly always executed in a fixed 
environment, i.e. the precision is achieved by 
ensuring that all objects are placed in exactly the 
same position every time. All parts must have the 
same dimension, position, orientation, etc. Only by 
employing external sensors such as vision or 
force/torque sensors, a robot can deal with 
imprecisions and variations in objects and the 
environment. When designing such programs for 
more flexible robots, a developer faces the problem 
of determining the relation between the sensor value 
obtained and the actual physical variation of the 
supervised object. 

The task is to find a change function that 
transforms sensor values into Cartesian descriptions 
of the change in order to successfully deal with 
these. The classical approach is to analytically 
determine a function describing this mapping. 
However, for complex sensors this task quickly 
becomes difficult and it is sometimes simply not 
possible to find an analytical solution if the 
underlying physical principles are unknown to the 
developer. In these cases data tuples describing the 
relation between the positional change of an object 

and the resulting sensor value are recorded and a 
selected type of function is fitted to these tuples. 
These approaches require a large amount of analysis 
and programming before the robot executes the task 
for the very first time. Another downside is, that this 
pre-calculated solution is fixed and prevents the 
robot from adapting to changes of the environment. 
For example, the robot must be stopped and re-
calibrated if a drift in the workspace or the sensor 
system occurs. The advantage in the use of change 
functions is that an additional layer of abstraction is 
introduced. The program can be designed 
independent from the actual sensor because all 
workspace changes are described in Cartesian 
coordinates. Now, we may replace the sensor with a 
different one using another measuring principle and 
– as long as the change function is correct – no 
alterations have to be made to the program. General 
features of change functions are described in 
(Deiterding, 08) and a general outline to determine 
these functions is given, but no generally applicable 
method is presented to calibrate sensors iteratively 
during the execution of a robot manipulation task. 

In this paper, we focus on sensors emitting one-
dimensional signals, such as distance or force/torque 
sensors. We do not deal with imaging sensors as this 
class of sensors usually requires an upstream pattern 
matching algorithm to distinguish the relevant 
information from background data. We show how 
calibration data for a change function can be 
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computed iteratively during the first executions of 
the task and how these methods can be integrated 
easily into the programming environment, only 
requiring the developer to specify a minimum of 
task-dependent parameters. Additionally, we show 
how the robot adaptively optimizes the task with 
respect to execution time based on a steadily 
improving approximation of the function. 

The rest of this paper is organized as follows: In 
Section 2, we give a short overview of related work 
concerning this topic. In Section 3, we will outline a 
framework with which a developer can create sensor 
based robot programs that automatically acquire 
calibration data during execution. In Section 4, we 
describe which algorithms are encapsulated into this 
framework and compare them with other 
approaches. Section 5 describes how a typical robot 
task can be solved using our approach. In the last 
section, we give a short summary of our work and 
discuss further steps.  

2 RELATED WORK 

The task of inferring information from noisy sensor 
data is covered thoroughly by various books on 
pattern classification, e.g. (Duda, 00). But all of 
these describe methods for extracting the relevant 
information from sensor values, assuming that this 
information is present in the data. Multiple papers 
dealing with the planning of sensing strategies for 
robots exist, e.g. (Leonhard, 98), (Rui, 06). Most of 
these involve a specific task (Adams, 98), (Hager, 
90) or are aimed at employing multi-sensor 
strategies (Bolles, 98), (Dong, 04). Various papers 
deal with the use of sensors in the work cell to allow 
for information retrieval (Hutchinson, 88). In 
(Kriesten, 06), a general platform for sensor data 
processing is proposed, but once more it is assumed 
that the sensors are already capable of detecting 
changes. More general discussions of employing 
sensors for robot tasks can be found in (Firby, 89), 
(Pfeifer, 94).  

Two types of sensors are typically used for 
manipulation tasks: Force/torque and vision sensors. 
When force/torque sensors are employed, maps may 
be created describing the measured forces with 
respect to the offset to the goal position. (Chhatpar, 
03) describes possibilities to either analytically 
compute these maps or create them from samples. 
Based on this, (Thomas, 06) shows how these maps 
can be computed using CAD data of the parts 
involved in the task. In both cases, the maps must be 
created before the actual execution of the task and 

are only valid if the parts involved are not subject to 
dimensional variations. If the information is 
acquired using cameras, the first step is to perform 
some kind of pre-processing of the data to extract 
the relevant information. To determine how this 
information relates to the positional variation is once 
again the task of the developer and highly dependent 
on the nature of the task. Examples for information 
retrieval using vision sensors are given in (Dudek, 
96), (Paragios, 99) and (Wheeler, 96). 

In summary, all of the papers mentioned above 
either propose specific solutions for specific types of 
sensors and tasks or algorithms to extract the 
relevant information from the sensor signal. A 
problem is that these solutions do not outline a 
general approach which can be used regardless of 
the type of sensor. Additionally, all papers assume 
that the developer is capable of integrating the 
methods into his own robot program. Unfortunately, 
this is usually not the case for developers in small 
and medium sized enterprises, which often possess 
only basic knowledge about robot programming. 

Here, we are interested in determining the 
relationship between the sensor signal and the 
Cartesian deviation iteratively during multiple task 
executions. We want to integrate this algorithm into 
an easy-to-use interface that will enable developers 
having no special knowledge in robot programming 
to create adaptive robot programs. We only focus on 
one-dimensional data, such as distance sensors or 
force/torque sensors. Vision sensors always require 
some kind of pre-processing that is highly 
dependent on the task. 

3 INTEGRATION INTO THE 
PROGRAMMING 
ENVIRONMENT 

In this chapter, we will explain how a developer 
with minimal knowledge about sensor data 
processing can easily create robot programs that 
employ external sensors. We will explain which 
considerations must be made by the developer, how 
the program must be structured in general, and 
which parameters are mandatory. 

3.1 Setting Up the Workspace 

The first thing a developer has to do is to decide in 
which way a change can occur between consecutive 
executions of the task. Based on this, a suitable 
sensor must be chosen that is capable of recognizing 
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this change and that satisfies the requirements 
imposed on change functions. Here we will only 
provide a short summary, see (Deiterding, 08) for a 
detailed explanation: A change function f describes 
the alteration of a sensor signal when the object 
supervised by the sensor has moved. It is a function 
that relates a Cartesian position to a sensor value. 
Using the inverse f -1 gives us the position pest for the 
current sensor value. Note that all functions are 
defined in relation to a pre-set reference position pref 
and a corresponding reference sensor value sref. Only 
the difference of the current sensor signal to sref is 
taken into account. This is not a limitation, but 
rather a standardization of the function, so the only 
root of this function is (0,0) because there is only 
one reference position.  

3.2 Online Computation of  
Change Functions 

The central idea of this paper is that the change 
function freal, which is defined by the task and the 
sensor, is unknown and cannot be calculated 
analytically or approximated beforehand. Instead, 
the robot will compute an approximation fest of freal 
online during the first executions of the task. Instead 
of two separate phases – the calibration of the sensor 
and the actual execution of the task – the calibration 
process is encapsulated in the execution (see Figure 
1). The calibration may take longer now, 
nonetheless the program will work correctly right 
from the very first execution. In addition the 
developer will spend less time setting up the sensor 
and the program is capable of adapting to changes 
both in the workspace and in the sensor data, e.g. 
due to a warm-up of the sensor, without the need for 
a manual recalibration. The robot starts with a very 
rough approximation fest of freal and refines this 
approximation gradually with each execution by 
incorporating newly gained information.  

During execution, the robot uses fest
-1 to react to 

Cartesian changes of the supervised object. If the 
object has moved away from pref by xchange to pchange, 
this is detected through the sensor value sact: 

)( changerealact xfs =  (1)

Thus, the robot must modify its movement by 
calculating: 

))(()( 11
changerealestactest xffsfx est

−− ==  (2)
The stored reference position is then modified 
accordingly: 

estrefest xpp +=  (3)

Now, the robot moves to pest. If fest is close enough 
to freal then: 

changeest xx =  (4)

 
Figure 1: In the classical approach to sensor-based robot 
programming, the sensor is calibrated before the actual 
program is executed (top). In our approach, the calibration 
process is integrated into the execution cycle (bottom). 

 
Figure 2: Experimental setup. A steel rod is delivered 
along a conveyor belt (blue arrow) until it reaches a light 
barrier (blue line). The rod can be in any position on the 
belt (red). Shown in this picture is the reference position 
of the rod in order to be picked up. 

If the change was estimated correctly, this 
knowledge is incorporated into the change function. 
If the estimate was wrong, then there is not enough 
information stored in S to perform a reasonable 
correction using the current sensor value sact. Thus, 
the correct position must be determined and fest must 
be modified in such a way that the next estimate will 
be correct for the current sensor value. Initially this 
will often be the case since early values of fest are 
quite inadequate.  

When the robot has performed the motion 
defined by xest, the new position is either correct or it 
is skewed because fest was not accurate enough. In 
the latter case, two possibilities arise. The key point 
is to decide whether the robot motion will modify 
the sensor signal or not. This is best illustrated by an 
example. Consider the following task: A steel rod is 
delivered to the robot via a conveyor belt. The belt 
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stops when the rod passes a light barrier (see Figure 
2). The  robot shall pick up the rod using a vacuum 
gripper and place it in a box for transport. To solve 
this task, we could construct a feeding mechanism 
ensuring that the rod is aligned the same way every 
time. However, we want to allow the rod to be in 
any position as long as it faces upwards. So we have 
translational changes along the x-axis and rotational 
changes around the z-axis of the coordinate system 
of the conveyor belt. To sense this misalignments, 
we employ two distance sensors that are placed 
parallel to the y-axis of the conveyor belt. (Figure 3) 
The developer faced with the task to design this 
robot program now has to plan how the position and 
orientation of the rod can be recognized and how the 
robot should react. So, there are two cases: 

 
Figure 3: Left: Reference position of the rod and 
placement of the distance sensors to recognize the position 
and rotation of the rod on the conveyor belt. The distance 
is determined using s1. The rotation is determined using 
the difference between s1 and s2. Right: Scan of the data 
sheet provided by the manufacturer describing the sensor 
signal for given distances (x-axis: distance, y-axis: sensor 
signal). The resolution of the sensor is in the range [10; 
80] cm. 

Case 1) When the robot moves onto the belt to 
pick up the rod, this motion does not alter the sensor 
signal because the rod itself has not moved. In this 
case the correct position must be searched for. This 
is usually the case when preparatory sensors are 
used. The developer can either manually guide the 
robot to the correct position or use a second sensor 
to perform an automated search, but it is up to the 
developer to define a valid search algorithm, 
because this depends strongly on the task. The 
search should be kept as simple as possible. When 
the sensor is calibrated adequately well, the change 
function's estimate is accurate and always locates the 
object correctly. So this search is only executed in 
the very first iterations. Because of this it is not 

necessary to implement a fast, efficient search 
strategy, since this represents only a backup strategy 
in case the change function is still inadequate for a 
given sensor value. Once the correct position pchange 
has been reached, xchange is calculated as   

refchangechange ppx −=  (5)

and the data tuple (xchange, sact) describes a valid data 
point of freal, because the sensor value has not 
changed during the search. This tuple is added to a 
set S describing the current knowledge about freal. 
With increasing size of S more and more knowledge 
about freal is collected and the more precise the next 
estimations will be.  

Case 2) This case occurs, when the robot has 
located the rod and grasped it. Now, a robot motion 
will alter the sensor signal. In this case a corrective 
motion can be performed instead of a search. This is 
usually the case if the sensor is used concurrently. 
We can employ an automated search; the direction 
of the search is defined by the Cartesian coordinates 
that are  altered by the sensor. The search terminates 
when sact= sref . If this value has been reached, the 
robot has corrected the change. A detailed solution 
describing the motions involved is described in 
Section 4. 

3.3 Defining the General Program 
Structure 

When defining the program structure, the developer 
must decide how the adaptation strategy for the 
change can be integrated into the robot program. 
This is done at the point when robot movements are 
executed based on the sensor signal. The robot uses 
the current sensor value sact and current estimate of 
the change function fest using S to determine pest.  

The key point is to decide whether the robot 
motion will modify the sensor signal or not. This 
leads to the following basic program structure: 

If a motion does not change the signal, the 
source code will look similar to this: 
1 pos = changeFunction(); 
2 MOVE pos; 
3 IF NOT isOkay() THEN { 
4  performSearch(); 
5  pos = getCurrentPosition(); } 
6 updateChangeFunction(pos,sensor.value()); 

 
The robot will calculate and move to the estimated 
position using the change function by calling the 
function changeFunction (Lines 1 and 2). At this 
point, a decision must be made if the position is 
correct, which is either accomplished using a second 
sensor or by asking the developer to check (Line 3). 
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If this is not the case, a search is initiated, guiding 
the robot to the correct position (Lines 4 and 5). 
Then a new data tuple is added to S improving fest 
(Line 6) by calling updateChangeFunction. This 
must be called explicitly by the developer to update 
S with the new, correct position preal for sact. 

On the other hand, if a motion does change the 
signal, the source code will look similar to this: 
1 DO { 
2  pos = getCorrection(); 
3  MOVE pos; 
4 } WHILE sensor.value()!=sref; 

Here, the search is realized using a do/while-
loop. We estimate the current change (Line 2) and 
move the robot accordingly (Line 3) until we have 
reached the reference position (Line 4). We will 
describe a suitable method to calculate reasonable 
correction values in Section 4. Here, it is important 
that these methods are encapsulated in the function 
getCorrection, so they remain hidden from the 
developer. 
All the developer must do to use these methods is to 
specify the following parameters: 
1) The taskframe and the coordinate(s) in which the 

change occurs. pref and sref are calculated within 
this taskframe. The default sensor values are 
recorded when pref is stored. 

2) The sensor used to supervise pref. This includes a 
specification of the sensor’s signal-to-noise ratio 
(SNR). 

3) A Boolean value specifying if a robot motion will 
alter the sensor signal. The function 
getCorrection uses this value to determine 
which estimation method is executed. 

4) Furthermore, it makes sense to require all 
estimates xest to be within a specific range to 
prevent the robot from leaving the workspace in 
case of an extreme estimate. However, this may 
increase the number of corrections necessary to 
reach pref . 

These four parameters enable the robot to learn a 
change function adaptively during task execution. 
All other functionality is independent from the task 
and is integrated into the function getCorrection.  

The actual implementation of fest is 
interchangeable. The calibration data gained by the 
adaptation is stored in S. It is up to the developer to 
determine how the tuples in S are used to 
approximate the function. Any interpolation method 
can be employed, because no additional knowledge 
about the function type of fest is necessary. Curve-
fitting methods may be used as well, which will lead 
to a reasonable approximation of fest after fewer 
executions compared to interpolation methods. But, 

as is the case with all adaptation and learning 
methods in general, the more information one has 
available right from the start, the faster the methods 
will work adequately. 

4 SUPERVISING AND ADAPTING 
TO CHANGES DURING 
EXECUTION 

In this section, we describe how corrective motions 
can be executed by the robot using sensor 
information gained during a movement. All 
corrective motions are used to supplement the 
existing knowledge about the change function. We 
explain how this method can be integrated into a 
programming environment and kept hidden from the 
developer.  

4.1 Using the Secant Method for 
Corrective Motions 

In principle, it is possible to use a search motion pre-
defined by the developer even if the correction has 
changed the sensor signal, but this discards the 
information gained by the alteration of the sensor 
signal during the search. We can use this 
information to our advantage and generate 
corrective motions which locate pest faster than a 
standard search motion. 

Since this correction alters the sensor signal, we 
use it to judge the performed correction and 
compute subsequent corrections accordingly. 
Suppose we knew xchange, the first tuple for S would 
be  (xchange, sact). Here, we only know sact, not xchange. 
But xchange is simultaneously the offset along the x-
axis of (xchange, sact) from the root, due to the 
monotonicity of fest. If we perform multiple 
corrections until we reach the root, we can compute 
xchange as the sum of all  corrections the robot has 
made. From a mathematical point of view, this is 
equivalent to finding the root of an unknown 
function.  

The Secant method (Press, 92) is defined by the 
recurrence relation 

)(
)()( 1

1
1 n

nn

nn
nn xf

xfxf
xxxx

−

−
+ −

−
−=  (6)

where f is an unknown function. As can be seen 
from the recurrence relation, the Secant method 
requires two initial values, x0 and x1. The values xn 
of the Secant method converge to a root of f if the 
initial values x0 and x1 are sufficiently close to the 
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root. The order of convergence is φ, 
where 62.12/)51( ≈+=ϕ is the golden ratio. In 
particular, the convergence is superlinear. This 
result only holds true under some conditions, 
namely that f is twice continuously differentiable 
and the root in question is simple and may not be a 
repeated root. Change functions, as we have defined 
them, fulfill these conditions. 

In our case, the f is the real change function freal 
and the first value x0 is simply the change we wish 
to calculate, xchange, while the second value x1 is the 
first corrective motion the robot has performed,  xest , 
which is based on the current estimate of the change 
function fest. Note that fest is used only once for the 
initial correction, all subsequent corrections are 
based on the Secant method (see Figure 4) only 
using the current sensor values provided by freal. 
Since the convergence of this method is superlinear, 
we will not need many additional corrections xn, n > 
1, should x1 prove to be poor.  

 
Figure 4: Illustration of the first two steps of the 
correction algorithm: For a given variation preal we 
perform an estimated correction pest based on the 
corresponding sensor value s0, the real change function 
freal (red) and our current estimate fest (green). We move 
the robot to position p1 and retrieve a new sensor value s1. 
We then use the Secant method to grade the last correction 
and move the robot accordingly to p2. All subsequent 
corrections are performed using the Secant method only. 

It is important to consider the following: When 
the next value xi+1 is calculated, it must be kept in 
mind that we have already performed correction xi 
before we could measure si+1 to rate xi. So we must 
subtract the impact of xi from xi+1. 

Another advantage of this approach is that all 
corrections xi and corresponding sensor 
values )( 1−= ireali xfs are known. We can store these 
as pairs (xi, si) in a temporary stack. When we have 
reached pref, we can use this information to create 

multiple new data tuples for S. If we have performed 
i corrections until the robot reaches pref, the 
topmostpair (xi, si) on the stack already describes a 
valid data tuple for S. The next pair on the stack (xi-

1, si-1) describes a correction to pref altered by xi. So 
(xi + xi-1, si-1) is another valid data tuple for the set. 
Subsequent processing of the stack provides us with 
a valid data tuple for every correction performed, so 
we add i new data tuples to S. This leads to an 
accurate approximation of fest after fewer executions 
compared to the addition of only one tuple to S in 
every execution. 

The Secant method only works for one-
dimensional functions. It is possible to combine 
multiple sensors to obtain an n-dimensional signal. 
In this case, the Broyden method (Broyden, 65) can 
be used, which is similar to the Secant method. 

This method is only applicable if a robot motion 
alters the sensor signal, as is described in Case 2 in 
Section 3.2. In the first case of that section, there is 
no other option as to use either a manual guidance 
method or an automated search. 

4.2 Possible Utilization of other 
Approaches 

The Secant method is not the only method to 
determine the root of a function. Some other 
methods are Newton's method, fixed point iteration, 
and the bisection method. We will now compare the 
Secant method with these and show why the Secant 
method is the best choice for this task. 

Newton's method and fixed point iteration both 
use the derivative of the function to calculate the 
next correction. But, as we have explained in 
Section 1, it is not always possible to find an 
analytical solution. Additionally, if this solution was 
known, it would be more sensible to record a 
number of examples before setting up the main 
program and use the examples to determine the 
function parameters. 

The bisection method does not rely on the 
function's derivative, but has another drawback: To 
find the root of a function f in an interval [a, b], both 
f(a) < 0 and f(b) > 0 must hold, or vice versa. If both 
values are negative or positive, this method cannot 
be employed. This is a serious drawback for this 
case, since we cannot ensure that the first correction 
we have performed will result in a new sensor value 
which has the inverse sign of the first value. 

In summary, we can say that to our knowledge 
the Secant method is the only applicable method that 
enables a robot to perform a series of corrective 
motions without any need for backtracking until the  

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

392



root of an unknown change function is reached.  

5 EXPERIMENTS 

In this section, we show the validity of our approach 
and explain the interaction of all components 
described in Sections 3 and 4. 

We have implemented the task described in 
Section 3.2. The sensors used are distance sensors 
GP2D12 made by SHARP with a measurement 
range of [10; 80] cm. The first sensor supervises the 
position where the robot is supposed to pick up the 
rod and measures the translation along the x-axis. 
The second is located 44 cm away from the first 
along the y-axis of the belt (Figure 3, left). The 
difference between the two sensor values describes 
the rotation around the z-axis. 

The data sheet for the sensors shows that the 
sensor signal is not linear with respect to the 
physical distance (Figure 3, right), so it is not 
possible to use a simple linear conversion to 
determine the translation or the rotation of the rod. 
In theory, the change function describing the 
rotation can be derived as an Arcus-Tangens 
function, but the parameters for this function are 
unknown. Therefore, the robot shall learn both 
functions adaptively during task execution. A 
reference position pref is set up (Figure 3, left), 
describing the ideal position and orientation the rod 
should have. This position would be identical with 
the position of the rod in case a feeding mechanism 
is employed. It is important to measure the sensor 
values for pref as well. Later on, all measurements 
are compared against these values and if the 
difference exceeds the SNR of the sensor in 
question, a change is recognized. The developer 
now sets up two mappings describing the changes 
(Table 1). 

The robot program for a single task execution is 
now short and relatively simple: 
1 PROGRAM pickupRod() { 
2 offsetest = getCorrection(Distance); 
3 MOVE offsetest; 
4 IF (forcez-axis() < forcecontact) THEN 
5    searchRod(); 
6 update(Distance, HERE); 

7 graspRod(); 
8 MOVE pref; 
9 DO 
10    rotationest = getCorrection(Rotation); 

11    MOVE rotationest; 
12 WHILE (rotationest != pref) 
13 MOVE pdropoff; 
14 releaseRod(); 
15 } 

Table 1: Change function mappings used for the 
experiment. 

 Distance Rotation 

Position ppickup ppickup 

Dimension Translation along x Rotation around z 

Sensors Sensor1 Sensor1 - Sensor2 

SNR of Sensor 5.0 10.0 

Movement 
modifies sensor 
signal 

FALSE TRUE 

Range of  
Correction   

[-240; 240] mm [-10; 10] mm 

In Lines 2 and 3 the function getCorrection 
receives a reference to a mapping structure defined 
in Table 1 as parameter and moves the robot to the 
estimated position of the rod. We use a force/torque 
sensor to check whether the rod was grasped 
correctly (Line 4). If this is not the case, we employ 
a basic search motion probing the conveyor belt in 
fixed intervals for the rod (Line 5). When the rod is 
located, we manually update S, grasp the rod and 
move it to the reference position (Lines 6 to 8). At 
this point the rod may still be rotated by an unknown 
amount. In Lines 9 to 12 we correct this rotation by 
repeatedly calling getCorrection until the reference 
position is reached. Then we move the rod to pdropoff 
and release it (Lines 13 and 14). Note that the 
program itself does not contain any sensor data 
processing. Additionally, it is neither necessary for 
the developer to determine the type of the change 
functions nor any parameters for these functions. To 
calculate the Cartesian change for an unknown 
sensor value, we use a simple linear interpolation 
over all data tuples in S. 

We executed the program 100 times. Every time 
the translation and rotation of the rod was chosen 
randomly. The initial estimate of both change 
functions was deliberately chosen badly as a 
bisecting line (Figure 5). For the change function 
describing the distance of the rod, we could have 
also created data tuples using the data sheet of the 
sensor (Figure 4, right). We have chosen not to do 
this, for two reasons: Firstly, the data tuples would 
have to be measured manually by the developer in 
the figure and modified by the distance of the rod's 
default position, which is a cumbersome task. 
Secondly, the data sheet is rather small and the 
resolution is low so it is difficult to determine exact 
values. Here, it is easier to just use a bad 
approximation for the very first executions, because 
this will change after a few executions. Because of 
this, the robot was unable to grasp the rod correctly 
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during the very first executions and also needed 
multiple corrections to compensate the rod's 
rotation. After 10 executions the estimations of the 
change function look similar to the one in Figure 3, 
and an Arcus-Tangens function respectively (Figure 
6). After 100 executions we obtained a precise 
interpolation of both change functions (Figure 7), 
allowing the robot to grasp the rod 20 out of 20 
times (100%) without the need for a search motion. 
The rotation was corrected successfully with just 
one rotation in 14 out of 20 cases (75%). In the 
other cases, the robot had to perform more than one 
rotation to align the rod correctly. 

 
Figure 5: Initial estimates of the change functions used to 
compute the translation (left) and rotation of the rod 
(right). 

 
Figure 6: Estimates of the change functions used to 
compute the translation (left) and rotation of the rod 
(right) after 10 executions. 

The accuracy of the estimated change functions in 
locating and rotating the rod during the adaptation 
process is shown in Figures 8 and 9. In both figures 
we show whether the robot was able to grasp the rod 
and rotate it correctly using the estimates of the 
change functions (red). A value of 0 means that the 
robot had to search for the rod or perform multiple 
rotational corrections, respectively, while a value of 
1 means that the estimate was correct. The green 
lines show the overall accuracy of the robot over all 
task executions up to that point, while the blue lines 
show the accuracy over the last 20 executions. We 
can see that the robot was capable of grasping the 
rod correctly nearly all the time after 50 executions, 

 

Figure 7: Estimates of the change functions used to 
compute the translation (left) and rotation of the rod 
(right) after 100 executions. 

 
Figure 8: Overall (green) and averaged (blue) percentage 
of correct estimations of the rod's translation on the 
conveyor belt using the change function for 100 
executions. A red dot with a value of 0 indicates that the 
robot could not locate the rod with the given change-
function, but had to perform a search instead. A value of 1 
indicates that the rod was found without the need for a 
search motion. 

 
Figure 9: Overall (green) and averaged (blue) percentage 
of correct estimations of the rod's rotation on the conveyor 
belt using the change function for 100 executions. A red 
dot with a value of 0 indicates that the first correction of 
the rotation did not align the rod perfectly and further 
corrections were necessary. A red dot with a value of 1 
indicates that the rod was aligned correctly with only one 
motion. 
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and had an overall accuracy of 80%. Due to the fact 
that two sensors are necessary to measure the 
rotation, the SNR of this combined sensor is 
relatively high, so the correction could not be 
performed in one motion every time. In spite of this, 
the robot was still capable of performing a perfect 
correction in 75% of all cases. 

6 CONCLUSIONS 

The aim of this work is to enable a developer to 
easily employ external sensors for flexible robot 
programs. The focus of this study was to show that 
data tuples describing the connection between 
sensory data and positional variations can be 
acquired automatically by the robot independent of 
the task and without the need for intricate 
calculations by the developer. We have presented a 
method to determine this data online during multiple 
executions of the task. The intention was to keep the 
requirements and methods independent from the 
type of sensor and make them universally applicable 
so they can be easily incorporated into a robot 
program. Finally, we presented an experiment to 
validate our research. We showed that it is possible 
to employ the proposed methods to successfully 
determine two change functions for a pick-and-place 
task. 

In the next step our aim is to integrate time 
stamps into the data set S. Then we are able to deal 
with drifts in the sensor data due to heating 
processes of the sensor itself by discarding the older 
data tuples which do not reflect the current state of 
the system any more. 
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