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Abstract: Non-preemptive schedulers, despite their many perceived drawbacks, remain a very popular choice for 
practitioners of real-time and embedded systems. Although feasibility conditions for non-preemptive 
scheduling models have previously been considered in the literature, to date little attention has been paid to 
the non-preemptive ‘thrift’ (or ‘TTC’) cyclic scheduler. This type of scheduler differs from a standard 
‘cyclic executive’ in that it does not allow the use of inserted idle-time, and it does not require a lookup 
table of task executions over the major cycle of the schedule; a feasible schedule is effectively created by 
assigning release times (‘offsets’) to the tasks. To this end, this paper seeks to address the complexity of 
generating a feasible cyclic schedule for such a scheduler. It will be shown that when a single set of release 
times is assigned to the tasks, deciding feasibility of the resulting schedule is coNP-Complete (in the strong 
sense); and the release time assignment problem for such a scheduler is complete for ∑2

p.  

1 INTRODUCTION 

In many real-time embedded systems, some form of 
scheduler is generally used instead of a full “real-
time operating system” to keep the software 
environment as simple as possible. In general, such 
systems may be designed around several basic 
paradigms: time-triggered or event-triggered, and 
preemptive or co-operative (non-preemptive). This 
paper is concerned with single-processor time-
triggered, non-preemptive schedulers. 

Such architectures have been found to be a good 
match for a wide range of low-cost, resource-
constrained applications. These architectures also 
demonstrate comparatively low levels of task jitter, 
CPU overheads, memory resource requirements and 
power consumption (Pont 2001; Baker & Shaw 
1989; Short et al. 2008; Burns et al. 1994). 
Additionally, such schedulers exhibit extremely high 
levels of predictability and determinism. Exploratory 
studies also seem to indicate better transient error 
recovery properties in these systems than their 
preemptive counterparts (Short et al. 2008).  

Because of these properties, non-preemptive 
schedulers have proved to be extremely effective at 
implementing systems such as process controllers, 
robotics, automotive applications and other types of 

system in which reliability is a key design goal (e.g. 
Gendy & Pont 2008; Short et al. 2008; Burns et al. 
1994; Pont 2001).  

Although non-preemptive systems are inherently 
free of deadlocks and other concurrency issues by 
the very nature of their design (Pont 2001; Baker & 
Shaw 1989; Short et al. 2008), the fact that tasks 
cannot preempt one another introduces several 
complexity issues related to feasibility analysis 
(Garey & Johnson 1979). A feasible task set is one 
in which all jobs generated by all tasks in the system 
can be said to meet their deadlines over the lifetime 
of the system. 

Various differing models for the implementation 
of a ‘cyclic executive’ – a basic time-triggered non-
preemptive design - have been proposed over the 
years, along with appropriate discussion and 
mathematical techniques for feasibility analysis. 
Relatively recently, the non-preemptive ‘thrift’ 
cyclic scheduler (or simply TTC scheduler) has been 
proposed (Pont 2001). This scheduling algorithm 
essentially maintains a system of congruence’s to 
achieve its behaviour, and is presented in a 
simplified form in Figure 1. As can be seen, the 
scheduler is driven by a periodic timer signal 
(typically an interrupt). When tasks are released by 
the scheduler, they are immediately dispatched on a  
first-come, first-served basis (FCFS). 
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START 
tick :=0; // Initialize the clock ‘tick’ variable 
DO(FOREVER) // Enter infinite loop 
   FOR i := 1 TO n DO // n is the number of tasks 
      IF(((tick – ri) mod(pi)) = 0)      
         Run(ti)// Immediately execute any released task 
   END FOR 
   Wait_Timer(); // Wait for the next timer tick to occur    
   tick := tick + inc; // Increase the time index by a prefixed increment factor 
END DO 
EXIT 

Figure 1: Thrift scheduling algorithm. 

As can be seen, the scheduler does not support 
the use of ‘inserted idle time’, and thus does not 
require a lookup table of task and process executions 
to be created over the duration of the major cycle, 
which is a fundamental requirement in a ‘standard’ 
cyclic executive (Baker & Shaw 1989; Burns et al. 
1994). This fundamental difference allows the 
scheduler to better handle tasks with larger and non-
harmonic periods, requiring only storage space O(n) 
as compared to O(nh) where n is the number of tasks 
and h is the major cycle length. 

In the case of the non-preemptive thrift 
scheduler, generating a feasible schedule surmounts 
to assigning specific release times to tasks such that 
a ‘task overrun’ – an overload of the processor in 
any given time quantum - does not occur (Pont 
2001; Gendy & Pont 2008). The time quantum is 
normally referred to as the scheduler ‘tick’ interval 
tTick and is generally chosen to be as large as possible 
given the task periods, according to (1): 

1gcd( , , )Tick nt p p= …                                    (1) 

With such an arrangement, w.l.o.g. the task 
release times can be specified as integer multiples of 
ttick (Pont 2001; Gendy & Pont 2008). Since it has 
been suggested that creating the lookup table for a 
‘standard’ cyclic executive is NP-Hard (Burns et a. 
1994), this short paper seeks to explore the 
complexity of the offset assignment process in the 
‘thrift’ cyclic scheduler. In Section 2 of the paper, a 
simple polynomial-time sufficient condition for 
feasibility is developed; however it is clear that this 
simple condition is very pessimistic. In Section 3 of 
the paper, the complexity of designing a TTC 
schedule is then considered, and it will be shown 
that even verifying the feasibility of a candidate 
solution is coNP-Complete (in the strong sense), i.e. 
intractable. This Section also shows that the problem 
of assigning specific release times to tasks is 
complete for the second level of the polynomial 
hierarchy, i.e. NPNP-Complete using the notation of  

Garey & Johnson (1979).  Section  4  concludes the  
paper. 

2 A SIMPLE FEASIBILITY TEST 

As mentioned in Section 1, the primary condition for 
feasibility in a non-preemptive thrift cyclic schedule 
is that task overruns do not occur. Given a set of 
tasks τ, where each ti ∈ τ can be represented by a 
tuple: 

( ), ,i i i it p c r=                                 (2) 
In which pi is the task period, ci is the (worst 

case) computation time of the task and ri is the task 
release time (note that a specific relative deadline 
can be omitted). A necessary condition for 
feasibility is that the computation time of each task 
is less than or equal to ttick, and it follows that a very 
simple sufficient condition for feasibility of the task 
set is as follows: 

i Tick
i

c t
τ∈

≤∑                             (3) 

It is quite straightforward to see that if the 
summed execution times of the tasks does not 
exceed the tick interval, then regardless  of the 
choice of task release times (which are integer 
multiples of ttick) then a task overrun cannot occur. It 
is also trivial to observe that this condition is very 
pessimistic, as shown by the example in Figure 2, 
with the tasks having periods and execution times 
given by {5, 2}, {15, 2 and {15,2}; resulting in a 
tick interval of 5 according to (1). This Figure also 
highlights the effect that the choice of task release 
times has on feasibility. In the following Section, the 
complexity of this release time assignment process 
will be investigated. 
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Figure 2: Effect of task release times on feasibility, 
showing (top): a synchronous infeasible task set; (bottom): 
an asynchronous feasible task set with release time of 1 
tick added to t3. 

3 THE COMPLEXITY OF AN 
EXACT FEASIBILITY TEST 

3.1 Solution Verification 

Suppose we have been given a candidate solution 
(feasible schedule) for a thrift cyclic scheduler, i.e a 
set of tasks with specific release times; it is natural 
to consider the complexity of verifying that this 
solution is actually feasible. It will now be shown 
that deciding the feasibility of such a ‘concrete’ 
thrift schedule (the FTS problem) is strongly coNP-
Complete. Membership of the problem in coNP 
follows since, form Figure 1, given a tick interval j 
in which a task overrun occurs, the execution time 
commanded in this interval may be determined in 
time proportional to n. Prior to giving the hardness 
proof, the simultaneous congruences problem (SCP) 
will be introduced; SCP was shown to be NP-
Complete, in the strong sense, by Baruah et al. 
(1990): 

Simultaneous Congruences Problem (SCP) 
Instance: A set A of ordered integer pairs {(x1, y1) … 
(xn, yn )} and a positive integer k > 1. 
Question: Is there a subset A’ ⊆ A of k ordered pairs, 
and a positive integer z, such that for all (xi, yi) ∈ A’, 
z  ≡ xi mod(yi)? 
Theorem 1: FTS is strongly coNP-Complete. 
Proof: Transformation from the compliment of SCP. 
Let φ = < (x1, y1) … (xn, yn), k > denote an arbitrary 
instance of SCP. From this a set of n concrete tasks 

for an instance of FTS are created according to (4), 
with a value of ttick equal to k-1. This transformation 
can be performed in time proportional to n and is 
hence polynomial. 

1
i i tick
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i i tick

p x t
c
r y t

=

=

=
                            (4) 

Next, it is argued that a positive solution to φ 
exists iff there is a negative answer to FTS. If FTS is 
negative, then it implies that during at least one tick 
interval j, the processor demand is greater than ttick. 
Since ttick is equal to k-1, and given our construction 
of the task execution times, at least k tasks must be 
simultaneously released at the start of tick interval j; 
this gives a solution to φ with a certificate j. 
Conversely, if the answer to FTS is positive, then the 
peak processor demand is ≤ ttick and a tick interval in 
which k or more tasks are simultaneously released 
does not exist; implying a negative answer to φ. 
Since SCP is strongly NP-Complete, the Theorem is 
proved. � 

3.2 Release Time Assignment 

Given this result, it is clear that if the verification of 
a candidate solution is coNP-Complete, then the 
problem of assigning release times (the ‘TS’ 
problem) is strongly coNP-Hard. However, since 
there also seems to be an exponential number of 
possible start times for a thrift scheduling instance, 
under the assumption that P ≠ NP it is also 
worthwhile investigating exactly where this problem 
lies on the so-called ‘polynomial hierarchy’ (Garey 
& Johnson 1979). It can be seen that the task release 
times for ‘Yes’ (feasible) instances of this problem 
can be encoded in a number of bits that is less than 
or equal to the task set periods, and hence the size of 
the overall TS problem instance. Given the previous 
Theorem, the resulting schedule is verifiable in 
polynomial time by a Turing machine with an oracle 
for the FTS problem; the problem resides in Σ2

p. To 
show that the problem is complete for this 
complexity class, the Periodic Maintenance 
Scheduling Problem (PMSP) is now introduced. 
This problem is known to be Σ2

p – Complete 
(Baruah et al. 1990). 
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PERIODIC MAINTENANCE 
SCHEDULING PROBLEM (PMSP) 

Instance: A set C of ordered pairs {(n1, c1) … (nn, cn  
)}, with each ci representing a maintenance activity 
having an integer period ni, positive integer k > 1. 

Question: Is there a mapping of the activities in C to 
positive integer time slots such that successive 
occurrences of each ci are exactly ni time slots apart, 
and no more than k activities ever collide in a single 
slot? 

Theorem 2: TS is Σ2
p - Complete. 

Proof: Transformation from PMSP. 

Let C = < ((c1, n1) … (cn, nn), k > denote an arbitrary 
instance of PMSP. From this a set N of n tasks to be 
scheduled by TS are created according to (5), with a 
value of ttick equal to k: 

1=
=

i

tickii

c
tnp

                                 (5) 

Again this transformation can be performed in 
polynomial time. Next, it is argued that a solution to 
C exists iff N can be scheduled by TS. If the answer 
to this instance of TS is ‘Yes’, this implies that 
release times can be assigned to each task in N such 
that a task overrun does not occur, which from the 
transformation given implies that a maintenance 
schedule for C - in which no more than k activities 
occur simultaneously - also exists with a certificate 
(r1 … rn). Conversely, if the answer to TS is ‘No’, 
then a schedule in which a task overrun does not 
occur does not exist for any combination of task 
release times, implying that a maintenance schedule 
for C - in which no more than k activities occur 
simultaneously - does not exist. Since PMSP is Σ2

p - 
Complete, the Theorem is proved. � 

4 CONCLUSIONS 

This paper has considered the complexity of 
generating a feasible cyclic schedule for the non-
preemptive ‘thrift’ cyclic scheduler. It has been 
shown that an efficient - but also very pessimistic - 
sufficient feasibility condition exists. However, an 
exact solution to the problem requires the 
assignment of specific release times to the tasks; the 
complexity of this problem has been shown to be 
NPNP-Complete, with the verification of a candidate 
solution being strongly coNP-Complete.  

These results imply that heuristic techniques that  

may be used to solve the TS problem - such as the 
algorithm proposed by Gendy & Pont (2008) – must 
be strongly coNP-Hard if they provide any 
confirmation that the resulting schedule is indeed 
feasible. In conclusion, although the thrift cyclic 
scheduler possesses many desirable qualities, 
extreme computational difficulties may occur when 
designing a schedule. In such cases, then the non-
preemptive EDF scheduling algorithm (shown to be 
optimal among the non-idling non-preemptive 
scheduling strategies by Jeffey et al. 1991) may be 
beneficial. 
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