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Abstract: This paper presents a new method for implementing TRNGs in FPGA devices. The design is based on 
filling the chip close to its maximal capacity and exploiting the interconnection network as intensely as 
possible. This way, there are strong chances for the design to exhibit a nondeterministic behavior. Our 
design is a computationally intensive core that generates 64-bit numbers, accumulated into a normal, fixed-
point accumulator. From the 64-bit words only those bits are extracted that exhibit the maximal entropy. 
They are then post-processed using the classical XOR-based bias elimination method. The resulting TRNG 
provides high quality random numbers; other advantages of this new method are its stability and the fact 
that the design encapsulates all its components in one chip. An explanation of the observed phenomenon is 
proposed, based on electromagnetic interferences inside the chip and cross talk. A method for developing 
new designs based on this approach is also proposed. 

1 INTRODUCTION 

The increasing need for random numbers is due to 
the emergence of many application fields where 
these numbers are indispensable. Random numbers 
are useful for a variety of purposes, such as 
generating data encryption keys, simulating and 
modeling complex phenomena and for selecting 
random samples from larger data sets. When 
discussing single numbers, a random number is one 
that is drawn from a set of possible values, each of 
which is equally probable, i.e., a uniform 
distribution. When discussing a sequence of random 
numbers, each number drawn must be statistically 
independent from the others. 

A supplementary constraint on the random 
numbers is the throughput at which they are 
generated. This is also a condition for proving the 
randomness itself. In some cases, if a generator only 
yields a few numbers, it is almost impossible to 
check their statistical properties, because the number 
of output values is insufficient. 

Although it is impossible to prove that a given 
sequence is random, it is possible to conclude that 
the sequence is not random. This is done by 
performing some statistical tests grouped in batteries 
like Diehard (Marsaglia 1996), NIST (Rukhin et al. 

2001) and more recently TestU01 (L’Ecuyer and 
Simard, 2007). 

Most true random number generator (TRNG) 
systems rely on physical phenomena to capture 
randomness. But after capturing entropy by some 
analog device, the signals must be sampled and 
digitized to become useful bits. This hybrid 
approach has a set of disadvantages: low speed, poor 
throughput, high vulnerability against harmful 
attacks (this aspect is important especially in 
cryptographic applications). 

It is thus by far preferable to have the whole 
system in one digital chip. But it is difficult to get a 
digital system to do something “by chance”. For 
instance, a computer is (or should be, if not broken) 
completely predictable.  

There is a lot of ongoing research for improving 
and obtaining new methods to generate true random 
numbers, based on software (Drutarovsky and 
Galajda, 2007) and hardware (Gentle, 2004) 
strategies. There are three main approaches to 
generating random numbers using a computer, with 
quite different characteristics: 
• Pseudo Random Number Generators (PRNGs) 

are algorithms that use mathematical formulae 
or simply pre-calculated tables to produce 
sequences of numbers that appear random. A 
good deal of research has gone into pseudo-
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random number theory. If the algorithm is 
complex and the period of the PRNG sequence 
is long enough, it can produce quality numbers. 
The advantage is that they are easy to 
implement in software; the major disadvantage 
is their predictability: for equal external seeds 
the output sequence will always be the same. 

• Unpredictable Random Number Generators 
(URNGs) are algorithms that basically rely on 
unpredictable human-computer interaction to 
capture entropy.  Such examples are the mouse 
movement on a given area by a human operator 
or the amount of time between keystrokes. Even 
though the source is not a truly entropic one (a 
good knowledge of the operator’s habits can 
ease the prediction of the next event), the results 
generated show a good quality and this type of 
methods are used in several cryptographic 
products (e.g. PGP). By combining several such 
entropy sources the results can be improved.  

• True Random Number Generators (TRNGs) 
produce the random numbers based on some 
physical phenomena (e.g. radiation, jitter, ring 
oscillators, internal noise etc.) that are digitized. 
They do not have an internal state like the 
PRNGs and the next generated bit is based 
entirely on the physical process.  In general 
these bits are not uniformly distributed (the 
probability of a ‘1’ is not 50%) so they require 
some post processing in order to reduce the 
bias.   

The main difference between PRNGs and 
TRNGs can be seen as follows: in a PRNG anyone 
can predict with 100% accuracy the next state based 
on the current state, while in a TRNG nobody can do 
that (even its designer). 

At this moment, three main techniques were 
reported in the literature for creating TRNGs: 
• Ring oscillators (ROs): basically, this method is 

exploiting the jitter of a clock signal in a purely 
digital design (Kohlbrenner and Gaj, 2004), 
(Schellekens et al. 2006); 

• Direct amplification of the noise that is intrinsic 
in analog signals: this method relies on the 
amplification of the shot noise, the thermal 
noise, the atmospheric noise or the nuclear 
decay. The noise is amplified and then, using 
comparators and analog-to-digital converters, 
bits are “extracted” from it (Jun and Kocher, 
1999); 

• Chaos-based TRNGs: this method is based on a 
well-defined deterministic analog signal that 
exhibits chaos. Existing implementations 

exploit Markov’s chaotic sources theory 
(Drutarovsky and Galajda, 2006) and use mixed 
analog-digital chips. 

In this paper we report an empirical discovery: 
the possibility to obtain high quality TRNGs in 
FPGAs by almost completely filling the chip with 
active logic and intensely using the interconnection 
network. This way, a design that should work 
deterministically starts exhibiting a nondeterministic 
behavior. We measure the quality of the random bits 
obtained this way and propose an explanation of the 
observed phenomena. Finally, we propose a new 
method for implementing TRNGs in FPGAs based 
on these observations. 

2 RELATED WORK 

There are systematic efforts for creating RNGs both 
in software and hardware. Few TRNGs exist 
nowadays in software, because of the problems they 
face with and due to the reduced number of true 
sources of randomness. Such problems are for 
instance the throughput – for generators which rely 
on user’s actions, or the strong dependency on some 
computer hardware components – e.g. the network 
card activity. Even a generator which does not 
depend on such inefficient factors – like the one 
proposed in (Colesa et al., 2008) – faces difficulties 
regarding the dependency of the output sequence on 
the environment of the workstation on which it was 
obtained.  

The hardware methods proved to behave better 
than the software ones, but they also face sometimes 
problems like portability or sensibility to physical 
environment factors.   

FPGAs are emerging as an attractive platform 
for cryptographic implementations, offering benefits 
such as: 
• compactness: the generator is embedded in a 

single chip; 
• fully digital: the ideal source of entropy is a 

digital signal, not a mixed analog-digital one;  
• low development costs; 
• reduced time-to market. 

One of the first FPGA-based implementations 
was proposed in (Fischer and Drutarovsky, 2002), 
where the oscillator jitter was used as the entropy 
source. The system was based on PLLs (Phase 
Locked Loop, a component available in Altera 
FPGAs and used for frequency synthesis and clock 
skew reduction) in which very fine control of the 
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output frequency is possible. Unfortunately, this 
implementation is limited to Altera FPGAs. 

A reliable FPGA vendor-independent 
implementation of TRNGs is based on ring 
oscillators (ROs) and on the exploitation of jitter. 
An RO is a circuit composed of an odd number of 
inverters connected to form a ring (i.e. the output of 
the last inverter is connected to the input of the first 
one, in a “circular” manner). The RO can also 
contain Latches, to allow the fine tuning of the 
propagation delays inside it. In all implementations, 
at least a pair of ROs is necessary. 

There are two main methods of using ROs for 
building TRNGs: 
• One of the ROs is sampling the other one – this 

method was proposed in (Kohlbrenner and Gaj, 
2004) 

• The ROs are working independently, in parallel, 
and the entropy is collected from them by 
means of an XOR gate – this method was 
proposed by (Schellekens et al., 2006) and 
further developed by (Klein et al., 2008). 

3 A NEW METHOD FOR 
CREATING ENTROPY 

The method we introduce here was empirically 
discovered while working at another design. Even 
though the underlying phenomenon is not new, the 
possibility to exploit it in a coherent and useful 
manner was a surprise. 

It is common knowledge between experienced 
designers that problems can arise when a design fills 
the FPGA chip almost completely. After 90% of 
logic resources consumption, strange manifestations 
can appear: a design that used to work fine becomes 
totally unpredictable after extending it with more 
logic blocks. In short, the design becomes 
nondeterministic after passing a “fill threshold” in 
the amount of logic resources used. 

The concept of “design usage percentage” 
usually refers to the amount of active logic that is 
used in the design. In our opinion, for this design 
one must also consider the concept of 
“interconnection network usage”, with a particular 
accent on the number of repeaters that are used. The 
two concepts are related, but the latter is more 
important in TRNGs design using the method 
presented in this paper. 

Unfortunately, it is not clear where this threshold 
is positioned, because there are also many designs 
that behave normally (i.e., completely deterministic, 

as expected) even if almost 100% of the FPGA chip 
is used. However, the nondeterministic behavior 
around 90% of chip usage is a phenomenon that 
occurs too often to be ignored. 

We discovered such a behavior while working on 
a complex design that implies creating a multi-stage 
pipeline of arithmetic floating-point operators. This 
design’s block structure is shown in Figure 1. 

The floating-point operators used are well-tested, 
completely reliable (i.e. deterministic) ones, as 
developed in the FloPoCo project (FloPoCo, 2007). 
The design was aimed at computing some physical 
parameters of a medical device for stimulating the 
human nervous tissue (Creţ et al. 2008). We used a 
Digilent XUP board featuring a Virtex2Pro30 FPGA 
device and the Xilinx ISE 8.1 software. 

At the beginning, the architecture was 
completely deterministic (all components were 
tested separately and they clearly manifested a 
deterministic behavior).  

This design implements a very computationally 
intensive algorithm and the pipeline produces a new 
number in each clock cycle. Because of some 
research we did on the final results’ precision (De 
Dinechin et al., 2008), we tried to improve the final 
accumulator, so we designed a new one. 

Of course, the results obtained by the new 
accumulator had to be compared with those 
produced by the old one. That is why we added the 
new accumulator in the design, on 64 bits instead of 
32, working in parallel with the old one (Figure 1). 

At this point, the “fill threshold” mentioned 
above was reached, and the design became 
nondeterministic. The same .bit file downloaded into 
the FPGA device produced each time a different 
final result, both from the old accumulator and from 
the new one. 

To observe rigorously this phenomenon, we first 
tested this 150 times: at each time the final result 
was different. As the final result is on 64 bits, we 
observed that differences in the final results 
appeared after the two most significant hexadecimal 
digits. The same test was done on several identical 
boards, and in all cases, without exception, the 
results were different at each run. 
It is important to mention that as soon as the 
additional accumulator (the improved one) was 
removed, the design became deterministic again. 
When adding it back, the design became 
nondeterministic, etc. 

Trying to understand what happens, we have 
created a very simple debugging environment 
(Figure 2). 
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Figure 1: Architecture of the first design. 
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Figure 2: The simple debugging environment. 

The intermediate results were captured in the PC 
and also monitored on a VGA display. The operating 
mode was simple: the computational core and the 
transmission module work simultaneously. But the 
former is faster than the latter; therefore, after the 
computational core fills the cache memory, it must 
be stalled until the transmission module empties the 
cache memory and transmits all data to the PC. After 
the cache memory is emptied, the computational 
core is restarted. So, the transmission module works 
all the time, while the computational core must 

periodically be stalled. Still, the VGA display allows 
monitoring the results produced by the 
computational core before being cached. 

During debugging the following abnormal 
behavior was observed: 
• The same one-bit signal was displayed on two 

different rows of the VGA display: it was ‘0’ on 
the first row and ‘1’ on the second one, as 
shown in Figure 3. 

• During a functioning cycle while the 
computational core was stalled, the signals 
displayed on the VGA screen changed at 
apparently random moments of time, even 
though the computational core did not receive 
clock impulses. Of course, this means the 
corresponding registers modify their content in 
the absence of a clock impulse. 

• We have displayed the value of the “pipeline 
result” signal sent to the improved accumulator 
and to the initial accumulator, and it was not the 
same value. 

 

Signal (S) 

0 

1 

VGA display FPGA chip 

Q D 

CLK 
 

Figure 3: Example of abnormal behavior: the signal S 
appears to be simultaneously ‘0’ and ‘1’. 

In our opinion, these phenomena are due to cross 
talk and other electrostatic or magnetic interferences 
that appear in the interconnection network, as 
detailed in Section 7. 

4 EXPLOITING THE 
NONDETERMINISM 

We reflected about how to use in a creative manner 
this phenomenon. 

As we were doing some research on random 
numbers (TRNGs) (Suciu, 2007) we asked ourselves 
if there is any way we could exploit this and capture 
all the intermediate numbers generated by the 
computational core, not only the final result. If these 
numbers have all the necessary statistical properties, 
the system could be successfully used as a TRNG, 
because the throughput is relatively high.  

Another advantage is the fact that the numbers 
produced by the computational core and 
accumulated in the improved accumulator are 64-bit 
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wide, aspect that allows selecting from them only 
the groups that change the most. 

We had to select numbers that fulfill the 
following conditions: 
• Show significant differences from a run to 

another – since the design is nondeterministic, 
how can one be sure that the numbers, even if 
they pass the statistical tests, are different in 
consecutive runs? 

• Show good statistical properties – i.e. do they 
pass all the tests from the universally accepted 
test batteries? 

The first question was capital for the quality of 
the TRNG. We compared successive runs and 
discovered that at the beginning the numbers 
generated by the computational core are identical, 
but after less than 2% of the generated test file they 
started being different and continued to be different 
until the end of the execution. We can consider this 
first period (from the beginning until the first 
interference appears) a warm-up of the TRNG. 

After series of testing their statistical properties, 
we have concluded that not all the bits show the non 
deterministic behavior with the same rate. The 
phenomenon that determines the nondeterministic 
behavior of the design seems to affect more often the 
middle bits of the Accumulator from 39 to 8 (Figure 
4). These will be the TRNG’s raw random numbers, 
because they obtain the best scores when tested. 

63   54 53 48 47 40 39  32 31 24 23 16 15    8 7     0 

Final results from 
the computational 

core 

Improved 
accumulator  

Figure 4: Bits with the best statistical properties from the 
randomness point of view. 

An interesting aspect is that nondeterminism can 
not be located in the architecture: it is impossible to 
say that it appears in the computational core, in the 
accumulators or in the PC transmission module. We 
have tested several variants of PC transmission 
modules (RS-232 and Ethernet), and several 
accumulators (we added more “improved 
accumulators” in the design, in parallel with the ones 
from Figure 2, but we didn’t operate changes at the 
level of the computational core). Every time, for all 
combinations, the nondeterministic character of the 
whole design was preserved. 

5 BUILDING A HIGH QUALITY 
TRNG 

Based on the above described phenomenon, we 
developed a hardware TRNG. The randomness 
shown by the nondeterministic design is still not 
enough to pass rigorous statistical tests like NIST 
and TestU01. We can thus consider these numbers to 
be raw numbers with high entropy, but the level of 
entropy is still insufficient to make them acceptable 
as high quality random numbers. Therefore, we had 
to add a post-processing unit to improve the quality 
of the numbers produced by the architecture. 

The most popular post-processing methods 
nowadays are the von Neumann (Jun and Kocher, 
1999) and the XORing (Fischer and Drutarovsky, 
2002) methods. We opted for the XOR method, 
which takes n bits and XORs them together, thus 
producing one bit. XORing is a popular post-
processing method offering multiple advantages, 
like bias reduction and entropy development (by 
XORing deterministic with non-deterministic bits, 
the result will be non-deterministic).  

If XORing is applied on more than two bits, even 
greater improvements can be achieved. The 
drawback of XORing is that it reduces the bit 
generation rate by a factor of n (where n is the 
number of bits XORed). 

  X 

  X 
Random numbers 

Xor 
operator

     63   54 53 48 47 40 39  32 31 24 23 16 15    8 7     0 

Final results from 
the computational 

core 

High entropy 
raw numbers  

 X

Post-processing 
unit 

 
Figure 5: The XOR-based post-processing unit. 

The design was thus extended with a XOR-based 
post-processing block, as shown in Figure 5. As one 
can notice, only the groups of bits having the best 
chances to pass the statistical tests were selected to 
enter the post-processing unit. We have used only 
the results produced by the improved accumulator. 

After the end of the exploratory steps, the 
debugging environment (the VGA display) was no 
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longer necessary. We noticed that removing the 
debugging environment and adding the post-
processing unit does not affect the system’s 
nondeterministic character – Figure 6. 

6 TESTING AND RESULTS 

The proposed TRNG possesses a strong physical 
source of entropy that is completely reliable and 
shows some interesting additional features. 

We have developed this TRNG on a Virtex 2 Pro 
FPGA device. The random behavior was observed 
on 150 tests of the same architecture (the same .BIT 
file was downloaded on the FPGA chip and the 
application was launched 150 times); all tests 
yielded different final results (a short excerpt is 
presented in Table 1).  

Pipeline interface (takes data from the 
memory and passes it to the pipeline) 

 
Main memory 

containing point 
coordinates 
(X, Y, Z) 

Pipeline 

+   Regular 
Floating-point 
accumulator 

Improved  + 
Accumulator 

Pipeline result 

Final result Final result 

PC 

PC transmission 
controller 

 
Cache memory 

Computational 
core  

XOR-based 
post-processing unit 

 
Figure 6: Complete scheme of the TRNG. 

All tests were done on several Digilent XUP 
V2P30 boards (so this phenomenon does not occur 
only on one particular FPGA chip). The working 
frequency was of only 45MHz, which excludes 
overclocking as a source of entropy. 

We observed that the design is nondeterministic: 
both the final value obtained in the improved 
accumulator and the sequence of intermediate 
numbers are different from a run to another.  

Table 1: Short excerpt of the results generated by the 
nondeterministic design. 

Test 
no. 

Final value in the improved  
accumulator  

Final value 
in the initial 
accumulator  

1 43EF5C23E955001C 4BB7D363 
2 43EA36059DDAFEFF 4BB7D99D 
3 43E3F5FEFBA49059 4BB7BD16 
… … … 
150 43D664FABB240B66 4BB7A1DE 

We have also compared consecutive runs 
(separated by a physical shut-down of the generator) 
and computed the similarities between the numbers 
occurring on the same position in each sequence. If 
the generator is non-deterministic, then the 
proportion of identical bits from different runs 
should be equal with the probability that two random 
bits are equal, i.e. 50%. In Figure 7 we present this 
proportion. 

Proportion of identical bits

48
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52

0 1000 2000 3000 4000
Blocks

P
ro
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rti
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)

 
Figure 7: Proportion of identical bits in consecutive runs 
(separated by a shutdown). 

This proves that the TRNG does not tend 
towards the same sequence of numbers, giving the 
possibility of using it for an infinite period of time. 
The generator has some coincidences at the 
beginning, but after a very short warm up period of 
approximately 100K numbers (with very small 
variations from a run to another), the sequence of 
values is clearly different. The length of the warm 
up period is very small compared to the running 
period of the generator.  

This offers a great entropy source since neither 
the occurrence of the phenomenon or its amplitude 
(locally or globally) cannot be predicted.     

For validating the results the NIST (Rukhin et al. 
2001) and TestU01 (L’Ecuyer and Simard, 2007) 
tests were used. We have applied these tests on more 
than 40 sequences of outputs, testing different 
lengths (between 256 KB to 200 MB). The outputs 
were obtained from several Virtex 2 Pro FPGA 
boards, since the architecture does not rely on any 
isolated malfunction of one particular board. More 
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than 98% of the sequences passed all the NIST tests 
(there were situations when some instances of the 
tests weren’t passed, but the number of failed 
instances is limited – 5 out of 186 instances), and 
also all the TestU01 tests. The failed instances were 
not the same, and also the number of instances 
varies, so there isn’t any pattern in the TRNG which 
causes this. Statistically, even a TRNG can produce 
sequences of outputs on which isolated tests can fail, 
because of what looks to be a pattern, but since this 
doesn’t repeat on multiple executions (different 
outputs), this phenomenon is considered normal and 
doesn’t question the quality of the RNG. 

7 SOURCE OF RANDOMNESS  

Our method consists in filling the chip closed to its 
maximum capacity (using almost all its logic and 
interconnection resources). This way, the 
interconnection network will be used close to its 
maximal routing capacity. It is well known that the 
interconnection network occupies about 90% of the 
physical space in an FPGA chip; if used close to its 
maximal capacity, the electrostatic field can produce 
serious interferences. Figure 8 shows the device 
utilization summary produced by Xilinx tools. 

Selected Device:  2vp30ff896-6  
Number of: 
Slices:              13380 out of   13380     100%   
Flip Flops:       15350 out of   27392     
56%  
4 input LUTs:  24156 out of   25427       88%  
BRAMs:           130    out of     136      95%

Figure 8: Synthesis report of the design. 

We believe that the nondeterminism is caused by 
electrostatic and/or electromagnetic interferences 
generated by the full usage of the interconnection 
network. It could be a cross talk between parallel 
lines as well as a global influence caused by the 
electrostatic field.  

A strategy consisting of filling the FPGA chip 
close to its maximal capacity increases the chances 
for this phenomenon to take place. The happening of 
this phenomenon does not ensure that the values 
carried by the wire will always be modified. Its 
influence can also be just a local one, so two 
different receivers can read distinct values from the 
same connecting wire. The uncertainties which rise 
from this physical phenomenon ensure us with a 
very good source of entropy. 

Another possible explanation (although we tend 
to give credit to the first one) would be that the 
maximal fan-out of the FPGA chip is exceeded 
because of the large number of Flip-Flops used in 
the design. 

We believe this could constitute a novel 
methodology for designing TRNGs in FPGAs: 
1. Create a design that performs intense 

computations (preferably a pipeline on at least 
64 bits) and produces a new number in each 
clock cycle. 

2. Make this design big enough to fill the FPGA 
chip close to its maximal capacity (use as many 
slices and Flip-Flops as possible).  

3. Try to use the interconnection network at its full 
capacity. This can be done by setting the routing 
effort to “low” in the synthesis tools and by an 
adequate usage of the placement constraints 
(LOC, RLOC etc.). Use the “one sender-
multiple receivers” model. 

If the fill threshold is reached, the design has 
good chances to become a high quality TRNG. 

The classical methods based on ROs are very 
sensitive to a fine tuning of the ROs, which should 
have almost equal periods (Kohlbrenner and Gaj, 
2004). It is known that ROs are sensitive to 
temperature; this can seriously affect the quality of 
the generated random numbers. On the contrary, in 
the present design the entropy level increases with 
the temperature or any other extreme condition 
which could influence the chip (like radiations, etc.). 

8 CONCLUSIONS AND FURTHER 
WORK  

We have presented a new way of implementing 
TRNGs in FPGA devices. Our design is based on 
filling the chip close to its maximal capacity, from 
the Flip-Flops and slices point of view, and 
exploiting the interconnection network as intensely 
as possible. This way, the design becomes 
nondeterministic.  

The design is a computationally intensive core 
that produces 64-bit numbers, accumulated into a 
normal, fixed-point accumulator. From the 64-bit 
words we extract only those bits that exhibit the 
maximal entropy and post-process them using the 
classical XOR-based bias elimination method. We 
consider this an interesting way of exploiting a 
phenomenon that otherwise is neglected or avoided 
by most designers. 
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The resulting TRNG was proven to provide high 
quality random numbers and we also believe it has 
the advantage of resisting to extreme functioning 
conditions (temperatures and radiations), which can 
only increase its quality. Other advantages of this 
new method are its stability and the fact that the 
design encapsulates all its components in one chip, 
thus increasing the generator’s security. Since it 
does not depend on any external factors, an attacker 
cannot intervene in any way to study it in order to 
make any prediction about the source of 
randomness.  

The design (in the form of a .BIT file) can be 
freely downloaded from (Suciu, 2007) together with 
an Installation Guide, so it can be tested by anyone 
who wants to convince him/herself about its 
nondeterministic behavior. 

We have also proposed a method for developing 
new designs based on this approach, which are 
FPGA vendor independent. The only drawback of 
this method is that the FPGA chip will be used at its 
full capacity, which will make it impossible to 
implement anything else in the same chip. 

Future work will focus on constructing a generic, 
device-independent architecture which could be 
applied to any FPGA by only modifying the generic 
variables in order to completely fill the chip. 
Another research direction will be to compare this 
TRNG with other generators, when exposed to 
external factors (temperature variations, radiations, 
current fluctuations) to determine the stability of 
each method. 
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