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Abstract: In the work vehicle acceleration prediction issue is discussed. Three types of parameters are used for 
prediction system input: CAN-bus parameters – speed and curvature, derived speed parameters and newly 
offered specific curve point parameters, denoting changes in a curve. The real road data was used for 
predictions. Road curvature segments were divided into single and S-type curves. Acceleration was 
predicted using artificial neural networks and look-up table. The look-up table method showed the best 
results with newly offered specific curve parameters.   

1 INTRODUCTION 

Driving assistance systems are becoming a usual 
component of modern cars. Here we are developing 
an algorithm that could aid to driver's assistance on a 
curved country road. One way to develop such 
algorithms is through modelling driver's behaviour. 
Once we have a model that predicts driver's 
behaviour, we can compare actual behaviour with 
the prediction, and warn the driver if there is 
inconsistency.  

In the field of driving action description several 
clear-cut situations have been studied exhaustively: 
lane following (Fenton, 1988; Mammar et al., 2006), 
car following at a safe distance (Gipps, 1981; 
Olstam et al., 2004), lane change (Gipps, 1986; 
Salvucci et al., 2007). For lane following on a 
curved road an extensive theory has been developed, 
mainly based on control engineering approaches 
(Hsu et al., 1998; Yuhara et al., 2001; Chen et al., 
2006; Mammar et al, 2006). Yet speed control (so 
called longitudinal control), including speed on 
curves, has only been studied extensively from a car 
stability perspective (Jin et al., 2007; Hel et al., 
2007; Song, 2008). Alternatively, we focus on 
predicting speed (or acceleration) profiles of 
individual drivers, where they are performing not at 
the limits of car possibilities, but rather in their 
comfort-driving modes. Speed prediction of an 
individual driver is a much more complicated 
problem as compared to steering prediction, because 
of much stronger influence of contextual 

information, and less constraint for a driver in 
choosing the actual speed profile. There are only 
singular investigations concerning speed prediction 
based on speed profiles of individual driver, e.g. 
(Partouche et al., 2007), and success of such work 
until now is quite limited.  

In this study we apply learning techniques to 
predict individual driver's acceleration on a curve. 
Neural networks and look-up tables are employed 
for prediction. Real road driving data is used, and 
input parameters for driver's action prediction are 
analyzed.  

Relatively long real road data sequences are 
required for predicting acceleration on a curve. This 
is because speed control process has a wider time 
scale than steering, i.e. for generating velocity 
control the driver reacts rather to future events, like 
upcoming curves, than immediate situations. E.g. it 
was observed in this study that deceleration in front 
of a curve starts 3-6 s or on some occasions even up 
to 10 s in advance. Consequently, multiple curve 
taking situations in the recordings are required to 
derive the algorithm that predicts an expected 
acceleration profile for a particular driver on a 
particular curve. This makes the problem of speed 
(or acceleration) prediction on a curve difficult to 
address, especially when using real-road data.  
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2 DATA FOR ACCELERATION 
PREDICTION 

Two data sets were used for the study. The first data 
set was collected during November-December, 
2006. The second data set was collected in 
December, 2007. Both data sets were obtained on 
country roads nearby Lippstadt, Germany; at day 
light, on a test car (Volkswagen Passat). In the data 
set from 2006, ten recordings, approximately six 
minutes length each were provided. Five of those 
recordings were obtained on the same road, using 
forward direction, and the other five were obtained 
using backward direction. The recordings were 
coming from two drivers: eight recordings of the 
first driver, and two recordings of the second driver. 
The second set of data (year 2007) consisted of six 
recordings. Those recordings were obtained on a 
different road as compared to the recordings from 
the year 2006. The recordings were again obtained 
in forward and backward directions, duration of ten 
minutes each. This set of recordings was repeated 
three times for three different drivers. 

The test car control data were recorded using 
CAN-bus with a sampling interval of 0.06 s. The 
following signals were extracted from the CAN-bus 
and used in the study: 

 velocity v(t), 
 acceleration a(t), 
 curvature of the road c(t); curvature was 

measured using a gyroscope installed in the 
car. 

3 METHODS 

Curvature-based parameters combined with car 
velocity were employed to predict driver's 
acceleration. In this work gyroscopically measured 
curvature was used, as a shortcut proceeding 
towards further systems, where image processing or 
digital map information will be used to obtain the 
curvature in front of a car.  

Neural networks and look-up tables were used as 
function approximation means for prediction. For 
neural network analysis a simple neural network 
with one hidden layer was used. There were from 
two to four neurons in the hidden layer, according to 
the number of input parameters. Separate learning 
data sets and test sets were employed. The average 
of prediction error from ten initializations was 
calculated to make results more reliable. 

In the look-up table approach input parameter 
values obtained at discrete time moments were 
stored together with corresponding acceleration 
signal value. The predictions were made as follows: 
for the input parameter vector obtained at a specific 
time moment mean squared error (MSE) was 
calculated between that vector and every instance of 
the look-up table. The predicted acceleration was 
calculated as the mean of ten acceleration values, 
with the smallest MSE to input parameters. In 
addition, the acceleration signal was smoothed using 
20 point moving average filter (corresponds to 1.2 s) 
from the previous predictions. 

As part of the input vector raw CAN-bus signals: 
curvature and speed were used, but also a large set 
of derived parameters was introduced. 

Among the derived parameters we used 
centrifugal acceleration (Hong et al, 2006):  

R
vac

2

=   (1) 

where R denotes the curve radius, and v is the speed. 
The centrifugal acceleration is considered to be a 
parameter influencing driving comfort and possibly 
driver’s actions (Hong et al, 2006).  

We used speed differences Sd=v(t)-v(t-Δt) over 
several second intervals (Δt=0.5, 1.0, 1.5, 2.0, 2.5, 
3.0 s) to account for previous acceleration or 
deceleration actions. If a car decelerated, the speed 
difference was negative, and if the car was 
accelerating, the speed difference was positive. 

For acceleration on a curve, features like the 
distance to a start of a curve or the distance to the 
end of a curve are important. We introduced a set of 
curve shape based points (see Fig. 1), that later were 
employed to derive features for acceleration 
analysis. All the parameters’ notations are listed in 
Table 1. 

Table 1: Curve- and speed-derived parameters. 

Parameter 
class Parameter Notation 

CAN-bus 
derived 
parameters 

Centrifugal acceleration CA
Speed difference  
(now-Xs back) 

SD-X

Single 
curve 
parameters 

Start S 
Start peak SP 
End peak EP 
End  E 

S-curve 
parameters 

S-curve start peak  SSP 
S-curve zero crossing S0 
S-curve end peak SEP 
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Two different curve shapes were analyzed in this 
work:  

 Single curve that has 4 specific points (start, 
start peak, end peak and end; see Fig. 1a), 

 S-shaped curve that has 7 specific points (start, 
start peak, S start peak, S zero crossing, S end 
peak, end peak and end; see Fig. 1b).  

 

a b 

S 

SP EP 

E S 

SP SSP 

S0 

SEP EP 

E 

 
Figure 1: Specific curve-based points’ scheme: a) single 
curve with 4 specific points: start (S), start peak (SP), end 
peak (EP) and end (E); b) S-shaped curve with 7 specific 
points: start (S), start peak (SP), S start peak (SSP), S zero 
crossing (S0), S end peak (SEP), end peak (EP) and end 
(E). 

The features were described as distances from 
specific points. Examples of feature time series are 
provided in Fig. 2.  
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Figure 2: Curvature (a) and features describing distances 
to specific points on a curve (b and c). Features for the 
points ‘Start peak’ and ‘End’ are shown. The points ‘Start 
peak’ are marked by black points and the points ’End’ in 
circles. 

Before a specific point it is considered how 
much time is left to that point, and after the point it 
is pointed out how much time has passed since the 
specific point had been passed. A feature is started 
to be considered six seconds in advance before a 

specific point is reached and the point is “forgotten” 
six seconds after it has been passed. Before the point 
a feature is positive, at the point it is zero, and after 
the point it is negative. 

An algorithm to derive feature values is as 
follows: first, the specific curve point tp is 
determined and the feature value for that discrete 
time moment is set to zero. The feature values are 
calculated by adding 1 or -1 to the previous value 
when going through every discrete time step back 
and forward respectively. The calculations end when 
tback=tp-100 and tforward=tp+100 (100 discrete points 
corresponds to 6 s according to the signal 
discretization). 

4 ACCELERATION PREDICTION 
RESULTS 

4.1 Acceleration Predictions using Raw 
CAN-bus Signals 

We used curvature c(t+Δ) where Δ = 4s (that is, four 
seconds ahead), and speed v(t) to predict 
acceleration one step forward. The training set was 
composed of seven curve segments containing clear 
acceleration-deceleration patterns, and we predicted 
the segment that was not included into the learning 
data set. Examples of predicted signals are presented 
in Fig. 3.  

As can be seen in the Fig. 3a, some acceleration 
events in the learning set are predicted accurately, 
but there are some other segments in the acceleration 
profile that the neural network fails to predict.  

In the test sets (Fig. 3 b,c), if measured formally, 
the error between real and predicted signals would 
be high. Yet one can observe qualitative 
correspondence between real and predicted signals, 
and the presence of acceleration/deceleration events 
is predicted correctly with 1-2s precision. With 
slower acceleration dynamics it is a reasonable 
result. This could be enough for approximate 
detection of the moments when deceleration is 
required. Specifically, prediction of deceleration 
moment is important for driver assistance on a 
curved country road. However, we have observed 
that the results were varying a lot with different 
initializations of the artificial neural network. 
Consequently, we were looking for a method that 
could allow more stable acceleration predictions. 
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Figure 3: Two examples of acceleration prediction by 
ANN on a training set (a), and the test set (b and c). Input 
parameters: curvature c(t+ Δ), where Δ=4s, and speed v(t). 
Original signal is marked as solid curve; predicted signal 
is marked as dotted curve. 

4.2 Acceleration Predictions using 
Specific Curve Features 

We used specific curve point-based features to 
improve on acceleration prediction. A look-up table 
was used to map between features and actions. 

For the current experiment for the learning set 
six minutes of driving of the same driver were used 
(recording from year 2007), and approximately 1.5 
minute for each driver were used for testing. Data 
for testing were not included into the learning data 
set. 

The resulting predictions (test sets) for two 
drivers are provided in Fig. 4 and 5.  

In the top panel (Fig. 4 and 5) gyroscopically 
measured curvature is presented. Bigger details 
correspond to real road curvature, while smaller 
details at the top of the curve may be attributed to 
over-steering events. Acceleration (lower panel) 
shows much more details, as compared to curvature, 
but one can observe episodes of deceleration, 
performed as a sequence of several (usually 2-3) 
deceleration events in front of a curve. Speed usually 
starts increasing at the second half of the curve. 
Those rules can be derived for single curves 
(seconds approx. 50 to 90 in both plots), but for 
more complex curves the situation is difficult to 
specify. 
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Figure 4: Gyroscopically measured curvature of the drive 
(a); original (solid curve) and predicted (dotted curve) 
acceleration signal (b); first driver. Input parameters: SP, 
E, CA, SD-2s. 
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Figure 5: Gyroscopically measured curvature of the drive 
(a); original (solid curve) and predicted (dotted curve) 
acceleration signal (b); second driver. Input parameters: 
SP, E, CA, SD-2s. 

In the first driver case (see Fig. 4b) the predicted 
signal corresponds to the original acceleration signal 
quite well. At the second 20 the predicted signal 
does not reach the real acceleration amplitude, but it 
starts to increase at the same moment as the true 
signal. At the intervals from 70 to 75 s and from 82 
to 85 s the prediction gives bigger acceleration and 
decreases to the same level as original signal. The 
interval from 85 s to the end of test signal does not 
correspond to the real acceleration signal. That could 
be associated with over-steering that can be 
observed in Fig. 4a, (85 to 90 s).  
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With the second driver (Fig. 5) one can observe 
that the acceleration profile is reproduced less well 
between seconds 10 and 30, where there is a 
complex curve, but the profile is reproduced much 
better for single curves. 

The interval from 77 s to the end of test signal 
does not correspond to the real acceleration signal as 
well. That could be also attributed to over-steering 
that is seen from Fig. 5a. 

Summarizing the results it can be concluded that 
the algorithm grasps the moments of acceleration 
and deceleration on the curve well. 

Selected parameter subsets have been analyzed 
to find out which parameter subset could serve best 
for acceleration prediction. Prediction error 
numerical values for various parameter 
combinations are listed in Tables 2 – 4.  

Parameter combinations were investigated in the 
case when all curves were considered as single first. 
E.g. an S-shape curve was considered as a sequence 
of two single curves with appropriate single curve 
points. It was found that two points are most 
important for acceleration prediction: SP and E. 
When complementing curve shape features with 
centrifugal acceleration, and speed change from 1.5-
2 seconds ago to a current moment, prediction 
improved for both drivers, but for driver B the result 
was still a small fraction better when adding point S 
(see Table 2). 

Table 2: Prediction with look-up table considering 
complex curves as composed of single curves: mean 
squared error for various parameter combinations. 

Parameter sets Driver A Driver B 
SP, E 0.27 0.21 
SP, E, CA 0.26 0.21 
SP, E, CA, S, SD-2s 0.26 0.16 
SP, E, CA, EP 0.29 0.20 
SP, E, CA, SD-2s 0.20 0.17 

 
The situation was improved by separately 

analyzing S-type curves (see Table 3). The best 
result for the data set was obtained when specific S 
curve parameters SSP, S0, SEP were not included 
into the input parameter vector (that is, even from S-
type curves we were analyzing only the points SP 
and E, that are present both on a single and an S-
type curve). This could possibly change when larger 
data sets are analyzed.  

When analyzing which time window would tell 
the history of driver’s acceleration best (Table 4), 
and consequently allow to predict drivers next action 
with the smallest error, it was found that time 

windows of 1 s, 1.5 s and 2 s performed almost 
equally well, and longer as well as shorter time 
intervals performed worse for both drivers. 

Table 3: Prediction with look-up table including S-curve 
parameters: mean squared errors for various parameter 
combinations. 

Parameter sets Driver A Driver B 
SP, E, CA, SD-2s 0.16 0.13 
SP, E, CA, SD-2s, SEP 0.18 0.14 
SP, E, CA, SD-2s, SEP, SSP 0.18 0.15 
SP, E, CA, SD-2s, SSP 0.20 0.15 
SP, E, CA, SD-2s, SEP, S0, 
SSP 0.22 0.16 
SP, E, CA, SD-2s, S0, SSP 0.23 0.15 

Table 4: Prediction with look-up table: mean squared error 
for various speed difference parameters. 

 Parameter sets Driver A Driver B 
SP, E, CA, SD-3s 0.19 0.14 
SP, E, CA, SD-2.5s 0.17 0.14 
SP, E, CA, SD-2s 0.16 0.13 
SP, E, CA, SD-1.5s 0.16 0.13 
SP, E, CA, SD-1s 0.16 0.13 
SP, E, CA, SD-0.5s 0.17 0.15 

5 DISCUSSION 

Two methods were introduced to predict individual 
driver's acceleration on a curve. The method 
employing only simple parameters: speed of the car 
and curvature at a single point in front of a car, 
failed to stably predict driver's acceleration. The 
other method introducing more complicated analysis 
of a curve shape, supplemented by centrifugal 
acceleration and history of driver's actions, provided 
promising results.  

Driver's acceleration prediction on a curve is an 
important task on the way towards intelligent 
driver's assistance systems, as a big proportion of 
serious traffic accidents happen due to failure to 
properly reduce speed on curves (Comte et al, 2000). 
After developing adequate prediction methods one 
will have to define thresholds when acceleration 
profile is to be considered 'unusual' for a driver. 
However, examples of 'dangerous' speed profiles are 
difficult to obtain, especially in real road driving 
situations. Alternatively, one can perform 
experiments in driving simulators. Here one 
necessarily needs simulators imitating forces arising 
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while driving a car, because with real road driving 
we observe much different speed (and acceleration) 
profiles on curves as compared to those obtained on 
a simulator with only visual feedback (Partouche et 
al, 2007) . 

On the other hand, some practical tasks can be 
solved without analysing dangerous acceleration 
profiles. If one manages to predict with reasonable 
precision the moment of deceleration in front of a 
curve, then one can warn on the events where a 
driver failed to observed the curve, e.g. due to 
reduced visibility (warning in this case would be 
based on absence of deceleration event where it 
should appear). 

One could argue that the curve shape features we 
are introducing are not practical, as stable visual 
analysis of a scene 6s in front of a car driving at 
motorway speeds (100 km/h or more) is not realistic 
to achieve. Our experience with visual analysis 
prompts the same. Yet with new developments, 
where interactive roads are foreseen (Jakubiak et al, 
2008), or systems where map integrated into the car 
provides upcoming curvatures (Mammar et al, 2006) 
would solve the problem. 

Turning to details of this study, good 
acceleration prediction results were obtained when 
curve shape parameters SP, E, CA, SD-1.5 or SD-2 
were provided as input parameters and S-shape 
curve was analyzed separately. For the first driver 
the mean squared error of acceleration prediction 
was 16% and for the second driver the mean squared 
error was 13%. For the second driver adding 
parameter S allowed to reduce the error further. 
Although, those conclusions should only be taken as 
preliminary, and experiments with more data are 
required to refine parameter choice. 
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