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Abstract: The uncapacitated facility location problem aims to select a subset of facilities to open, so that the demands 
of a given set of customers are satisfied at the minimum cost. In this study, we present a novel multistart 
Drop-Add-Swap heuristic for this problem. The proposed heuristic is multiple applications of the Drop-
Add-Swap heuristic with randomly generated initial solutions. And the proposed Drop-Add-Swap heuristic 
begins its search with an initial solution, then iteratively applies the Drop operation, the Add operation or 
the Swap operation to the solution to search for a better one. Cost updating rather than recomputing is 
utilized, so the proposed heuristic is time efficient. With extensive experiments on most benchmarks in the 
literature, the proposed heuristic has been shown competitive to the state-of-the-art heuristics and 
metaheuristics. 

1 INTRODUCTION 

The success of some businesses heavily depends on 
how they locate their facilities. Therefore, location 
problems have been widely studied because of their 
importance, both in theory and in practice. Location 
problems can be classified into four categories: p-
center problems, p-median problems, uncapacitated 
facility location problems, and capacitated facility 
location problems. In this study, we consider the 
uncapacitated facility location problem (UFLP). A 
UFLP can be described as follows. 

Suppose we have a set of m customers U={1, 2, 
…, m} and a set of n candidate facility sites F={1, 2, 
…, n}. There is no limit to the number of customers 
a facility can serve. cij is used to represent the cost of 
serving customer i from facility j and fj is used to 
represent the cost of opening facility j. Furthermore, 
cij for i=1, 2, … ,m and j=1, 2, …, n and fj for i=1, 2, 
…, n are assumed to be greater than zero. Then a 
UFLP is defined as (Cornuéjols et.al., 1990): 
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In constraint (3), xij = 0 indicates that facility j 

does not serve customer i and xij = 1 indicates that 
facility j serves customer i. In constraint (4), pj = 0 
or 1 indicates that facility j is closed or open 
respectively. Constraint (1) states that each customer 
must be and must only be served by one facility. 
Constraint (2) states that a facility can serve 
customers only if it is open. The objective of the 
UFLP is to minimize the sum of the customer 
serving costs and the facility opening costs. 

The UFLP is also called the uncapacitated 
warehouse location problem or the simple plant 
location problem in the literature. Since the UFLP is 
an NP-hard problem (Cornuéjols et.al., 1990), exact 
algorithms ((Körkel, 1989) is an example) in general 
solve only small instances. For larger instances, 
approximation algorithms, heuristics, and 
metaheuristics have been proposed in the literature 
to solve this problem. Hoefer (2002) presents an 
experimental comparison of five state-of-the-art 
heuristics: JMS, an approximation algorithm (Jain 
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et.al., 2002); MYZ, also an approximation algorithm 
(Mahdian et.al., 2002); swap-based local search 
(Arya et.al., 2001); tabu search (Michel andVan 
Hentenryck, 2003); and the volume algorithm 
(Barahona and Chudak, 1999). Hoefer concluded 
that based on experimental evidence, tabu search 
achieves best solution quality in a reasonable 
amount of time and is therefore the method of choice 
for practitioners. Although approximation 
algorithms are more interesting in theory, heuristics 
and metaheuristics often outperform them in 
practice. Therefore, developing heuristics or 
metaheuristics for the UFLP has attracted more 
attention from researchers. 

(Kuehn and Hamburger, 1963) presented the first 
heuristic that consists of two phases. In the first 
phase, the ADD method is applied that starts with all 
facilities closed and keeps adding the facility that 
results in the maximum decrease in the total cost. 
The first phase ends when adding any more facility 
will not reduce the total cost. In the second phase, 
the swap method is applied in which an open facility 
and a closed facility is interchanged as long as such 
an interchange reduces the total cost. Another 
greedy heuristic called the DROP method was also 
proposed by researchers (Nemhauser et.al., 1978). 
The DROP method starts with all facilities open, 
keeps closing the facility that results in the 
maximum decrease in the total cost, and stops if 
closing any more facility will not reduce the total 
cost. (Erlenkotter, 1978) proposed a dual approach 
for the UFLP. It is an exact algorithm but it can also 
be used as a heuristic.  

In recent years, some metaheuristics were 
proposed for the UFLP. In general, metaheuristic 
methods spend more computation time and obtain 
better solution quality than heuristic methods do. 
These metaheuristics include genetic algorithms 
(Kratica et.al. 2001), tabu search (Ghosh, 
2003)(Michel and Van Hentenryck, 2003)(Sun, 
2006), and path relinking (Resende and Werneck, 
2006). In particular, the most recent hybrid 
multistart heuristic proposed by Resende and 
Werneck and the tabu search proposed by Sun had 
made significant improvements in solving the 
benchmark instances. The hybrid multistart heuristic 
(Resende and Werneck, 2006) builds an elite set and 
applies path-relinking repeatedly to search for good 
solutions. Sun’s tabu search (Sun, 2006) divides its 
search process into the short term memory process, 
the medium term memory process and the long term 
memory process. A move in this tabu search is to 
open or to close a facility. Sun also designed an 
efficient method to update, rather than re-compute, 

the net cost change of a move. In spite of all these 
improvements there is still room for making 
progress. In this paper, we present the Multistart 
Drop-Add-Swap heuristic (MDAS) for the UFLP. 

The MDAS starts with a set of randomly 
generated initial solutions. A solution is represented 
by a sequence of n bits. The value of the ith bit is 0 
(1) if the ith facility is close (open). For each 
solution, the following process is iterated a 
predetermined number of times. The MDAS firstly 
keeps closing the facility that results in the 
maximum decrease of the total cost until no facility 
can be closed to reduce the total cost. Then, the 
MDAS tries to find either opening a facility or 
interchanging an open facility with a closed facility 
will result in the maximum reduction of the total 
cost, and it will then do the corresponding opening 
or interchanging. 

The rest of the paper is organized as follows. In 
Section 2, the proposed MDAS is described. 
Experimental results and some discussions are listed 
in Section 3. Finally, conclusions are given in 
Section 4. 

2 MDAS HEURISTIC 

In this section, we introduce the proposed Multistart 
Drop-Add-Swap heuristic (MDAS) for the UFLP. 
The Add method and the Swap method had been 
used to solve the UFLP by (Kuehn and Hamburger, 
1963). Their heuristic consists of an Add method 
phase followed by a Swap method phase. The Add 
method phase starts with all facilities closed and 
keeps opening the facility that results in the 
maximum reduction in the total cost, and stops if 
opening any more facility will no longer reduce the 
total cost. In the Swap method phase, an open 
facility and a closed facility are interchanged as long 
as such an interchange decreases the total cost. The 
Drop method had also been proposed to solve the 
UFLP in previous studies. (Cornuéjols et.al., 1977) 
presented a heuristic that consists of a single phase 
of the Drop method. The Drop method starts with all 
facilities open and keeps closing the facility that 
results in the maximum reduction in the total cost, 
and stops if closing any more facility will no longer 
decreases the total cost. Unlike the above mentioned 
heuristics, the proposed DAS heuristic contains 
iterations of Drop or Add or Swap operation with 
one operation in each iteration. In each iteration, the 
Drop operation is first examined and if applying the 
Drop operation can reduce the total cost, it is 
applied; Otherwise, the Add operation or the Swap 
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operation whichever can reduce the total cost most, 
is applied. Moreover, multistart is utilized to 
enhance the global search capability of the proposed 
DAS heuristic because in multistart DAS (MDAS), 
search will begin with initial solutions distributed 
over the whole solution space. 

(Sun, 2006) designed an efficient method to 
calculate the net cost change of an Add operation 
and a Drop operation, as denoted by equations (5) 
and (6) respectively. 
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For a solution s, we define two sets of facilities: 
Sc represents the set of all closed facilities and So 
represents the set of all open facilities. Furthermore, 
for each customer i, let 1

id  be the open facility (i.e. 

oi Sd ∈1 ) that is closest to i , and let 2
id  be the open 

facility (i.e. 
oi Sd ∈2 ) that is second closest to i. Xj 

denotes the set of customers that will be supplied by 
facility j when facility j is changed from closed to 
open. Yj denotes the set of customers that were 
originally supplied by facility j when facility j is 
changed from open to closed. With the above 
definitions, equation (5) represents the net cost 
reduction of opening facility j and equation (6) 
represents the net cost reduction of closing facility j. 
Obviously, if jO+Δ ( jO−Δ ) is positive, opening 
facility j (closing facility j) will reduce the total cost. 
Since Sun utilized only the Add operation and the 
Drop operation, and we use three operations: Add, 
Drop and Swap, we further design the following 
three equations for net cost reduction calculation of 
a Swap operation (Open facility j and close facility 
k). 

kjjk fOZ +Δ= +  (7) 
{ } jkididijidij XYiccccQ

iii
−∈−−= ,    ,  max 211  (8) 

∑
−∈

+=
jk XYi

ijjkjk QZZ  (9) 

Equation (7) denotes the cost reduction produced 
by opening facility j and the elimination of the 
opening cost of facility k because k will be closed. 
Equation (8) represents the cost reduction produced 
by the reallocation of the customers originally 
supplied by facility k. Note that those customers 
originally supplied by facility k and will now be 
supplied by the newly opened facility j have already 
been considered in equation (7). Finally, the net cost  

 
Figure 1: The DAS heuristic. 

reduction of Swap(j, k), that is, opening j and closing 
k, is denoted by equation (9). 

The pseudo code for the Drop-Add-Swap 
heuristic (DAS) is shown in Figure 1. In the pseudo 
code, Drop(D) denotes closing facility D, Add(A) 
denotes opening facility A, and Swap(A, D) denotes 
opening facility A and closing facility D 
simultaneously. As for the Multistart Drop-Add-
Swap heuristic (MDAS), it will randomly generate a 
set of initial solutions first, and then it will apply the 
DAS heuristic to each initial solution to search for 
the optimum or near-optimal solution. 

We now explain the DAS heuristic depicted in 
Figure 1. Given a solution s, for each open facility k, 
the saving cost of closing facility k will be 
calculated; for each closed facility j, the saving cost 
of opening facility j will be calculated; for each 
closed facility j, the saving cost of opening facility j 
and closing its best swapping target Ej will also be 
calculated (lines 2-4). After the initialization phase, 
begins the search phase. The search phase contains 
at most n iterations and in each iteration, at most one 
of the three operations (Drop, Add and Swap) will 
be applied. The algorithm terminates if the number 
of iterations is greater than n or the chosen operation 
is tabued or none of the three operations can reduce 
the total cost. In each iteration, the Drop operation is 
considered first. If the Drop operation can reduce the 
total cost, the Drop operation that reduces cost most 
will be applied (lines 7-9). Otherwise, the Add 
operation and the Swap operation will be considered 
simultaneously. Whichever of the Add operation and 
the Swap operation can reduce the total cost most 
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will be applied (lines 11-18). The inverse operation 
of the applied operation will be tabued in the next 
iteration (line 22). When applying any of Drop, 
Add or Swap operation, from equations (5)-(9), it is 
noted that only related information needs to be 
updated rather than all information needs to be 
recomputed. Therefore, the calculation of the net 
cost change of an operation is very time efficient. 
Moreover, by properly combining Drop, Add and 
Swap operations, the MDAS heuristic is very 
effective in solving the UFLP. 

3 EXPERIMENTAL RESULTS 
AND DISCUSSIONS 

Extensive experiments had been conducted to 
evaluate the performance of the proposed MDAS 
heuristic. A personal computer with Intel Core 2 
Duo 2.33 GHz CPU was used as the platform to run 
the program. Although there were two processors, 
only one processor was used. The program was 
implemented using C++. In this section, 
experimental results are given and some discussions 
are made. 

3.1 Benchmarks 

Most benchmarks collected in the UflLib (Hoefer, 
2002) website had been utilized to test the 
performance of the MDAS heuristic. These 
benchmarks are listed as follows. 
ORLIB: This benchmark was proposed by (Beasley, 
1993) and posted in OR-Library. It consists of 15 
problems that are divided into four classes. 
M*: These problems were presented by (Kratica et 
al., 2001). The benchmark contains six sets with 
problem size 100, 200, 300, 500, 1000 and 2000 
respectively. Each set has five problems. 
GR: The benchmark was proposed by (Galvao and 
Raggi, 1989). It consists of five sets with problem 
size 50, 70, 100, 150 and 200 respectively. Each set 
contains ten problems. 
BK: This benchmark, presented by (Bilde and 
Krarup, 1977), contains 220 problems with size from 
30×30 to 100×100. The distances between customers 
and facilities are drawn uniformly from [0, 1000]. 
FPP: This benchmark was artificially generated to 
make the problems harder to be solved. It was 
proposed by (Kochetov and Ivanenko, 2003) at the 
5th Metaheuristics International Conference in 2003. 
The benchmark contains 40 problems and these 
problems are classified into two classes: FPP11 

(with m = 133 and n = 11) and FPP17 (with m = 307 
and n = 17). 
GAP: This benchmark was also proposed by 
(Kochetov and Ivanenko, 2003) at the 5th 
Metaheuristics International Conference. It consists 
of three classes: GAPA, GAPB and GAPC. Each 
class contains 30 problems. Since these problems 
have larger duality gaps, they are more difficult to 
be solved by the dual-base method. 
GHOSH: (Ghosh, 2003) presented this benchmark 
in 2003. The benchmark contains 90 problems. 
These problems are divided into two classes: 
symmetric and asymmetric. Each class is further 
divided into three sets with problem size 250, 500 
and 750 respectively. The optimal solutions of some 
of these problems are still unknown. 
MED:  Originally, this benchmark was proposed by 
(Ahn et al., 1998) as a benchmark for the p-median 
problem. In 1999, (Barahona and Chudak, 1999) 
modified it to act as a benchmark for the UFLP. This 
benchmark consists of 18 problems with size 500, 
1000, 1500, 2000, 2500 and 3000 respectively. For 
each size, there are three problems with the opening 
costs of facilities being set to 10n , 100n  and 

1000n , respectively. 

3.2 Performance comparison of MDAS 
Heuristic and DROP Method 

The comparison of performance of the DROP 
method, the DAS heuristic and the MDAS heuristic 
is shown in Table 1. The first column of Table 1 
represents the problem name, the second column 
represents the size of the problem, where m is the 
number of customers and n is the number of 
facilities. The third column lists the costs of the 
optimal solutions. The fourth and the fifth column 
list the deviation from the optimal solution of the 
solution found by the DROP method and the DAS 
heuristic, respectively, with the initial solution in 
which all facilities were open.  
The sixth column represents the average deviation 
(from the optimal solutions) of the solutions found 
by applying the MDAS heuristic ten times. In each 
time, ten randomly generated solutions were used as 
the initial solutions. The seventh column shows the 
number of times by which the optimal solution was 
found by the MDAS heuristic. Finally, the last 
column denotes the average CPU time used by the 
MDAS heuristic over ten times. 
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Table 1: Performance comparison of the DROP method, 
the DAS heuristic and the multistart DAS heuristic. 

Problem OPT 
Drop DAS MDAS

Dev Dev 
AVG 
Dev 

Hit 
AVG 
Time 

Cap71 932615.75 0.00 0.00 0.00 10 0.000
Cap72 977799.40 0.00 0.00 0.00 10 0.000
Cap73 1010641.4 0.00 0.00 0.00 10 0.000
Cap74 1034976.9 0.26 0.00 0.00 10 0.000

Cap101 796648.44 0.00 0.00 0.00 10 0.000
Cap102 854704.20 0.09 0.00 0.00 10 0.000
Cap103 893782.11 0.00 0.00 0.00 10 0.000
Cap104 928941.75 0.61 0.00 0.00 10 0.000
Cap131 793439.56 0.00 0.00 0.00 10 0.000
Cap132 851495.32 0.09 0.00 0.00 10 0.000
Cap133 893076.71 0.08 0.08 0.00 10 0.000
Cap134 928941.75 0.61 0.00 0.00 10 0.000
CapA 17156454. 6.95 0.00 0.00 10 0.084
CapB 12979071. 1.04 0.00 0.00 10 0.100
CapC 11505594. 1.24 0.26 0.00 10 0.109
MO1 1156.91 0.53 0.00 0.00 10 0.09
MO2 1227.67 0.00 0.00 0.00 10 0.08
MO3 1286.37 0.94 0.14 0.00 10 0.09
MO4 1177.88 0.16 0.00 0.00 10 0.09
MO5 1147.60 0.00 0.00 0.00 10 0.08
MP1 2460.10 0.00 0.00 0.00 10 0.041
MP2 2419.32 0.00 0.00 0.00 10 0.042
MP3 2498.15 0.00 0.00 0.00 10 0.042
MP4 2633.56 0.45 0.00 0.00 10 0.044
MP5 2290.16 0.00 0.00 0.00 10 0.044
MQ1 3591.27 0.00 0.00 0.00 10 0.109
MQ2 3543.66 0.04 0.00 0.00 10 0.109
MQ3 3476.81 0.85 0.00 0.00 10 0.120
MQ4 3742.47 0.00 0.00 0.00 10 0.111
MQ5 3751.33 0.00 0.00 0.00 10 0.113
MR1 2349.86 0.00 0.00 0.00 10 0.362
MR2 2344.76 0.00 0.00 0.00 10 0.414
MR3 2183.24 0.00 0.00 0.00 10 0.400
MR4 2433.11 0.00 0.00 0.00 10 0.377
MR5 2344.35 0.00 0.00 0.00 10 0.372
MS1 4378.63 0.00 0.00 0.00 10 2.489
MS2 4658.35 0.05 0.00 0.00 10 2.586
MS3 4659.16 0.67 0.00 0.00 10 2.858
MS4 4536.00 0.00 0.00 0.00 10 2.427
MS5 4888.91 0.00 0.00 0.00 10 2.172
MT1 9176.51 0.00 0.00 0.00 10 14.986
MT2 9618.85 0.00 0.00 0.00 10 13.878
MT3 8781.11 0.00 0.00 0.00 10 14.654
MT4 9225.49 0.00 0.00 0.00 10 14.855
MT5 9540.67 0.00 0.00 0.00 10 13.775

From Table 1, it is noted that there are 17 
problems on which the DROP method cannot find 
optimal solutions, but there are only 3 problems on 

which the DAS heuristic cannot find optimal 
solutions. Hence, the DAS heuristic is superior to 
the DROP method. Furthermore, when ten randomly 
generated solutions were used as the initial solutions 
instead of using only the solution with all facilities 
opened, the MDAS heuristic could find optimal 
solutions for all these 45 problems and for all ten 
times of experiments.  

 
Therefore, the MDAS heuristic enhances the 

global search ability of the DAS heuristic and 
improves the performance significantly. By 
examining the solutions of the seventeen problems 
on which the DROP method could not find optimal 
solutions, some of the solutions were very close to 
the optimal solutions, but the optimal solutions 
could not be reached from these solutions by 
applying the Drop operation. The three problems on 
which the DAS heuristic could not find optimal 
solutions had a similar situation. The solutions found 
by the DAS heuristic for these three problems and 
the optimal solutions of these three problems are 
listed in Table 2. It is noted that two swap operations 
(Swap(6, 11) and Swap(25, 15)) executed 
simultaneously are needed to transform the solution 
found by the DAS heuristic to the optimal solution 
for Cap133. Similarly, more than two operations 
executed simultaneously are needed to transform the 
solutions found by the DAS heuristic to the optimal 
solutions for the other two problems. But when the 
DAS heuristic started with multiple randomly 
generated initial solutions, though still being 
restricted to executed only one operation in each 
iteration, the multi-start DAS (MDAS) could find all 
optimal solutions of all these forty-five problems as 
shown in Table 1. 

Table 2: The optimal solutions and the solutions found by 
the DAS heuristic (all open). 

Instance Source Solution 

Cap133
OPT 6, 23, 25, 27, 34, 45, 46, 49

DAS(All Open) 11, 15, 23, 27, 34, 45, 46, 49

Capc 
OPT 

6, 14, 24, 35, 53, 70, 79, 81, 
89 

DAS(All Open)
6, 9, 14, 24, 35, 48, 66, 70, 
79 

MO3 OPT 6, 39, 48 
 DAS(All Open) 7, 38, 39, 100 
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Table 3: Performance comparison of the MDAS heuristic with two other methods on six benchmarks. 

 
3.3 Performance Comparison of 

MDAS and the Other Two Methods 

In this subsection, the performance of the MDAS is 
compared with those of the hybrid multistart 
heuristic and the simple tabu search on six 
benchmarks. This comparison is depicted in Table 3. 
The performance data of the hybrid multistart 
heuristic and the simple tabu search were taken from 
(Resende and Werneck, 2006). The six benchmarks 
considered are ORLIB, M*, GR, BK, FPP and GAP. 
The computer used by the MDAS was a personal 
computer with Intel core2 Duo 2.33GHz CPU (only 
one processor was used).  
The computer used by the other two methods was 
the SGI challenge with 28 196-MHz MIPS R10000 
CPU (only one processor was used). In this 
experiment, the MDAS was run 50 times on each 
problem and the average was taken. In Table 3, 
AvgD (in %) is defined as follows: AvgD=[(best 
solution found by the method - best known upper 
bound)/best known upper bound]*100. 

Where the best known upper bound is taken from 
(Hoefer, 2002). AvgT (in seconds) denotes the 
average CPU time. It is noted that with just 10 seeds 
(i.e., 10 randomly generated initial solutions), the 
MDAS can find all the best solutions in all 50 times 
(i.e., AvgD=0) on ORLIB, M* and GR benchmarks. 
Also, the CPU time needed is much less than those 
needed by the other two methods. For BK and FPP 
benchmarks, the MDAS can also find all the best 
solutions in all 50 times with 100 and 16000 seeds, 
respectively. In solving these two benchmarks, the 
CPU time need by the MDAS is also much less than 
those needed by the other two methods. As for the 

benchmark GAP, the MDAS found the best solution 
of each problem in this benchmark within the 50 
times of execution, but it could not find all best 
solutions in any single time of execution. From 
Table 3, it is observed that the MDAS outperforms 
the other two methods in both the solution quality 
and the computation time. 

3.4 Performance Comparison of 
MDAS and the other Three 
Methods 

In this subsection, the performance of the MDAS is 
compared with those of Ghosh’s method (Ghosh, 
1999), the hybrid multistart heuristic (Resende and 
Werneck, 2006), and Sun’s tabu search (Sun, 2006) 
on the GHOSH benchmark. There are totally 90 
problems in this benchmark that are divided 
according to size and type into 18 sets with five 
problems in each set. The performance comparison 
is shown in Table 4, within which the previous best 
known solutions are taken from (Sun, 2006). Both 
the data of the hybrid multistart heuristic and the 
data of our MDAS are the average of 50 runs. It is 
noted in Table 4 that Ghosh’s method achieves one 
(out of eighteen) previous best known solution, the 
hybrid multistart heuristic achieves four (out of 
eighteen) previous best solutions, Sun’s tabu search 
achieves fourteen (out of eighteen) previous best 
solutions, and our MDAS achieves thirteen (out of 
eighteen) previous best known solutions. Moreover, 
the MDAS found solutions of the other four sets that 
are better than the previous best known solutions  
(the italics solutions in Table 4). The  last   row   of  

Class    Method 
ORLIB M* GR BK FPP GAP 

Avg D Time Avg D Time Avg D Time Avg D Time Avg D Time Avg D Time

Hybrid 
Iteration=8,  Elite=5 0.000 0.05 0.004 2.19 0.000 0.09 0.028 0.09 69.370 1.63 9.573 0.348

Iteration=32,  Elite=10 0.000 0.17 0.000 7.86 0.000 0.32 0.002 0.28 33.375 7.66 5.953 1.64
Iteration=2048,  Elite=80 － － － － － － － － 0.000 330.9 0.820 92.09

Simple 
Tabu 

500 Non-improving 0.028 0.16 0.011 1.75 0.100 0.16 0.071 0.16 95.711 0.65 15.901 0.26
64000 Non-improving － － － － － － － － 71.150 52.08 6.350 22.43

MDAS 

10 Random Seed 0.000 0.02 0.000 0.92 0.000 0.02 0.032 0.00 46.948 0.04 13.783 0.01
50 Random Seed － － － － － － 0.001 0.02 3.963 0.21 8.661 0.03
100 Random Seed － － － － － － 0.000 0.03 0.298 0.43 7.063 0.07

1000 Random Seed － － － － － － － － 0.012 4.46 2.930 0.74
4000 Random Seed － － － － － － － － 0.003 17.53 1.217 3.42
16000 Random Seed － － － － － － － － 0.000 67.36 0.559 20.30
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Table 4: Performance comparison of the MDAS heuristic and three other methods on benchmark GHOSH. 

Instance Previous best 
known Ghost Hybrid Tabu Search MDAS(1000Seed)

Class Size Type Value Best Time Best Time Best Time Best Time

A 

250 Sym 257805.0 257832.6 18.256 257807.9 5.3 257805.0 2.828 257804.0 7.36
Asym 257917.8 257978.4 18.060 257922.1 5.7 257917.8 2.618 257917.8 7.32

500 Sym 511180.4 511383.6 213.316 511203.0 43.5 511180.4 15.616 511181.2 35.87
Asym 511140.0 511251.6 207.070 511147.4 40.3 511140.0 13.760 511136.4 35.97

750 Sym 763693.4 763831.2 824.288 763713.9 112.6 763693.4 39.812 763684.8 93.68
Asym 763717.0 763840.4 843.206 763741.0 117.5 763717.0 39.650 763716.4 92.60

B 

250 Sym 276035.2 276185.2 6.470 276035.2 8.0 276035.2 5.628 276035.2 5.88
Asym 276053.2 276184.2 6.402 276053.6 8.2 276053.2 5.790 276053.2 5.92

500 Sym 537912.0 538480.4 71.394 537919.1 52.6 537912.0 31.432 537912.0 26.72
Asym 537847.6 538144.0 79.192 537868.2 52.2 537847.6 34.748 537847.6 26.73

750 Sym 796571.8 796919.0 409.372 796593.7 126.3 796571.8 93.352 796571.8 68.83
Asym 796374.4 796754.2 395.958 796393.5 127.1 796374.4 95.430 796374.4 64.71

C 

250 Sym 333671.6 333671.6 17.322 333671.6 8.3 333671.6 9.878 333671.6 5.73
Asym 332897.2 333058.4 24.730 332897.2 7.4 332897.2 9.196 332897.2 5.67

500 Sym 621059.2 621107.2 146.482 621059.2 50.8 621059.2 71.106 621059.2 24.18
Asym 621463.8 621881.8 134.76 621475.2 57.4 621463.8 72.064 621463.8 26.60

750 Sym 900158.6 900785.2 347.414 900183.8 130.3 900158.6 229.914 900158.6 56.31
Asym 900193.2 900349.8 499.738 900198.6 136.5 900193.2 236.902 900193.2 56.95
Average 555535.489 236.847 555493.567 60.556 555316.189 56.096 555315.500 34.730

 
Table 4 lists the average values over the eighteen 
sets, and from the average values, it is noted that the 
MDAS outperforms the other three methods. 

3.5 Performance Comparison of 
MDAS and Hybrid Multistart 
Heuristic on MED 

The performance of the MDAS is compared with 
that of the hybrid multistart heuristic on the 
benchmark MED, and this comparison is shown in 
Table 5. The MED benchmark contains 18 problems 
with size 500, 1000, 1500, 2000, 2500 and 3000, 
respectively. For each size n, there are three 
problems with the opening costs of facilities being 
set to 10n , 100n , and 1000n , respectively. 

In this experiment, the MDAS heuristic was run 
50 times with 1000 seeds. It is noted in Table 5 that 
the MDAS heuristic outperforms the hybrid 
multistart heuristic on the first group in which the 
facility’s open cost is 10n . But the solution quality 
of the hybrid multistart heuristic is better than that of 
the MDAS heuristic on the second and the third 
groups in which the facility’s open costs are 100n  
and 1000n , but the computation time of the latter is 
less than that of the former. 

Observing the above mentioned experimental 
results, we conclude the following: 
(1) The DAS heuristic that utilizes the Drop 

operation, the Add operation and the Swap 
operation performs better than the DROP 
method that utilizes only the Drop operation. 

Table 5: Performance comparison of the MDAS heuristic 
with the hybrid multistart heuristic on benchmark MED. 

instance Hybrid MDAS(1000Seed)
Avg Time Avg Time

500-10 798577.0 33.2 798577.0 28.0
1000-10 1434185.4 173.9 1434171.0 130.7
1500-10 2001121.7 347.8 2000854.14 331.1
2000-10 2558120.8 717.5 2558121.5 687.4
2500-10 3100224.7 1419.5 3100174.5 1116.7
3000-10 3570818.8 1621.1 3570820.75 1667.0
500-100 326805.4 32.9 326922.375 25.6
1000-100 607880.4 148.8 607992.563 106.5
1500-100 866493.2 378.7 867149.688 293.6
2000-100 1122861.9 650.8 1123936.5 562.3
2500-100 1347577.6 1128.2 1348713.25 870.5
3000-100 1602530.9 1977.6 1605083.63 1349.5
500-1000 99196.0 23.6 99196.0 22.4

1000- 220560.9 141.7 220626.563 84.4
1500- 334973.2 387.2 335400.813 218.7
2000- 437690.7 760 438263.0 425.9
2500- 534426.6 1309.4 535134.938 675.3
3000- 643541.8 2081.4 644376.25 1017.3
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(2) The MDAS heuristic enhances the global 
search capability of the DAS heuristic and the 
performance of the MDAS heuristic will be 
improved as the number of seeds increases. 
(3) Although the MDAS heuristic is just a 
heuristic, its performance is better than some state-
of-the-art metaheuristics. (Table 3 and 4) 

The fact that the hybrid multistart heuristic 
outperforms the MDAS heuristic on the second and 
the third groups of the MED benchmark (Table 5) 
indicates that the global search ability of the MDAS 
heuristic is still not good enough for searching a 
large solution space. 

4 CONCLUSIONS 

In this paper, the DAS heuristic and the multistart 
DAS (MDAS) heuristic are proposed to solve the 
UFLP. The DAS heuristic utilizes three operations: 
the Drop operation, the Add operation, and the Swap 
operation. And the MDAS heuristic enhances the 
global search capability of the DAS heuristic by 
applying it multiple times with different initial 
solutions (seeds). Experimental results reveal that 
the MDAS heuristic outperforms other state-of-the-
art heuristics on most of the benchmarks. But the 
global search ability of the MDAS heuristic is still 
not good enough for searching a large solution 
space, therefore, in future studies, we will try to 
combine a global search scheme with the DAS 
heuristic to improve the performance. Also, we plan 
to investigate the possibility of applying the 
proposed heuristic to other combinatorial problems. 
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