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Abstract: This paper presents the architecture development of a Fuzzy Logic Controller (FLC), using combinatorial 
design implemented on a Field Programmable Gate Array (FPGA). This architecture is based on 
combinatorial basic modules that enable to increase and improve the entire system performance, by means 
of replication technique, which is widely used in computer architecture, and help to fit the particular 
application needs. Recent FPGA technology let us use fast combinatorial circuits for complex designs with 
parallelism for increasing the FLC performance and it is possible to take it up again as a practical way to 
build FLC for any process, approaching the fast prototyping advantages and easing the scaling to increase 
the control accuracy. 

1 INTRODUCTION 

A FLC can be implemented in software easily and 
executed in a microprocessor, a microcontroller, or a 
general purpose computer. Though software- based 
FLC are cheaper and flexible, there are some 
difficulties when control systems require high data 
processing. The use of FPGA has been profitable 
when talking about versatility to make any digital 
design by means of costs and design time. In 
principle, the implementation of FLC is not based on 
the mathematic model of the plant, but this kind of 
system is very effective to control a process where 
the transfer function is not known, instead the 
control action is based on the extern influence and 
simple decisions based on a knowledge base 
acquired with experience, the same way a human 
would do it, exploiting the heuristic ability. There 
have been so many FLC implementations since the 
first hardware one appeared (Togai, 1986), which 
used complex designs with sequential circuits 
because of the high hardware resource and delay 
time costs about combinatorial design. A large 
quantity of FLC architectures, derived from 
Computing Architecture. These architectures are 
classified by its processing way. There are 
sequential, combinatorial (Manzoul, 1992), parallel, 
pipelined and mixed models. Some designers prefer  

to implement these operations to calculate a 
parameter of the FLC every time it is necessary 
(Gaona, 2003); this technique is called Runtime 
Computation (RTC). But some designs use extern 
elements like memories, sometimes called Look Up 
Tables (LUT), to calculate FLC parameters by 
anticipation; this another technique is called Look 
Up Computation (LUC) and represents a good way 
to improve the timing (Vasantha, 2005; Singh, 2003; 
Deliparaschos, 2005). It is a dare to play with these 
architectures and techniques to make a balanced 
FLC design, by which it is necessary to change the 
way of designing algorithms to describe a FLC. 

This paper shows a practical approach of FLC 
combinatorial architecture in order to make simple 
construction modules and easy upgrading using a 
reprogrammable device, FPGA. 

 
Figure 1: Fuzzy Logic Controller. 
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2 SYSTEM DESCRIPTION 

Assume ݑ௜ as the inputs to the FLC and ݕ௝ as the 
outputs. Figure 1 shows a FLC which consists of 
three basic stages: Fuzzification, Inference Machine 
and Defuzzification. The Fuzzification stage consists 
of fuzzy sets.  Each fuzzy set converts every crisp 
input into several fuzzy values or membership 
values. The Inference Machine contains the 
behaviour of the FLC and it is built with MIN- 
MAX modules. These rules have simple inferences 
of the type IF- THEN. Also, the Defuzzification 
stage converts these inferred values onto crisp 
values, by means of statistical calculations, which 
represent the control action over the actuator. The 
next steps are required for build a FLC (Tellez, 
2008): 

1. Establish whatever the designer want to 
control and which variables will be related 
to get it. 

2. Define the number of inputs and outputs of 
the FLC based on the last step. 

3. Define the number of membership 
functions or fuzzy sets for each input and 
output based on the last step and define 
their shape based on the process 
characteristics and operation range of the 
FLC (discourse universe). 

4. Set the FLC configuration by means of the 
fuzzy inference rules according to the 
wished operation and based on the expert 
knowledge about the process. 

5. Build the fuzzifier with simple membership 
functions simply by replication 
(trapezoidal, triangular, S, Z). 

6. Build the inference machine based on step 
4, by means of MIN- MAX modules using 
the building steps shown in section 2.2. 

7. Once inference machine is ready, build the 
defuzzification stage by means of 
multiplication and division modules using 
parallelism. 

8. Finally, FLC can be implemented on 
FPGA. 

 
For the FLC implementation it was used VHDL, 

Xilinx ISE 6.3i, Mentor Graphics Modelsim Xilinx 
Edition III 6.0a. It is used Xilinx Spartan 3 
XC3S200–5FT256 FPGA Starter Kit. In order to 
verify the FLC performance, it was necessary to  
make a simulation using the Fuzzy Toolbox of  
MATLAB and build a control system with 
SIMULINK. 

 
Figure 2: Isosceles triangular membership function shape. 

 
Figure 3: Several hardware suitable membership 
functions. 

2.1 Fuzzification 

The fuzzification stage comprises a set of fuzzifiers 
attached to every input variable; each one parallel 
from the others and their performance does not 
depend on the others either. We assume that all 
membership functions shape will be triangular, 
trapezoidal, S and Z, because they are the easiest to 
implement in hardware as shown in the Figure 2. 
These modules convert a crisp digital value into a 
membership digital value, according to two 
parameters: the CENTER and the APERTURE. 
These two parameters of the membership functions 
accomplish the RTC technique in order to make the 
online adaptation and the FLC tuning.  

These functions may have several shapes as 
shown in Figure 3 and the interconnection seems 
like it follows in Figure 4. Next section describes the 
inference machine construction according to a set of 
steps using Mamdani operation. 

 
Figure 4: Fuzzifier. 
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Figure 5: MIN- MAX modules. 

 
Figure 6: Inference machine stage construction. 

2.2 Inference Machine 

Let us define a premise as the input data involved 
with the control, it means that an involved input will 
be considered to decide which control action will be 
taken. A consequence is a result of the inference, the 
output data of inference machine, it means the 
decision that FLC will take based on the premises. A 
fuzzy rule set is the FLC configuration of the simple 
form: 

…,۲ۼۯ 2 ݁ݏ݅݉݁ݎ݌ ۲ۼۯ 1 ݁ݏ݅݉݁ݎ݌ ۷۴ ,  ݊ ݁ݏ݅݉݁ݎ݌ ۲ۼۯ
…,۲ۼۯ 2 ݍ݁ݏ݊݋ܿ  ۲ۼۯ 1 ݍ݁ݏ݊݋ܿ ۼ۶۳܂ ,  ݉ ݍ݁ݏ݊݋ܿ ۲ۼۯ

A Mamdani inference machine consists of 
MAX-MIN (Figure 5) modules interconnected 
according to the fuzzy rule set  (Patyra, 1996). A 
MAX-MIN structure of an inference machine has 
MIN modules in parallel. Unlike the MAX modules 
are in cascade, as shown in Figure 6. 

2.3 Defuzzification 

This stage obtains a crisp output by means of output 
fuzzy sets, sometimes called Centroid method. The 
calculation of the centroid is made using the 
membership values ߤ௜ሺݑଵ, ,ଶݑ … ,  ௡ሻ, obtained fromݑ
the inference engine, and the output fuzzy set 
centers ܾ௜

௤. It is often considered as singleton 
membership function, because of its computational 
simplicity and because this statistical calculation is 
independent of the output fuzzy set shapes.  

௤ݕ
௖௥௜௦௣ ൌ

∑ ܾ௜
௤ߤ௜ሺݑଵ, ,ଶݑ … , ௡ሻோݑ

௜ୀଵ
∑ ,ଵݑ௜ሺߤ ,ଶݑ … , ௡ሻோݑ
௜ୀଵ

 (1) 

This defuzzifier needs a division calculation, as 
seen in the Equation 1, which results 
computationally expensive when trying to divide 2ܾ 
bits multiplication result numbers, which is not 
practical neither cheap computationally. In order to 
avoid the ܾ ൈ ܾ multiplication before the division, so 
part of Equation 1 was implemented this way: 

௜ߪ ൌ
ܾ௜
௤

∑ ,ଵݑ௜ሺߤ ,ଶݑ … , ௡ሻோݑ
௜ୀଵ

 (2) 

Then, the result σ୧ (Equation 2) is multiplied by 
every membership value obtained from the inference 
machine. To get this, it was needed to implement a 
combinatorial non-restoring division (Oberman, 
1997) modified to obtain a fixed point 2b bits 
quotient, because σ୧ ൏ 1, as shown in Figure 7.  

3 IMPLEMENTATION AND 
VERIFICATION 

As example of application, a FLC for a DC servo is 
implemented, as mentioned above, in order to verify 
the correct performance of the FLC. 

 
Figure 7: Defuzzification stage. 
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The control system was built in MATLAB Fuzzy 
Toolbox first, creating a fuzzy inference system by 
software (FIS). As an example, suppose that we 
want to implement a 2×1 fuzzy system for a DC 
servo, which uses nine rules because it has three 
fuzzy sets per input (position error eP: NE, ZE, PE. 
position error change velocity cP: NC, ZC, PC) and 
output (voltage <volts>- V: NV, ZV, PV), shown in 
the Figure 7, which are the following: 
IF eP  is NE AND cP  is NC THEN V  is NV 
IF eP  is NE AND cP  is ZC THEN V  is NV 
IF eP  is NE AND cP  is PC THEN V  is NV 
IF eP  is ZE AND cP  is NC THEN V  is NV 
IF eP  is ZE AND cP  is ZC THEN V  is ZV 
IF eP  is ZE AND cP  is PC THEN V  is PV 
IF eP  is PE AND cP  is NC THEN V  is PV 
IF eP  is PE AND cP  is ZC THEN V  is PV 
IF eP  is PE AND cP  is PC THEN V  is PV 

Then, it was provided a test bench which 
consists of 25 values and describes several input 
situations but due to space it is not explained in this 
paper. Also, FLC tuning was made changing the 
membership function parameters of inputs and 
outputs. Table 1 shows all timing and resources in 
FPGA used for every implemented module built for 
DC servo FLC example. DC servo FLC needs 84 ns 
to make a single inference. Then, its processing data 
rate is 11.9 MFLIPS.  

4 CONCLUSIONS 

FLC architecture was designed using RTC 
combinatorial arithmetic modules. In order to get 
this, it was supplied to designer a practical approach 
for FLC design, using a study case (DC servo). 
Those developed modules were implemented in 
FPGA and it was possible to verify the FLC 
performance compared with the FIS simulated with 
MATLAB. We proved that this architecture has the 
capability of grow modularly. This modularity may 
be approached using a FIS to VHD language 
interpreter that simply generates the proper HDL 
program, using the basic modules presented in this 
paper, regardless the used technology, based on the 
MATLAB *.fis configuration file. 
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Table 1: FPGA timing and resource results obtained for 
DC servo control. 

Algorithm Delay (ns) LUT
16 bits non-restoring division 48.50 644 
Modified 8 bits non-restoring 
division 28.83 208 

8 bits restoring division 28.84 124 
8 bits multiplication 13.17 36 

Isosceles triangle MF 36.70 
14.51 251 

S-step MF 36.70 249 
Z-step MF 36.70 251 
Fuzzifier 37.42 755 

Defuzzifier 41.49 677 
Mamdani inference machine 19.32 242 

MIN-MAX operations 9.36 16 
FLC 84.01 2689 
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