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Abstract: This article describes a design and features of a multi-core unit for performing computing operations 
required for artificial neural network functioning. Its purpose is to speed up computing operations of the 
neural network. The number of computing cores can be altered as needed to achieve the required 
performance. VHDL language has been used to build this module. It has been optimized for the Spartan-3 
family FPGA chips from Xilinx. These chips are favorable because of their low price and a high number of 
on-chip multipliers and block memory units. Spartan-3 chips facilitate parallel computing operations within 
neural networks to a very high level and thus help to achieve high computing power. 

1 INTRODUCTION 

Artificial neural networks are suitable for various 
tasks, such as pattern recognition, signal processing, 
classification, function approximation, prediction, 
data compression, etc. 

It is possible to apply analog circuits, micro-
controllers, computers, signal processors, and FPGA 
chips of neural networks implementation. Analogue 
neural networks are not used because of their 
implementation complexity and computing 
accuracy. Micro-controllers are cheap and easy to 
use, however, they do not achieve the required 
computing performance. Implementation of a neural 
network in a computer is easy, but it is unsuitable for 
use in industry or as embedded application due to 
the high cost and/or enormous size. 

Signal processors and FPGA chips are suitable 
platforms for the implementation of neural networks. 
Signal processors are easier to use, they can be 
programmed in C language and they are very cheap 
for this purpose. Their disadvantage is that their 
computing power cannot be increased easily due to 
their fixed structure. 

FPGA chips, on the other hand, have the capacity 
to facilitate parallel computing operations at a very 
high level and their structure can be adjusted to 
target application. The programming language used 
for FPGA chips is usually VHDL which is suitable 
for the description of parallel structures and pipe-
line circuits. Application of these techniques allows 

for achieving the maximum computing power and 
speed and thus competes with all remaining 
alternatives of neural networks implementation. 

The unit described in this article takes advantage 
of all benefits of FPGA chips and has been 
optimized for Spartan-3 family from Xilinx. The 
solution provided herein performs parallel 
computing operations and use pipe-line structure. 
The number of computational cores can be adjusted 
as needed. The biggest chip of Spartan-3 family 
(XC3S-5000) can employ up to 100 computational 
cores (Xilinx, 2006). The XC3S-200 chip was 
chosen to carry out the implementation and testing 
of the unit. 

2 THEORETICAL ANALYSIS 

2.1 Artificial Neuron 

Artificial neuron – perceptron (Figure 1) is 
composed of an input vector, synaptic weight vector, 
summation unit, activation function and output. 

Its function is as follows: 
The input vector is multiplied by the weight 

vector. The results are summed up and they compose 
the inner potential of the neuron as depicted in 
Equation 1 (Fausett, 1994). 
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Figure 1: Structure of artificial neuron. 

This value is fed into the activation function. The 
activation function is usually a step function, a 
sigmoid or ramp function; its task is to saturate the 
output value within the set limits, usually between 0 
and 1. 

2.2 Computations Inside Neural 
Network 

Multiplication and summation are the most 
important computations within the neural network. 
These can be carried out using the multiply-
accumulate (MAC) function, however, the chosen 
target chip Spartan-3 does not support this particular 
function. Instead, the MAC operation is replaced by 
sequential multiplication and summation operations. 
Spartan-3 chips include hardware multipliers and the 
summation operations are performed by gates. 

The computation of inner potential of a neuron is 
always performed by one computational block. 
These blocks are in a parallel arrangement which 
increases the data throughput capacity as well as the 
overall computing power of the entire unit. The 
Spartan-3 chips can work up to 375 MHz under ideal 
conditions; however, the actual frequency of 
operation is slightly lower. 

For the activation function, the unipolar sigmoid 
has been chosen (Figure 2) because it is the most 
common function for neural computations. The 
activation function is carried out using interpolation 
from the lookup table. It is possible to add other 
activation functions to the chip or replace the 
unipolar sigmoid by another function, if needed. 

2.3 Format of Data 

The data format for the weight vectors and input 
information transfer and the computational 
operations are the same within the neural network. 
The 18-bit mode is the most suitable width for buses 
employed in the Spartan-3 chips because of the 18- 
bit inputs of the embedded multipliers. The block 

 
Figure 2: Sigmoid activation function. 

memory units can also be adjusted to the 18-bit 
mode. 

The data are represented as a fixed point number 
and are stored in two's complement. The 6 most 
significant bits of the data word represent the integer 
part and the next 12 bits represent the fraction part 
as illustrated in Figure 3 (Suhap, Becerikili, Yazici, 
2006). 
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Figure 3: Format of number representation. 

3 REALIZATION IN FPGA CHIP 

3.1 Circuit Overview 

Figure 4 shows a block diagram of the entire circuit 
for neural network computations. The control logic 
block, neuron computation blocks, and activation 
function are the main parts of the circuit. 

The control logic includes a map of the neural 
network which is the basis of data and commands 
sent out to neuron computation blocks. The selection 
of weight is done by an address sent to the bus 
controlling the memory blocks. Weight coefficients 
are stored in these memory blocks. Each memory 
block can store up to 1,024 weight coefficients. In 
the XC3S-200 chip used for testing the design, up to 
10,240 synapses can be implemented. 

Data coefficients are transmitted on the basis of 
an external requirement and a neural network 
computational status. Either data stored in the 
neuron data memory or data from the input port are 
used. The selected neuron data memory 
configuration allows for storage of 1,024 neuron 
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outputs which means that the unit can handle a 
neural network consisting of up to 1,024 neurons. 

The control logic can also send the following 
commands to the computational blocks: reset, MAC, 
BIAS, send result. Each neuron computation block is 
connected to an individual command bus. By 
separating the command buses of individual 
neurons, it is possible to arrange them in a way so 
that each neuron performs computational operations 
simultaneously at a different layer of the neural 
network. Possibly some of the neuron cores can be 
disconnected by sending only the reset command. 
MAC command together with BIAS command 
calculates the inner potential of the given neuron. 
Once the commands are received by the neuron 
cores, the computational core starts to multiply the 
weight coefficients by data inputs and stores the 
results in the internal register. The send result 
command initiates the transfer of the inner potential 
value to the next register. Subsequently, the neuron 
waits for an impulse to send the data to the 
activation function. 
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Figure 4: Block diagram of a complete unit. 

The output bus of neuron computing blocks is 
shared by all computing blocks because its capacity 
utilization should be the low. When required to send 
the data to the activation function, neurons wait for 
the priority decoder’s impulse. Data are sequentially 
brought from computing blocks to the activation 
function and no internal FIFO buffer implementation 
in necessary. 

After the data pass through the activation 
function, they are stored in the neuron data memory 
- dual port RAM. If needed they are read and sent 
from this memory via the data bus to the computing 

blocks. If the stored data belong to the last neuron 
layer, they are transferred to the unit output. 

3.2 Neuron Computation Block 

The block diagram of a neuron computing block is 
illustrated in the Figure 5. The block is arranged as a 
three stage pipe-line circuit to increase the speed. 
The input data of this block are command, data and 
weight. 

In the first stage, the input data are multiplied 
according to the chosen command, the second stage 
is composed as a summation block. These two 
together implement the MAC function and calculate 
the internal neuron potential. When the send result 
command is received, the internal potential is sent to 
the last pipe-line stage and waits for the impulse to 
be transferred to the activation function. 
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Figure 5: Block diagram of a neuron computation block. 

After receiving the reset command, the internal 
potential is set to zero and the block can start 
computing another neuron regardless of the fact 
whether the result was sent or is waiting in the last 
stage, the result remains in an unchanged state. 

3.3 Activation Function 

Activation function is composed by an interpolated 
lookup table. The activation function circuit 
structure is pipe-line similar to computing block, it 
includes a multiplier and an adder. 

The activation function has only one input which 
is divided into two parts. The upper part (bits 17 .. 9) 
is transferred into two lookup memory units. The 
lookup value for interval offset is stored in one of 
them and gradient of interval in the other. Gradient 
is multiplied by the lower part of the input (bits 8 .. 
0) and is transferred to the summation part. Offset is 
delayed by a one clock period and it is also 
transferred to the summation block. The interpolated 
value of the activation function connected to the 
output is achieved in this way. The activation 
function output is stored in the neuron data memory 
which can be accessed by the control logic. 
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Figure 6: Block diagram of an activation function 
interpolator. 

Since the activation function is realized by a 
lookup table, it is easy to change its shape using 
different coefficients. The circuit function can be 
extended by adding another block with a different 
activation function. For example, the activation 
function for output layer will be a step function if we 
require binary result. 

3.4 Testing of Complete Circuit 

The circuit was described in VHDL language, the 
source code is modular and optimized for the 
Spartan-3 family chips from Xilinx and fully 
synthesizable. Since most of the circuit is arranged 
into pipe-lines, it can work with the clock frequency 
up to 133MHz. 

The target XC3S-200 chip includes 12 blocks of 
RAM and 12 dedicated multipliers. Activation 
function requires at least one block RAM and one 
multiplier. Neuron data memory needs one block 
RAM. For this reason it is possible to implement 10 
computing blocks, needing one block of on-chip 
RAM for storing weight coefficients and one 
multiplier for computing. 

The circuit function was tested on an application 
recognizing hand-written numbers. A network with 
88 neurons in the input layer, 40 neurons in the 
hidden layer and 10 in the output layer was realized. 
The network model and the training algorithm were 
realized in a computer and weight coefficients were 
transferred to weight memory blocks on FPGA chip 
(Masters, 1993). 

Calculation of response of the neural network 
require 88 times 4 clock periods for the hidden layer, 
40 clock periods for the output layer plus latency of 
the activation function of 4 periods. For one 
character recognition, 396 clock cycles were needed. 
At the working frequency of 133 MHz the circuit 
can recognize 336000 numbers per a second. In 
comparison to the single core signal processor which 
would need for such a calculation at least 3920 clock 
cycles, this is an excellent result. 

 

4 CONCLUSIONS 

The neural network function is very demanding 
regarding to the computing power. In the FPGA 
chips, however, it is possible to parallelize the 
calculations very efficiently. The designed circuit 
speeds up the computation for neural network 
approximately 10 times in comparison to signal 
processor. With using the biggest chip XC3S-5000 
from the Spartan-3 family, it would be possible to 
implement up to 100 computing cores into the 
circuit and thus increase the computing power 
theoretically up to 100 times. 

The entire circuit is very modular and allows for 
realization of neural networks in various 
configurations. From very small networks up to 
networks consisting of thousands of neurons and 
hundreds of thousands synapses with a very high 
computing power kept. 

Spartan-3 family chip was chosen for the 
implementation because of its low price and good 
accessibility of development kits. Its disadvantage is 
that it cannot process the MAC command in one 
clock cycle. This problem is solved by higher FPGA 
families, such as Virtex-5 family chips are able to 
process up to 580 Giga MAC per second while their 
computing of MAC command is performed within 
one clock cycle. 
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