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Abstract: The problem of designing gain-scheduled filters with guaranteed indisc@drm for the estimation of the
state-vector of finite dimensional discrete-time parameter-dependent Takagi-Sugeno Fuzzy Systems systems
is considered. The design process applies a lemma which was recently derived by the authors of this paper,
characterizing the induced, norm by Linear Matrix Inequalities. The suggested filter has been successfully
applied to a guidance motivated estimation problem, where it has been compared to an Extended Kalman
Filter.

1 INTRODUCTION response and an upper-bound on thenorm of its
transfer function (see (Dahleh and Pearson, 1987)).

The theory of optimal design of estimators for linear . In thE.’ present paper, j[he 'problem .OT d|scr§te-
time optimal state-estimation in the minimum in-

discrete-time systems in a state-space formulation has

been first established in (Kalman, 1960). The original _(ii_ulc(:edlfg—norm fsense istconsid_?rr]ed l;or ta clzssl, fOf
problem formulation assumed Gaussian white noise akagl-sugeno fuzzy systems. € plant model for

models for both the measurement noise and the eX_the systems considered, is described by a collection

ogenous driving process. For this case, the resulg®f Sample finite-dimensional linear-time-invariant
of (Kalman, 1960) provided the MinimL’Jm-Mean- plants which possess the same structure but differ

Square Estimator (MMSE). The Kalman filter has in their parameters. Al possiblg plgnt models are
found since then many applications (see e.g. (Soren—the.}n assumed to be convex comblnaltlons ofthese spe-
son, 1985) and the references therein). Following the C|f|c'plant m,odels (namely a polytopic system wh«_are
introduction ofHe control theory in (Zames, 1981), the 'sample’ plant models are denoted as its vertices

a method for designing discrete-tirhk, optimal es- E_Boyd eglal., '199h4))' tThe Zoéutlirlcmof tLh_e est:\rxa-
timators within a deterministic framework has been "ON Problém IS characterized by s (Linear Ma-

developed in (Yaesh and Shaked, 1991), where the ex—mx Inte_qua{;;[/les) lia?ﬁdton the quadtrgtlc sl,tablhty tas-f
ogenous signals are of finite energy. The case whereSUMPUon. Vve note that more recent developments o

., : : - ; : Geromel et al., 2000) include gain scheduled filter
the driving signal is of finite energy (e.g. piecewise ( ) ’ .
constant for a finite time) ,whereas the measurementsygthes'ﬁ for th: casest Or “288; (‘(;’uan %t al., 200&1)
noise is white has been recently considered in (Yaeshan non mear_( oang et al., ) dependence on the
and Shaked, 2006). However, in some cases the min-Parameters with paramete_rdependent Lyapunovjunc-
imization of the maximum absolute value of the es- UONS: We also note that in (Salcedo and Martinez,

timation error (namely thé,—norm) rather than the 2008) related results appear where the continuous-

error energy is required where the exogenous signalst'.me fuz_zy output feedback and f|I_ter|ng were con-
are also of finite..—norm. In such cases, an induced sidered in parallel to the discrete-time results of the

{»—norm is obtained which is often referred to as an present paper.
£1 problem due to the fact that the induceg-thorm The paper is organized as follows. In Section 2,
for a linear system is just th@-norm of its impulse  the problem is formulated and a key lemma character-
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izing the induced»—norm in terms of LMIs is pre-

external disturbances and/or time (Tanaka and Wang,

sented. In Section 3 the filter design inequalities are 2001) and rewrite (1) as :

obtained. Section 4 considers a numerical example
dealing with a robust gain scheduled tracking prob-
lem. Finally, Section 5 brings some concluding re-

marks.
Notation:
‘T’ stands for matrix transpositiog " denotes the
n dimensional Euclidean spac&,"™*™ is the set of
all n x m real matrices, and the notatidh> 0, for

P € £ ™" means thaP is symmetric and positive def-
inite. The space of square summable functions over

[0 o] isdenoted by,[0 o], and||.||> stands for the
standard,-norm|Jul|2 = (Zp_,uf uK) 2. We also use
|.]| for the lo-norm namely,|u||2 = sup(uf uk).
The convex hull ofa andb is denoted byco{a, b},
In is the unit matrix of order n, and\& is thenx m
zero matrix andm, is a version ofl, with lastn—m
rows omitted.

2 PROBLEM FORMULATION
AND PRELIMINARIES

We consider the following linear system:
X(k+1) = A(K)x(k) +Bw(k), x(0)=xo
y(k) = C(K)x(k) + Dw(k) 1)
z(k) = L(k)x(k)

wherex € g " is the system stategc % " is the mea-

Throughout the note the superscript

IF 51 is Miz andsp is Mjz and ...sp is Mijp THEN

x(k+1) = A (K)x(K) +Bw(K), x(0) = o
y(K) = Ci(K)x(k) + Diw(k) ©)
z(k) = Li(k)x(k)
i=12,..N
where M;; is the fuzzy set andN is the
number of model rules. Definings(t) =
col{si(t),(t),...,Sp(t) },
wi(st)) = I'lleMi,- (sj(t))
and ©
_ W
M) )

we readily get the representation of (1). We, there-
fore, assume indeed that thpepremise scalar vari-
abless(t),i =12, ..., p, and, consequentlfj are ex-
actly known and consider the following filter:

R(Kk-+1) = AR(K) + K (K)(y — CR), 2(K) = LX(K)

)
where the filter gain is given by the following:
N
K= Z K fi (8)

and whereA = Z A fiandlL = Z Li fi. We will dif-
=1

ferently treat, |n the sequel, the case whens con-

surementw € % 9 includes the driving process and stant and the case wheCe= Z Gifi.

the measurement noise signals and it is assumed to

have bounded.,—norm. The sequences M is the
state combination to be estimated gk, C, D and
L are matrices of the appropriate dimensions.

We assume that the system parameters lie within

the following polytope

Q:=[A B C D L] 2
which is described by its vertices. That is, for
Q:=[A B C D L] 3)
we have
Q=c0o{Q1,Qy,...,Qn} (4)

whereN is the number of vertices. In other words:

N N
Q=S Qaf ,Sfi=1 >0 (5
i; 1 h i; I 1

Assuming thatf; are exactly known, the above sys-
tem is just a Tagaki-Sugeno fuzzy system. To see this,

one may introduce new parametsi$),i=1,2,...,p

Our aim is to find the f||ter parameteks so that
the following induced. —norm condition is satisfied.

SUReto 2= 2] /|| W|eo <y 9)

To solve this problem we will first define another
polytopic system :

Q:=[A B C D] (10)
which is described by the vertices:
Q:=[A B G Di],i=1..N (11

The system of (10)-(11) will represent, in the sequel,
the dynamics of the estimation error for the system
(1). The following technical lemma will be needed

in order to provide convex characterization of the in-
ducedl,— norm of the estimation error system:

Lemma 1. The system

X(k+1) = A(K)X(K) + Bw(K),
2(k) = C(K)x(K) + DW(K)

X(0) = %o (12)

(so called premise variables, see (Tanaka and Wang satisfies

2001)) possibly depending on the state-veot@s,
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if the following matrix inequalities are satisfied for and

i=212,..N: AP 0 |_iT
ATPA _ AT PR 0 (y—=wl 0 | >0 A<1 (22)
ATPALAP-P  ATPB _
[ N A L 0

and We, therefore, obtain the following result:

AP 0 C;T Theorem 1. Consider the estimator of (12) for the
0 (y—wl Df |>0 (15)  system of (1) withCi =C,D; = D,i = 1,2,...,N. The
estimation error satisfies (9) if (21) and (22) are satis-

G Dj i
so thatP > 0, i > 0 andA < 1. fied fori =1,2,...,Nso that? > 0, > 0 andA < 1.

The proof of this lemma is given in (Shaked and ~ We next address the problem wh@eandD are

Yaesh, 2007) and is also provided, for the sake of vertex dependent. To this end we consider a version
completeness, in Appendix A. of Lemma 1 which can be written in termsQfrather

thanQ;, namely we replace (16) and (14) by:

Remark. Note that (14) can be written, using

Schur complements ((Boyd et al., 1994)), as follows: P-AP 0 AP
0O u B'P|>0 (23)
P-AP 0 AP PA PB P
0 u BP|>0 (16)  and 3
PA PB P AP 0 cr
or equivalently as g (V—DJJ)| [\)/IT >0 (24)
P-AP 0 Al = —~
0 ul '%T S0 17) and substitute A = z{j‘jfl(A@ — KiC)fif;,Bi =
A_xi B_I p-1 Ei’\,l'=1(Bi —KiDj)fifj andC = Z|N=1 Lifi. We obtain
_ _ de*iningYi =PK;:
The fact that the inequality (16) is affine & andB; N
will be utilized in the sequel to obtain convex charac- Z Gijfif;>0 (25)
terization (i.e. in LMI form) of the filter parameters i=1
Ki. where
P—AP 0 A,-TP—ClTrYiT
Gij == 0 pl B'P—DJY!
3 GAIN SCHEDULED FILTERING PA—YC, PB -YD, =
26
Defining the state estimation error to be: and (26)
T
e(k) = x(k) — %(k 18 N | AP0 L
(k) = x(K) — X(K) (18) S0 w5 (10 @
we readily have for the case whefieare available for =1 Ly 0 vl
the estimation process, that Since, however (see (Tanaka and Wang, 2001))
e(k+1) = (A— K(K)C)e(k) + (B— K (K)D)w(k) equation (25) can be also written as
(19) N N N G +Gii
and z Gij fi fj :_ZlGii fi2+2.zl.z 7”42_ Jlfi fj
z(k) — 2(k) = Le(k) (20) ij=1 i= i=1i<]

oo - (28)
_ We substitutes = A —KiC, Bi = Bi—KiD and  pefining a simple transformation of the convex co-
C =L in (14) and (15) where we restrict our attention ordinatesfy so that fork = 1,2, ...,N we seth, = sz
to the case wher€ andD are not vertex dependent \yhere as the remainirig fork=N-+1,N+2,...,N+

(ie. G =C,D;=D,i=1,2,...,N). Inthis case, we  N(N-1) are defined by = 2f f;, j = 1,2....N,i < |.

defineY; = PK; and readily obtain from (16) and (15) 2

N(N—1)

that Since obviousl;gtl_z_ hq = 1 wherehy > 0 they
P_\P 0 ATP_CTYT can serve as convex coordinates. We, therefore, define
0 ul BTP_ DW{T -0 the following LMIs inspired by (Tanaka and Wang,
1 |
PA—YC PB-YD P 2001),
(21) Gji >0,i=1,2,..NandGj;+Gj >0,i<j (29)
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and obtain the following result: &% = veos( ) +wi
Theorem 2. Consider the estimator (12) for the § = vsin({) +wo
system (1). The estimation error satisfies (9) if (29) 0= (31)
and (22) fori = 1,2,...,N are satisfied so th& > 0, ip: —@/THu/T
p>0andi < 1.

wherex'andy are the first two coordinates of a flight
vehicle cruising in a constant altitude, in a local level
north-east-down systent)) is the vehicle body an-
gle with respect to the north (i.e. azimuth angle)
and @ is the vehicle’s roll angle assumed to be gov-
erned by a first-order low-pass filter dynamics hav-
ing a time-constant of seconds, driven by the roll-

The solution offered above, for the case whére
andD are uncertain and are known to reside in a given
polytope, seeks a single matrix P that solves the LMIs
for M vertices, instead of thd vertices that were
solved for in the case of know@ andD. A solu-
tion for such large number of vertices by a sin§le
entails a significant overdesign. Even the relaxation

angle command. The wind velocities at the north
offered by e.g. (Shaked, 2003) to redug&tﬂ? overde—and east directions respectively are denotedpgnd

sign by allowing differen®,i = 1,2,..., === for w> Whereaw is the true-air-speed. Our aim is to filter
the w vertices still suffers from a considerable the noisy measurementsxfyand@ and to estimate
conservatism. Moreover, the computational complex- {. Defining,

ity of the solution also rapidly increases as a function o

o¥the number of vertices? g x= col{X ¥, vsin({), vcos ), o}

In many cases; resides in some uncertainty poly- the measurements vector which consists of noisy
tope, whileD is fixed and known. In such a case, an measurements of the position componmﬁady”and
alternative way to deal with the problem is to define the roll anglepis given by
&(k) = col{x(k), y(k)} andwik) = col{w(k), w(k+
1)}so that the augmented system becomes: y=Cx+RY%

(K)x(K) + B(k) wherev is the measurement noise which is taken in

~ ., the simulations in the sequel as a 3-vector of zero-
mean unity variance white noise sequences but for all

2(k) = L(K)E(K) practical purposes is assumed toke (... The noise
where level is set by
~ A O = B O =
&s {CA o} 4= [CB D}’ C=[0 K], R= diag{25,25,0.1}
[=[L 0],andb=[D 0] and the measurement matrix is

_ @0 10000
In (30) the uncertainties appearAnandB only and, cC=/01 000
therefore, Theorem 1 above may be invoked. We, 00 00 1

therefore, obtain the following result which offers
reduced conservatism with respect the correspond-Note that

ing continuous-time results of (Salcedo and Martinez, X1 =X
. X2 =X3
2008): ;
. . X3 = XaXs5 (32)
Theorem 3. Consider the estimator of (12) for the X4 = —X3X5
system of (1) foD; = D,i =1,2,...,N. The estima- X5 = —X5/T+U/T

tion error satisfies (9) witly replaced byy/2y if (21)
and (22) are satisfied for=1,2,...,N so thatP > 0,
g >0 andA < 1 with A,B,C, L replaced byA, B,C, L
of (30).

namely we have a bilinear system rather than a lin-
ear one. Following (Tanaka and Wang, 2001) with
a series of simple manipulations, this system can be
represented as a Takagi-Sugeno fuzzy system, namely
as a convex combination of linear systems where the
convex coordinates are online measured. To achieve
4 EXAMPLE such a representation we recall thgt= @ is mea-
sured on line, and defing = x5 while neglecting
We consider the dynamic model of guidance in a the small enough noise in measuripg The valid-
plane: ity of the latter assumption will be verified in the se-

quel by the estimation quality we will obtain. Assum-
S1—S1,min

iNg X5 € [—@max Pmax] We definef; = S S =
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—stwrfxv fo=1—f1, d1 = @maxandaz = —@max. We Y = Yo were obtained:
readily see that; = @naxf1 — @maxf2 := a1 f1 +axfo. 0.7574 —0.0007 00000
We note then that the system is then governed by _0.0018 07593 00000
& = Ac(§)& + Bow whereg = col{x1, X2, X3, Xa, X5} and Ky= | 00000 Q0000 Q0000
0.0000 —0.0000 Q0000
0 0 0 1 0
00 1 O 0 —0.0000 —0.0000 Q0003
A= 0 0 0 s 0 0.7558 —0.0024 00000
0 0 - O 0 —0.0021 07613 —0.0000
00 0 0 -1 K,= | —0.0000 00000 —0.0000
Therefore,Ac = Ac101 + Ac202 whereAq1 is ob- _0008(())(())0 88888 88882

tained fromA¢ by replacings; by a; andAc is sim-
ilarly obtained fromA¢ by replacings; by a,. We This /. filter will be compared to an Extended
also definew = col{wi,w>,v1,V2,v3} and complete Kalman Filter (EKF, see (Jazwinsky, 1970)) based on
the remaining matrices needed for the representationthe nonlinear model of (31). Note that higher com-
of our problem (1)-(3) by applying a zero-order-hold plexity filters such as the particle filter (e.g. (Osh-
discrete-time equivalent of our continuous-time sys- man and Carmi, 2006) are out the scope of the
tem, where we have chosen a sampling timé ef present paper. For the simulations we take-

0.02. Due to the small enoudghwe have chosen, we
havee®" = | + Ah+4 O(h?) and we, therefore, readily
obtain that the system is governed by (1) and (3)-(5)
whereA = Aja1 + Axa, + O(h?) where

1.0000 -0.0002 Q0200 0
0 10000 00200 00002 0
A= 0 0 09998 00209 0
0 0 —0.0209 09998 0
0 0 0 0 09231
1.0000 0 00002 Q0200 0
0 10000 00200 -0.0002 0
A= 0 0 09998 -0.0209 0
0 0 00209 09998 0
0 0 0 09231
02000 0 0 0 O
02000 0 O O
Bi=B,=B= o 0 00O
0 0 0 0 O
0 0 0 0 O
and
0 0 22361 0 0
Di=D,=D=| 0 0 0 22361 0
0 0 0 0 01000
We note at his point that, in order to mini-

mize the design conservatism stemming from the
quadratic stability assumption, we applied a pa-
rameter dependent Lyapunov function (Boyd et al.,
1994), maxx" Pix,x" P>x). Minimization of y sub-
ject the the LMis that are obtained with this func-
tion to replace (21) and (22) (see Appendix B), us-
ing fminsearch.mfrom the optimization toolbox of
MATLAB™ and (Lagarias et al., 1998) to search
Ai, 1 =1,2,3,4, p1, p22, 61 andB,, has resulted in
Y= Yo = 102732 and\ = 2.41x 10~’. The follow-
ing gain matrice¥; andK, have been obtained for

100m/s and try to control the vehicle to follow a
constant command at = 5m, in spite of a wind
step atw, of 10m/s. The estimation results are
used to control the vehicle, using the simple law

—[0.0200 40000][ y-5 @ ]" where all
components of the initial state-vector are taken as
zero, besideyp = 20m. The EKF and the,, esti-
matedx— ¥ trajectory results are compared in Fig. 1
to the true trajectory. One can notice the bias in the
EKF estimate. In Fig. 2, the trup and the estimated
values for() that are obtained by using the EKF and
the /. filter are depicted. We clearly see in this figure
that the/., filter outperforms the EKF which assumes
a white noisew, but leads to a bias when, has a
bias. In contrast, th estimate of the/s, filter is
barely separable from the true values. Moreover, the
o, filter does not require the on-line numerical solu-
tion of a Riccati equation of order 4 and the gains are
obtained there by a simple convex interpolatiorikagn
andK,. The fact thatK; and Ky are close to each
other is somewhat surprising. Our experience shows
that for a largely (i.e. suboptimal values), a larger
||K1— K2|| is obtained.

5 CONCLUSIONS

The problem of designing robust gain-scheduled fil-
ters with guaranteed inducéd—norm has been con-
sidered. The solution has been derived using a re-
cently developed bounded-real-lemma like condition
for bounding the induced, norm of a system. This
result has been applied to derive the robust induced
L—filter (or equivalently robust; filter) in terms of
LMIs. These LMIs have been applied to a guidance
motivated estimation example. In this example, the
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Collecting terms we have

&k =X} (ATPA+ AP — P)x + ] (AT PB)w

+W (BTPA)X + W (—pl + BT PB)w.
Therefore, (14) guaranteé&g < 0 for all wy andx.
Defining {x = XIPXk and assumingg = 0 and
Wy Wi < 1 we have thay 1 — i+ Ak — Pw wi < 0.
Namely, {x < {x whereQy1 = (1 — A)Zk -+ Mg W.
However, using := 1 — A we have
= S ki T 1 1 T
k=S P Wi wy =p S () wj wj
J;) j > j

J:

Al

From (15) we have using Schur complements that

w8 S| S ]re ol ]so
Namely,

221 < Y (Y~ W Wi+ A PY < Y{(y— ) +AT] A 2
Substituting A.1 we readily see that

1—pX

BV 0K
1_p = My—K+H=1p].

2 2 <Y(y— 1)+ (1—p)p
Since 0< p < 1 we obtain that

2z <Yly—ut+H=y-

APPENDIX B - PARAMETER
DEPENDENT RESULTS

In order to reduce conservatism, we replace in the
proof of Lemma 1 in Appendix A, the parameter-

independent Lyapunov functiovi(x,P) = xIka by

the parameter-dependent Lyapunov function ((Boyd

etal., 1994)V (x,P1, P2) = maxx] Pix, Xf Pox). To
ensure/ (g, P1,P») > 0 we have to satisfyl Pix¢ >0

whenevex] Pix > X! Poxc andx! Poxc > 0 whenever
XFPixc < X! Poxe. Applying the S-procedure (Boyd
et al., 1994) we readily obtain that a sufficient condi-
tion or these requirements to hold, is the existence of

constantg; > 0 andp, > 0 so that
P]_ — pl(Pl — Pz) >0 ansz — pz(Pz — P]_) > 0.
We also require that i} Pix > x} P then

g = X (ATPLA+ APy — P)x + X! (AT P1B)w
+Wi (BT PLA) X+ W (—pil + BT P1B)wi < 0,

- OPTIMAL GAIN-SCHEDULED FILTERING OF TAKAGI-SUGENO FUZZY SYSTEMS

and ifxf Pox > xT Pix then

Eiz}’A = XMRT Fiz/&-f— AP, — Pz)Xk + XI (ET PzB_)Wk
+w (BT PA) X + W (—pl + BTP,B)w < 0.

Since these conditions are required to be satisfied
throughout the polytope, we readily obtain, using
again the S-procedure, that in addition to the con-
stantA > 0, the existence of six additional constants
Ai>0,i=1,23,4, 01 >0, 6, > 0 establishes a suf-
ficient condition for the above inequalities to hold, if

—Eil}’Ai —)\1(P1 — Pz) >0,i=12
and —
—Eil}’Ai —A2(P,—P1)>0,i=12

Following the lines of proof of Theorem 1 above, we
readily obtain the following LMIs foii = 1,2 to re-
place (21) and (22):

PL—AP—\i(PL—P,) 0 AjIPl—CTYiT
0 ul B'PL—-DTYT | >0,
PIA —YiC PBi—YD P
APL—0(PL—P) 0 L
0 (y=mwl 0 | >0, A<1
Li 0 yl
and
Po—AP—\i 2(P2—Pp) 0 AJTFFPZ—CTYiT
0 ul B'P,—-DTYT | >0,
P2A —YiC PB;i—YD P2
AP2 —82(P, —Py) 0 L
0 (y=w! 0 [>0, A<l
Li 0 yl

We note that we have also replaced (A.2) with:
2 2 < Y[(Y— W)W Wk Max(xg Prxic, X Poxy))-
Namely, ifx" Pix > x" Px we require
24 2 < Y{(Y— H)wig Wi+ Axg Pux],
whereas ix" Pox > x" Pix we require
2k 2 < V(Y — H)Wig Wic + Ax Pox.

Using again thes-Procedure with additional tuning
constant®; > 0 andB, > 0, which add up to the pre-
viously introduced 7 tuning constargg > 0, p2 > 0,

A >0 andA; > 0,i = 1,2,3,4 the above results are
obtained. Note that a similar approach can be applied
also on the continuous-time results of (Salcedo and
Martinez, 2008) to reduce conservatism.
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