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Abstract: The problem of designing gain-scheduled filters with guaranteed inducedℓ∞ norm for the estimation of the
state-vector of finite dimensional discrete-time parameter-dependent Takagi-Sugeno Fuzzy Systems systems
is considered. The design process applies a lemma which was recently derived by the authors of this paper,
characterizing the inducedℓ∞ norm by Linear Matrix Inequalities. The suggested filter has been successfully
applied to a guidance motivated estimation problem, where it has been compared to an Extended Kalman
Filter.

1 INTRODUCTION

The theory of optimal design of estimators for linear
discrete-time systems in a state-space formulation has
been first established in (Kalman, 1960). The original
problem formulation assumed Gaussian white noise
models for both the measurement noise and the ex-
ogenous driving process. For this case, the results
of (Kalman, 1960) provided the Minimum-Mean-
Square Estimator (MMSE). The Kalman filter has
found since then many applications (see e.g. (Soren-
son, 1985) and the references therein). Following the
introduction ofH∞ control theory in (Zames, 1981),
a method for designing discrete-timeH∞ optimal es-
timators within a deterministic framework has been
developed in (Yaesh and Shaked, 1991), where the ex-
ogenous signals are of finite energy. The case where
the driving signal is of finite energy (e.g. piecewise
constant for a finite time) ,whereas the measurement
noise is white has been recently considered in (Yaesh
and Shaked, 2006). However, in some cases the min-
imization of the maximum absolute value of the es-
timation error (namely theℓ∞−norm) rather than the
error energy is required where the exogenous signals
are also of finiteℓ∞−norm. In such cases, an induced
ℓ∞−norm is obtained which is often referred to as an
ℓ1 problem due to the fact that the induced-ℓ∞−norm
for a linear system is just theℓ1-norm of its impulse

response and an upper-bound on theℓ1-norm of its
transfer function (see (Dahleh and Pearson, 1987)).

In the present paper, the problem of discrete-
time optimal state-estimation in the minimum in-
ducedℓ∞−norm sense is considered for a class of
Takagi-Sugeno fuzzy systems. The plant model for
the systems considered, is described by a collection
of ’sample’ finite-dimensional linear-time-invariant
plants which possess the same structure but differ
in their parameters. All possible plant models are
then assumed to be convex combinations of these spe-
cific plant models (namely a polytopic system where
the ’sample’ plant models are denoted as its vertices
(Boyd et al., 1994)). The solution of the estima-
tion problem is characterized by LMIs (Linear Ma-
trix Inequalities) based on the quadratic stability as-
sumption. We note that more recent developments of
(Geromel et al., 2000) include gain scheduled filter
synthesis for the cases of linear (Tuan et al., 2001)
and nonlinear (Hoang et al., 2003) dependence on the
parameters with parameter dependent Lyapunov func-
tions. We also note that in (Salcedo and Martinez,
2008) related results appear where the continuous-
time fuzzy output feedback and filtering were con-
sidered in parallel to the discrete-time results of the
present paper.

The paper is organized as follows. In Section 2,
the problem is formulated and a key lemma character-
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izing the inducedℓ∞−norm in terms of LMIs is pre-
sented. In Section 3 the filter design inequalities are
obtained. Section 4 considers a numerical example
dealing with a robust gain scheduled tracking prob-
lem. Finally, Section 5 brings some concluding re-
marks.

Notation: Throughout the note the superscript
‘T ’ stands for matrix transposition,R n denotes the
n dimensional Euclidean space,R n×m is the set of
all n×m real matrices, and the notationP> 0, for
P∈ R n×n means thatP is symmetric and positive def-
inite. The space of square summable functions over
[0 ∞] is denoted byl2[0 ∞], and||.||2 stands for the
standardl2-norm,||u||2 = (Σ∞

k=0uT
k uk)

1/2. We also use
||.||∞ for the l∞-norm namely,||u||2∞ = supk(uT

k uk).
The convex hull ofa andb is denoted byC o{a, b},
In is the unit matrix of order n, and 0n,m is then×m
zero matrix andIm,n is a version ofIn with lastn−m
rows omitted.

2 PROBLEM FORMULATION
AND PRELIMINARIES

We consider the following linear system:

x(k+1) = A(k)x(k)+Bw(k), x(0) = x0
y(k) =C(k)x(k)+Dw(k)
z(k) = L(k)x(k)

(1)

wherex∈ R n is the system states,y∈ R r is the mea-
surement,w ∈ R q includes the driving process and
the measurement noise signals and it is assumed to
have boundedℓ∞−norm. The sequencez∈ R m is the
state combination to be estimated andA, B, C, D and
L are matrices of the appropriate dimensions.

We assume that the system parameters lie within
the following polytope

Ω :=
[

A B C D L
]

(2)

which is described by its vertices. That is, for

Ωi :=
[

Ai Bi Ci Di Li
]

(3)

we have
Ω = C o{Ω1,Ω2, ...,ΩN} (4)

whereN is the number of vertices. In other words:

Ω =
N

∑
i=1

Ωi fi ,
N

∑
i=1

fi = 1 , fi ≥ 0. (5)

Assuming thatfi are exactly known, the above sys-
tem is just a Tagaki-Sugeno fuzzy system. To see this,
one may introduce new parameterssi(t), i = 1,2, ..., p
(so called premise variables, see (Tanaka and Wang,
2001)) possibly depending on the state-vectorx(t),

external disturbances and/or time (Tanaka and Wang,
2001) and rewrite (1) as :

IF s1 is Mi1 ands2 is Mi2 and ...sp is Mip THEN

x(k+1) = Ai(k)x(k)+Biw(k), x(0) = x0
y(k) =Ci(k)x(k)+Diw(k)
z(k) = Li(k)x(k)
i = 1,2, ...,N

(6)

where Mi j is the fuzzy set andN is the
number of model rules. Definings(t) =
col{s1(t),s2(t), ...,sp(t)},

ωi(s(t)) = Πp
j=1Mi j (sj(t))

and

fi(s(t)) =
ωi(t)

ΣN
i=1ωi(s(t))

we readily get the representation of (1). We, there-
fore, assume indeed that thep premise scalar vari-
ablessi(t), i = 1,2, ..., p, and, consequentlyfi are ex-
actly known and consider the following filter:

x̂(k+1) = Ax̂(k)+K(k)(y−Cx̂), ẑ(k) = Lx̂(k)
(7)

where the filter gain is given by the following:

K =
N

∑
i=1

Ki fi (8)

and whereA=
N
∑

i=1
Ai fi andL =

N
∑

i=1
Li fi . We will dif-

ferently treat, in the sequel, the case whereC is con-

stant and the case whereC=
N
∑

i=1
Ci fi .

Our aim is to find the filter parametersKi so that
the following inducedℓ∞−norm condition is satisfied.

supw∈ℓ∞ ||z− ẑ||∞/||w||∞ < γ (9)

To solve this problem we will first define another
polytopic system :

Ω̄ :=
[

Ā B̄ C̄ D̄
]

(10)

which is described by the vertices:

Ω̄i :=
[

Āi B̄i C̄i D̄i
]
, i = 1, ...,N (11)

The system of (10)-(11) will represent, in the sequel,
the dynamics of the estimation error for the system
(1). The following technical lemma will be needed
in order to provide convex characterization of the in-
ducedℓ∞− norm of the estimation error system:

Lemma 1. The system

x̄(k+1) = Ā(k)x̄(k)+ B̄w(k), x(0) = x0
z(k) = C̄(k)x̄(k)+ D̄w̄(k)

(12)

satisfies
supw∈ℓ∞ ||z||∞/||w||∞ < γ (13)
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if the following matrix inequalities are satisfied for
i = 1,2, ...,N:

[
ĀT

i PĀi +λP−P ĀT
i PB̄i

B̄T
i PĀi −µI+ B̄T

i PB̄i

]
< 0 (14)

and 


λP 0 C̄T
i

0 (γ−µ)I D̄T
i

C̄i D̄i γI


> 0 (15)

so thatP> 0, µ> 0 andλ < 1.
The proof of this lemma is given in (Shaked and

Yaesh, 2007) and is also provided, for the sake of
completeness, in Appendix A.

Remark. Note that (14) can be written, using
Schur complements ((Boyd et al., 1994)), as follows:




P−λP 0 ĀT
i P

0 µI B̄T
i P

PĀi PB̄i P


> 0 (16)

or equivalently as



P−λP 0 ĀT
i

0 µI B̄T
i

Āi B̄i P−1


> 0 (17)

The fact that the inequality (16) is affine in̄Ai andB̄i
will be utilized in the sequel to obtain convex charac-
terization (i.e. in LMI form) of the filter parameters
Ki .

3 GAIN SCHEDULED FILTERING

Defining the state estimation error to be:

e(k) = x(k)− x̂(k) (18)

we readily have for the case wherefi are available for
the estimation process, that

e(k+1) = (A−K(k)C)e(k)+ (B−K(k)D)w(k)
(19)

and
z(k)− ẑ(k) = Le(k) (20)

We substituteĀi = Ai −KiC, B̄i = Bi −KiD and
C̄= Li in (14) and (15) where we restrict our attention
to the case whereC andD are not vertex dependent
(i.e. Ci = C,Di = D, i = 1,2, ...,N). In this case, we
defineYi = PKi and readily obtain from (16) and (15)
that




P−λP 0 AT
i P−CTYT

i
0 µI BT

i P−DTYT
i

PAi −YiC PBi −YiD P


> 0

(21)

and 


λP 0 LT
i

0 (γ−µ)I 0
Li 0 γI


> 0, λ < 1 (22)

We, therefore, obtain the following result:

Theorem 1. Consider the estimator of (12) for the
system of (1) withCi =C,Di = D, i = 1,2, ...,N. The
estimation error satisfies (9) if (21) and (22) are satis-
fied for i = 1,2, ...,N so thatP> 0, µ> 0 andλ < 1.

We next address the problem whereC andD are
vertex dependent. To this end we consider a version
of Lemma 1 which can be written in terms ofΩ rather
thanΩi , namely we replace (16) and (14) by:




P−λP 0 ĀTP
0 µI B̄TP

PĀ PB̄ P


> 0 (23)

and 


λP 0 C̄T

0 (γ−µ)I D̄T

C̄ D̄ γI


> 0 (24)

and substitute Ā = ∑N
i, j=1(Ai − KiCj ) fi f j , B̄i =

∑N
i, j=1(Bi −KiD j) fi f j andC̄ = ∑N

i=1Li fi . We obtain
definingYi = PKi :

N

∑
i, j=1

Gi j fi f j > 0 (25)

where

Gi j :=




P−λP 0 AT
i P−CT

j YT
i

0 µI BT
i P−DT

j Y
T
i

PAi −YiCj PBi −YiD j P




(26)
and

N

∑
i=1




λP 0 LT
i

0 (γ−µ)I 0
Li 0 γI


 fi > 0 (27)

Since, however (see (Tanaka and Wang, 2001))
equation (25) can be also written as

N

∑
i, j=1

Gi j fi f j =
N

∑
i=1

Gii f 2
i +2

N

∑
i=1

∑
i< j

Gi j +G j i

2
fi f j

(28)
Defining a simple transformation of the convex co-
ordinatesfk so that fork = 1,2, ...,N we sethk = f 2

k
where as the remaininghk for k=N+1,N+2, ...,N+
N(N−1)

2 are defined byhk = 2 fi f j , j = 1,2...,N, i < j.

Since obviously∑
N+

N(N−1)
2

k=1 hk = 1 wherehk ≥ 0 they
can serve as convex coordinates. We, therefore, define
the following LMIs inspired by (Tanaka and Wang,
2001),

Gii > 0, i = 1,2, ...N andGi j +G ji > 0, i < j (29)
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and obtain the following result:
Theorem 2. Consider the estimator (12) for the

system (1). The estimation error satisfies (9) if (29)
and (22) fori = 1,2, ...,N are satisfied so thatP> 0,
µ> 0 andλ < 1.

The solution offered above, for the case whereC
andD are uncertain and are known to reside in a given
polytope, seeks a single matrix P that solves the LMIs
for N(N+1)

2 vertices, instead of theN vertices that were
solved for in the case of knownC and D. A solu-
tion for such large number of vertices by a singleP
entails a significant overdesign. Even the relaxation
offered by e.g. (Shaked, 2003) to reduce the overde-
sign by allowing differentPi, i = 1,2, ..., N(N+1)

2 for

the N(N+1)
2 vertices still suffers from a considerable

conservatism. Moreover, the computational complex-
ity of the solution also rapidly increases as a function
of the number of vertices.

In many cases,C resides in some uncertainty poly-
tope, whileD is fixed and known. In such a case, an
alternative way to deal with the problem is to define
ξ(k) = col{x(k), y(k)} andw̃(k) = col{w(k), w(k+
1)}so that the augmented system becomes:

ξ(k+1) = Ã(k)x(k)+ B̃w̃(k)

y(k) = C̃(k)ξ(k)+ D̃w̃(k)

z(k) = L̃(k)ξ(k)
where

Ã=

[
A 0

CA 0

]
B̃=

[
B 0

CB D

]
, C̃=

[
0 Ir

]
,

L̃=
[

L 0
]
, andD̃ =

[
D 0

]

(30)
In (30) the uncertainties appear in̄A andB̄ only and,
therefore, Theorem 1 above may be invoked. We,
therefore, obtain the following result which offers
reduced conservatism with respect the correspond-
ing continuous-time results of (Salcedo and Martinez,
2008):

Theorem 3. Consider the estimator of (12) for the
system of (1) forDi = D, i = 1,2, ...,N. The estima-
tion error satisfies (9) withγ replaced by

√
2γ if (21)

and (22) are satisfied fori = 1,2, ...,N so thatP> 0,
µ> 0 andλ < 1 with A,B,C,L replaced byÃ, B̃,C̃, L̃
of (30).

4 EXAMPLE

We consider the dynamic model of guidance in a
plane:

˙̃x= νcos(ψ̃)+w1
˙̃y= νsin(ψ̃)+w2

˙̃ψ = φ̃
φ̇ =−φ/τ+u/τ

(31)

wherex̃ andỹ are the first two coordinates of a flight
vehicle cruising in a constant altitude, in a local level
north-east-down system,̃ψ is the vehicle body an-
gle with respect to the north (i.e. azimuth angle)
andφ is the vehicle’s roll angle assumed to be gov-
erned by a first-order low-pass filter dynamics hav-
ing a time-constant ofτ seconds, driven by the roll-
angle commandu. The wind velocities at the north
and east directions respectively are denoted byw1 and
w2 whereasν is the true-air-speed. Our aim is to filter
the noisy measurements of ˜x, ỹ andφ and to estimate
ψ̃. Defining,

x= col{x̃, ỹ,vsin(ψ̃),vcos(ψ̃),φ}
the measurements vector which consists of noisy
measurements of the position components ˜x andỹ and
the roll angleφ is given by

y=Cx+R1/2v

wherev is the measurement noise which is taken in
the simulations in the sequel as a 3-vector of zero-
mean unity variance white noise sequences but for all
practical purposes is assumed to bev∈ ℓ∞. The noise
level is set by

R= diag{25,25,0.1}
and the measurement matrix is

C=




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1




Note that
ẋ1 = x4
ẋ2 = x3

ẋ3 = x4x5
ẋ4 =−x3x5

ẋ5 =−x5/τ+u/τ

(32)

namely we have a bilinear system rather than a lin-
ear one. Following (Tanaka and Wang, 2001) with
a series of simple manipulations, this system can be
represented as a Takagi-Sugeno fuzzy system, namely
as a convex combination of linear systems where the
convex coordinates are online measured. To achieve
such a representation we recall thatx5 = φ is mea-
sured on line, and defines1 = x5 while neglecting
the small enough noise in measuringφ. The valid-
ity of the latter assumption will be verified in the se-
quel by the estimation quality we will obtain. Assum-
ing x5 ∈ [−φmax,φmax] we define f1 =

s1−s1,min
s1,max−s1,min

=
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x5+φmax
2φmax

, f2 = 1− f1, α1 = φmax andα2 =−φmax. We
readily see thats1 = φmaxf1−φmaxf2 := α1 f1+α2 f2.
We note then that the system is then governed by
ξ̇ =Ac(ξ)ξ+Bcw whereξ= col{x1,x2,x3,x4,x5} and

Ac =




0 0 0 1 0
0 0 1 0 0
0 0 0 s1 0
0 0 −s1 0 0
0 0 0 0 −1/τ




Therefore,Ac = Ac,1α1 + Ac,2α2 where Ac,1 is ob-
tained fromAc by replacings1 by α1 andAc,2 is sim-
ilarly obtained fromAc by replacings1 by α2. We
also definew = col{w1,w2,ν1,ν2,ν3} and complete
the remaining matrices needed for the representation
of our problem (1)-(3) by applying a zero-order-hold
discrete-time equivalent of our continuous-time sys-
tem, where we have chosen a sampling time ofh =
0.02. Due to the small enoughh we have chosen, we
haveeAh = I +Ah+O(h2) and we, therefore, readily
obtain that the system is governed by (1) and (3)-(5)
whereA= A1α1+A2α2+O(h2) where

A1=




1.0000 −0.0002 0.0200 0
0 1.0000 0.0200 0.0002 0
0 0 0.9998 0.0209 0
0 0 −0.0209 0.9998 0
0 0 0 0 0.9231




A2=




1.0000 0 0.0002 0.0200 0
0 1.0000 0.0200 −0.0002 0
0 0 0.9998 −0.0209 0
0 0 0.0209 0.9998 0
0 0 0 0 0.9231




B1 = B2 = B=




0.2000 0 0 0 0
0 0.2000 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




and

D1 = D2 = D =




0 0 2.2361 0 0
0 0 0 2.2361 0
0 0 0 0 0.1000




We note at his point that, in order to mini-
mize the design conservatism stemming from the
quadratic stability assumption, we applied a pa-
rameter dependent Lyapunov function (Boyd et al.,
1994), max(xTP1x,xTP2x). Minimization of γ sub-
ject the the LMis that are obtained with this func-
tion to replace (21) and (22) (see Appendix B), us-
ing fminsearch.mfrom the optimization toolbox of
MATLABTM and (Lagarias et al., 1998) to search
λi , i = 1,2,3,4, ρ1, ρ22, θ1 andθ2, has resulted in
γ = γ0 = 10.2732 andλ = 2.41×10−7. The follow-
ing gain matricesK1 andK2 have been obtained for

γ = γ0 were obtained:

K1 =




0.7574 −0.0007 0.0000
−0.0018 0.7593 0.0000
0.0000 0.0000 0.0000
0.0000 −0.0000 0.0000
−0.0000 −0.0000 0.0003




K2 =




0.7558 −0.0024 0.0000
−0.0021 0.7613 −0.0000
−0.0000 0.0000 −0.0000
0.0000 0.0000 0.0000
−0.0000 0.0000 0.0003




This ℓ∞ filter will be compared to an Extended
Kalman Filter (EKF, see (Jazwinsky, 1970)) based on
the nonlinear model of (31). Note that higher com-
plexity filters such as the particle filter (e.g. (Osh-
man and Carmi, 2006) are out the scope of the
present paper. For the simulations we takeν =
100m/s and try to control the vehicle to follow a
constant command aty = 5m, in spite of a wind
step atw2 of 10m/s. The estimation results are
used to control the vehicle, using the simple law
u = −

[
0.0200 4.0000

][
ŷ−5 ψ̂

]T
where all

components of the initial state-vector are taken as
zero, besidesy0 = 20m. The EKF and theℓ∞ esti-
mated ˜x− ỹ trajectory results are compared in Fig. 1
to the true trajectory. One can notice the bias in the
EKF estimate. In Fig. 2, the truẽψ and the estimated
values forψ̃ that are obtained by using the EKF and
theℓ∞ filter are depicted. We clearly see in this figure
that theℓ∞ filter outperforms the EKF which assumes
a white noisew2 but leads to a bias whenw2 has a
bias. In contrast, thẽψ estimate of theℓ∞ filter is
barely separable from the true values. Moreover, the
ℓ∞ filter does not require the on-line numerical solu-
tion of a Riccati equation of order 4 and the gains are
obtained there by a simple convex interpolation onK1
and K2. The fact thatK1 and K2 are close to each
other is somewhat surprising. Our experience shows
that for a largerγ (i.e. suboptimal values), a larger
||K1−K2|| is obtained.

5 CONCLUSIONS

The problem of designing robust gain-scheduled fil-
ters with guaranteed inducedℓ∞−norm has been con-
sidered. The solution has been derived using a re-
cently developed bounded-real-lemma like condition
for bounding the inducedℓ∞ norm of a system. This
result has been applied to derive the robust induced
ℓ∞−filter (or equivalently robustℓ1 filter) in terms of
LMIs. These LMIs have been applied to a guidance
motivated estimation example. In this example, the
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superiority of the inducedℓ∞ filter over the Extended
Kalman Filter has been demonstrated, both in terms
of performance and simplicity of implementation.
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APPENDIX A - PROOF OF
LEMMA 1

Consider the system

xk+1 = Āxk+ B̄wk, zk = C̄xk+ D̄wk

and define, following (Abedor et al., 1996),

ξk = xT
k+1Pxk+1−xT

k Pxk+λxT
k Pxk−µwT

k wk.

Namely,

ξk=(x
T
kĀT+wT

kB̄T)P(Āxk+B̄wk)−xT
kPxk+λxT

kPxk−µwT
kwk.
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Collecting terms we have

ξk = xT
k (Ā

TPĀ+λP−P)xk+xT
k (Ā

TPB̄)wk

+wT
k (B̄

TPĀ)xk+wT
k (−µI + B̄TPB̄)wk.

Therefore, (14) guaranteesξk < 0 for all wk andxk.
Defining ζk = xT

k Pxk and assumingx0 = 0 and
wT

k wk < 1 we have thatζk+1−ζk+λζk−µwT
k wk < 0.

Namely, ζk < ζ̄k where ζ̄k+1 = (1− λ)ζ̄k + µwT
k wk.

However, usingρ := 1−λ we have

ζ̄k =
k−1

∑
j=0

ρk− j−1µwT
j wj = ρk−1

k−1

∑
j=0

(ρ−1) jµwT
j wj

<ρk−1 (1−ρ−1)k

1−ρ−1 µ=µ
1−ρk

1−ρ
. A.1

From (15) we have using Schur complements that

[xT wT ](

[
λP 0
0 (γ−µ)I

]
−γ−1

[
C̄T

D̄T

][
C̄ D̄

]
)

[
x
w

]
> 0

Namely,

zT
kzk < γ[(γ−µ)wT

k wk+λxT
k Pxk]< γ[(γ−µ)+λζ̄k] A.2

Substituting A.1 we readily see that

zT
k zk < γ[(γ−µ)+(1−ρ)µ

1−ρk

1−ρ
] = γ[γ−µ+µ−µρk].

Since 0< ρ < 1 we obtain that

zT
k zk < γ[γ−µ+µ] = γ2.

APPENDIX B - PARAMETER
DEPENDENT RESULTS

In order to reduce conservatism, we replace in the
proof of Lemma 1 in Appendix A, the parameter-
independent Lyapunov functionV(x,P) = xT

k Pxk by
the parameter-dependent Lyapunov function ((Boyd
et al., 1994))V(x,P1,P2) = max(xT

k P1xk,xT
k P2xk). To

ensureV(xk,P1,P2)> 0 we have to satisfyxT
k P1xk > 0

wheneverxT
k P1xk > xT

k P2xk andxT
k P2xk > 0 whenever

xT
k P1xk < xT

k P2xk. Applying the S-procedure (Boyd
et al., 1994) we readily obtain that a sufficient condi-
tion or these requirements to hold, is the existence of
constantsρ1 > 0 andρ2 > 0 so that

P1−ρ1(P1−P2)> 0 andP2−ρ2(P2−P1)> 0.

We also require that ifxT
k P1x> xT

k P2xk then

ξ{1},Ā
k := xT

k (Ā
TP1Ā+λP1−P1)xk+xT

k (Ā
TP1B̄)wk

+wT
k (B̄

TP1Ā)xk+wT
k (−µI+ B̄TP1B̄)wk < 0,

and ifxT
k P2x> xT

k P1xk then

ξ{2},Ā
k := xT

k (Ā
TP2Ā+λP2−P2)xk+xT

k (Ā
TP2B̄)wk

+wT
k (B̄

TP2Ā)xk+wT
k (−µI+ B̄TP2B̄)wk < 0.

Since these conditions are required to be satisfied
throughout the polytope, we readily obtain, using
again the S-procedure, that in addition to the con-
stantλ > 0, the existence of six additional constants
λi > 0, i = 1,2,3,4, θ1 > 0, θ2 > 0 establishes a suf-
ficient condition for the above inequalities to hold, if

−ξ{1},Āi
k −λ1(P1−P2)> 0, i = 1,2

and
−ξ{1},Āi

k −λ2(P2−P1)> 0, i = 1,2.

Following the lines of proof of Theorem 1 above, we
readily obtain the following LMIs fori = 1,2 to re-
place (21) and (22):



P1−λP−λi(P1−P2) 0 AT
i P1−CTYT

i
0 µI BT

i P1−DTYT
i

P1Ai −YiC P1Bi−YiD P1


>0,




λP1−θ1(P1−P2) 0 LT
i

0 (γ−µ)I 0
Li 0 γI


> 0, λ < 1

and



P2−λP−λi+2(P2−P1) 0 AT
i P2−CTYT

i
0 µI BT

i P2−DTYT
i

P2Ai −YiC P2Bi−YiD P2


>0,




λP2−θ2(P2−P1) 0 LT
i

0 (γ−µ)I 0
Li 0 γI


> 0, λ < 1.

We note that we have also replaced (A.2) with:

zT
k zk < γ[(γ−µ)wT

k wk+λ×max(xT
k P1xk,x

T
k P2xk)].

Namely, ifxTP1x> xTP2x we require

zT
k zk < γ[(γ−µ)wT

k wk+λxT
k P1x],

whereas ifxTP2x> xTP1x we require

zT
k zk < γ[(γ−µ)wT

k wk+λxT
k P2x].

Using again theS -Procedure with additional tuning
constantsθ1 > 0 andθ2 > 0, which add up to the pre-
viously introduced 7 tuning constantsρ1 > 0, ρ2 > 0,
λ > 0 andλi > 0, i = 1,2,3,4 the above results are
obtained. Note that a similar approach can be applied
also on the continuous-time results of (Salcedo and
Martinez, 2008) to reduce conservatism.
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