
A PARAMETERIZABLE HANDEL-C NEURAL NETWORK
IMPLEMENTATION FOR FPGA

Cherrad Benbouchama1, Mohamed Tadjine2
1 E.M.P, Bordj El Bahri, 16111 Alger, Algeria

2Ecole Nationale Polytechnique, El Harrach Alger, Algeria

Ahmed Bouridane3
3School of Electronics, Electrical Engineering and Computer Science, Queen’s University

Keywords: Neural networks, FPGA, Parameterizable implementation, Handel-C.

Abstract: This paper shows the design possibility of a parameterizable implementation of neural multi-layer network
on FPGA circuits (Field Programmable Gate Array) through the use of Handel-C language. The algorithm
used for the training is the back-propagation. The tools of implementation and synthesis are the DK 4 of
Celoxica and the ISE 6.3 of Xilinx. The targeted components are XCV2000 on Celoxica RC1000 board and
XC2V1000 on RC200. The representation of the real numbers in fixed point was used for the data
processing. The realization of the activation function is made with the approximate polynomial. A high level
environment was designed in order to specify and introduce architecture parameters.

1 INTRODUCTION

The first ANNs implementation on FPGA was
carried out by Cox and al within the framework of
the GANGLION project (Cox and Blanz, 1992). It
was applied for real time images segmentation.
Other work followed since, for the implementation
of various types’ architectures of ANNs and various
real data representations. The algorithm most used
for multi-layer ANNs training is the back-
propagation one. Eldredge had made a success, in
1994, of the first implementation of this algorithm
on the RRANN platform (Runtime Reconfiguration
Artificial Neural Network) built around the XC3090
FPGA (Eldredge and Hutchings, 1994). Ferrucci and
Martin have designed the ACME multi-FPGA
platform (Adaptive Connectionist Model Emulator)
which is composed of fourteen (14) Xilinx XC4010
FPGAs (Ferrucci 1994) (Martin, 1994). Ossoing, in
1996, had also implemented on FPGA the back-
propagation algorithm. It had implemented the
architecture [3,3,1] on four (4) Xilinix XC4013
FPGAs and one Xilinix XC4005 (Ossoinig and al,
1996). Beuchat & al., in 1998, were heavily
influenced by Eldredge work. They developed the
RENCO platform containing four (4) FPGAs

controlled by microprocessor. It was successfully
applied to hand-written characters recognition
(Beuchat and al, 1998). Pandya, in 2005, had
implemented on FPGA the back-propagation
algorithm with Handel-C language and had worked
out a partially parallel architecture and another
completely parallel, which proved, respectively,
twice and four times faster than a sequential
architecture (Pandya, 2005). However, the necessary
time for the ANNs implementation on FPGAs is of
about months (Benbouchama and al, 2007).
Moreover, the programming of these circuits
requires the mastery of specific languages, which
reduces considerably their use on a large scale. It
would be then interesting to carry out a graphical
environment which would be dedicated for users not
necessarily initiated to FPGAs programming.

In this paper, we are interested in the design of a
parameterizable tool that generates a neural multi-
layer network implementation on FPGAs through
the use of Handel-C language. This work aims at the
realization of a high-level environment making it
possible, on the one hand, to ensure the interfacing
between the user and an FPGA board, and on the
other hand, to generate automatically configurations
dedicated to the ANNs. The algorithm used for the

325
Benbouchama C., Tadjine M. and Bouridane A.
A PARAMETERIZABLE HANDEL-C NEURAL NETWORK IMPLEMENTATION FOR FPGA.
DOI: 10.5220/0002166903250328
In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2009), page
ISBN: 978-989-8111-99-9
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

training is the back-propagation, and the tools of
implementation and synthesis are the DK 4 of
Celoxica and the ISE 6.3 of Xilinx.

2 TECHNICAL PRINCIPLE

2.1 Handel-C Language

Handel-C is perhaps the most popular high-level
language currently available for hardware
specification (Stöcklein and Bhig, 2002). Its syntax
is based on the C language making it easily adopted
by traditional software engineers. The benefits of
rapid hardware development and simplicity of
specification often come at a price. In comparison
with traditional hardware description languages such
as VHDL (Ashenden, 2002), Handel-C and its
compiler produce hardware that consumes more
FPGA area (Hopf, 2003) and is often slower in
performance.

2.2 A Parameterizable Implementation

A parameterizable implementation is that in which a
user would have the possibility of changing the
application parameters without having to modify the
hardware configuration of the FPGA. The
implementation will be flexible.

Figure 1: A parameterizable implementation.

In a parameterizable ANNs implementation (figure
2), the inputs are, in addition to the maximum of
epochs and the desired error, different data
concerning the architecture and the training
parameters.

Figure 2: Parameterizable ANNs implementation.

The development of this parameterizable ANNs
implementation is made with handel-C language
which, contrary to VHDL, makes it possible to
design completely parameterizable applications.

2.3 Automatic Generation of
Configurations

It consists in developing an automatic generator of
configurations starting from the host computer
towards the FPGA board (figure 3).

Figure 3: Principle of the software platform.

The generator of configurations ensures the
following tasks:

• The synchronization between the host
computer and the FPGA board.

• The configuration of the FPGA circuit by
the bit file.

• The data transfer between the FPGA board
and the host computer.

Parameterizable

implementation
ResultData

Application parameters

Maximum Epochs

Desired error

Input layer neurons

Output layer

Hidden layer neurons

Learning rate

Size of the
training base

Parameterizable
ANNs

implementation

Error

obtained

Weights

obtained

Bit file

Application parameters

FPGA
board

Generation of configurations
(Host computer)

Results

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

326

2.4 Graphical Interface

From these graphical menus, the user is invited to
design his application. Thus, he can specify the
different parameters of the application. This system
can bring many tools for the implementation design
and control. The advantage resides in the facility of
the approach: there is no language, it requires only
the use of graphical menus (control buttons, edition
zone…). The graphical environment carried out with
Microsoft visual C++ can be composed of one or
several windows.

3 IMPLEMENTATION RESULTS

To demonstrate the findings, the parameterizable
implementation was realized using the XCV2000 of
the FPGA family VirtexII.

3.1 First Case

Input layer neurons number ≤ 2
Output layer neurons number ≤ 2
Hidden layer neurons number ≤ 15
Hidden layer number ≤ 3

Table 1: First case.

Resources Used Available Utilization
Slices 17019 19200 88 %
LUTs 31320 38400 81 %
IOBs 88 404 21 %
Block RAMs 320 160 200 %

3.2 Second Case

Input layer neurons number ≤ 2
Output layer neurons number ≤ 2
Hidden layer neurons number ≤ 10
Hidden layer number ≤ 1

Table 2: Second case.

Resources Used Available Utilization
Slices 13101 19200 68 %
LUTs 24978 38400 65 %
IOBs 88 404 21 %
Block RAMs 180 160 112 %

3.3 Third Case

Input layer neurons number = 1

Output layer neurons number = 1
Hidden layer neurons number ≤ 10
Hidden layer number ≤ 1

Table 3: Third case.

Resources Used Available Utilization
Slices 12144 19200 63 %
LUTs 23223 38400 60 %
IOBs 88 404 21 %

Block RAMs 108 160 67 %

From these results, it can be stated that the size of
the parameterizable implementation to be realized
depends on the targeted FPGA.

4 EXPERIMENTAL
EVALUATION: THE POSITION
CONTROL OF A DC MOTOR

We test the high level-environment on the
implementation of a neural controller which
improves an existing linear controller in order to
position control a DC motor (Fig. 4). This approach
is called “feed-back error learning” and is based on
the use of an existing regulator to approximate as an
unknown function (Benbouchama and al, 2007).

Figure 4: The position control of a DC motor.

Figure 5: Hardware view.

A
D
C

A
D
C

RC
200

D
A
C

+

-

+

+

Power
Ampli

U

Y

Yc

M K

A PARAMETERIZABLE HANDEL-C NEURAL NETWORK IMPLEMENTATION FOR FPGA

327

In this experiment an on-chip learning type of the
neural controller was used.
The graphical interface used to specify the different
parameters of the neural controller is as follows:

Figure 6: The graphical interface.

The implementation results of the parameterizable
ANNs implementation for this experimental
evaluation are as follows:

Table 4: Implementation results.

Resources Used Available Utilization
Slices 2748 5120 53 %
LUTs 4926 10240 48 %
IOBs 20 324 6 %

Once the learning phase was completed we have
tested the behaviour of the neural controller with a
square input signal: 0° - 45°.

Figure 7: The behaviour of the neural controller.

The results indicate the validity of the high-level
environment used for the ANNs implementation on
FPGAs.

5 CONCLUSIONS

This paper outlines a means that was created to
facilitate and accelerate the ANNs implementation
on FPGAs. A parameterizable tool was designed to
generate a neural multi-layer network
implementation through the use of Handel-C
language. This tool was destined to be used by the
high level environment, which is presented, at the
user, as a graphical interface with menus. The
advantage which it offers resides in the facility of

the approach: there is no language and it requires
only the use of the graphical menus.
To be able to implement significant neural networks
architectures with this high level environment, we
must use a board with an FPGA circuit which is not
limited in resources.
Finally, experimental evaluation setup has been
developed to demonstrate the validity of the high-
level environment for the ANNs implementation on
FPGAs.

REFERENCES

Cox, C.E. and E. Blanz, GangLion, “ a fast field -
programmable gate array implementation of a
connectionist classifier ”, IEEE Journal of Solid-State
Circuits, 1992. 28(3): p. 288-299.

J. G. Eldredge and B. L. Hutchings, “ RRANN: A
Hardware Implementation of the Backpropagation
Algorithm Using Reconfigurable FPGAs ”, In IEEE
World Conference on Computational Intelligence,
Orlando, FL, 1994.

A. T. Ferrucci, “ A Field-Programmable Gate Array
Implementation of Self-Adapting and Scalable
Connectionist Network ”, Mars 1994.

M. Martin, “A reconfigurable hardware accelerator for
back-propagation connectionist classifiers”, Masters
thesis, University of California, Santa Cruz, 1994.

H. Ossoinig, E. Reisinger, C. Steger, and R. Weiss,
“Design and FPGA implementation of a neural
network ”, In Proc. 7th Int. Conf. on Signal Processing
Applications and Technology, pp. 939943, Orlando,
Florida, 1996.

J. Beuchat, J. Haenni, and E.Sanchez, “ Hardware
Reconfigurable Neural Networks, In Parallel and
Distributed Processing ”, IPPS/SPDP, pp. 91 98,
Springer-Verlag, 1998.

V. Pandya, “ A Handel-C implementation of
thebackpropagation algorithm on field programmable
gate arrays ”, Master thesis. Faculty of Graduate
Studies of the University of Guelph, Canada,
December 2005.

C. Benbouchama and al, “ The FPGA Neural Networks
Implementation for a Real Time Control ”, Archives
of Control Sciences (A.C.S.), Vol. 17(LIII), n. 1, pp.
527, 2007.

T. Stöcklein and J. Bhig, “ Handel-C an effective method
for designing FPGAs (and ASICs) ”, Georg Simon-
Ohm Fachhochschule, NÜRNBERG 2002.

P. J. Ashenden, “ The Designer's Guide To VHDL ”,
second edition, San Diego: Morgan Kanfmann, 2002.

J. Hopf, “ Comparing the Bitstreams of Applications
Specified in Hardware Join Java and HandelC ”, 2nd

IEEE International Conference on Field
Programmable Technology, Tokyo, Japan, 2003.

Celoxica: www.Celoxica.com

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

328

