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Abstract: The interrelation of stochastic and deterministic optimization algorithms, as well as the exploitation of the ad-
vantages that each counterpart presents simultaneously, is studied in this paper. To this, a hybrid optimization
algorithm is developed, which consists of a conventional Evolution Strategy that maintains its recombination
and selection phases unaltered, while its mutation operator is replaced by well–known deterministic methods,
such as line–search and/or trust–region. The alteration results in superior performance of the novel algorithm,
compared to other instances of Evolutionary Algorithms, as exploited out in tests using Griewangk and Ras-
trigin functions. The proposed algorithm is further examined through its implementation to the structural
optimization problem of a full–car suspension model, with satisfying results.

1 INTRODUCTION

Numerical optimization, either deterministic (No-
cedal and Wright, 2006), or stochastic (Schwefel,
1995; Baeck, 1996), has shown to be a very pow-
erful tool in engineering, with implementation in a
very wide area of applications, including structural
design (Rao, 1996; Alkhatib et al., 2004; Koulocheris
et al., 2003a), system identification (Koulocheris
et al., 2003c), control (Fleming and Purshouse, 2002)
and fault diagnosis (Dertimanis, 2006; Chen and Pat-
ton, 1999).

The corresponding schemes that have been for a
long time the subject of significant research in the
field of numerical optimization, are mostly divided
into two main categories, deterministic and stochas-
tic: the former, usually build a local quadratic model
of the function of interest and converge rapidly to a
local stationary point, given a ”good initial guess”
for the parameter vector, while the latter perform in
a wide area of the search space, since, generally, the
optimization procedure is conducted in parallel. Yet,
both suffer from serious drawbacks, as the determinis-
tic methods depend drastically on the initial parameter
vector provided and frequently stuck in local optima,
while the stochastic ones present very slow conver-
gence rate (Vrazopoulos, 2003). To this, the idea of
combining the diverse characteristics of these two op-
timization categories into a hybrid algorithmic struc-
ture, follows naturally. Surprisingly, at least in the
engineering research field, relative works are rather

limited (Koulocheris et al., 2004), the almost exclu-
sive use of GA (refer to Appendix A for notation)
is utilized (Koh et al., 2003), while applications are
scarcely ever reported (Dertimanis et al., 2003). It
should be noted though, that the problem of acceler-
ating conventional EA has been faced using different
techniques, such as neural networks (Papadrakakis
and Lagaros, 2002).

This paper presents a methodology of intercon-
necting stochastic and deterministic optimization al-
gorithms, in a way that exploits the advantages of
both of them and results into a method that shows
faster convergence rate, as well as increased relia-
bility in the search for the global optimum. Among
EA, the stochastic component has been selected to
be the[µ/ρ (+/,) λ]–ES, while the deterministic one
belongs to the family of quasi–Newton methods and
it is currently implemented using either line–search,
trust–region, or a combination of both. To this, the
currently proposed version of the algorithm integrates
previous ones (Koulocheris et al., 2008; Koulocheris
et al., 2004; Vrazopoulos, 2003), so that a more ro-
bust and flexible scheme is developed. In order to get
insight about the performance of the novel optimiza-
tion method, it is tested with the Griewangk and Ras-
trigin functions and compared with the conventional
ES (in fact its multi–memberedplusandcommaver-
sions), as well as a meta version of EP (Baeck, 1996).
Consequently, it is applied to the problem of optimiz-
ing the characteristics of a suspension system used in
ground vehicles.
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The rest of the paper is organized as follows: in
Sec. 2 the novel algorithm is presented and in Sec. 3,
indications of its performance are illustrated, through
the evaluation by theoretical objective functions, as
well as an application example, corresponding to the
problem of optimizing the riding comfort of a passen-
ger vehicle. In Sec. 4 some final remarks are given,
together with suggestions for further research.

2 THE HYBRID ALGORITHM

2.1 Description

The proposed hybrid algorithm with deterministic
mutation aims, as already mentioned, at interconnect-
ing the advantages of both optimization approaches.
Deterministic methods are characterized, if the opti-
mization function is regular, by a high convergence
rate and accuracy in the search for the optimum. On
the other hand, EA show a low convergence rate but
they can search on a significantly broader area for the
global optimum.

[µ/ρ (+/,) λ,ν]–hES is based on the distribu-
tion of the local and the global search for the opti-
mum and it consists of a super-positioned stochastic
global search, followed by a independent determinis-
tic procedure, which is activated under conditions in
specific members of the involved population. Thus,
every member of the population contributes in the
global search, while single individuals perform the
local search. Similar algorithmic structures, the theo-
retical background of which pertains to the simulation
of insects societies (Monmarche et al., 2000; Rajesh
et al., 2001), have been presented by (Colorni et al.,
1996; Dorigo et al., 2000; Jayaraman et al., 2000).

The stochastic platform has been selected to be
the ES, while the deterministic counterpart is a quasi–
Newton algorithm (see Sec. 2.2). It must be noted that
the selection of ES among the other instances of EA is
justified via numerical experiments in non–linear pa-
rameter estimation problems (Schwefel, 1995; Baeck,
1996), which have provided significant indication that
ES perform better than the other two classes of EA,
namely GA and EP.

The conventional ES is based on three operators
that take on the recombination, the mutation and the
selection tasks. In order to maintain an adequate
stochastic performance in the new algorithm, the re-
combination and selection tasks are retained unal-
tered (refer to (Beyer and Schwefel, 2002) for a brief
discussion about the recombination phase), while its
strong local topology performance is utilized through

the substitution of the original mutation operator by a
quasi–Newton one.

A very important matter that affects significantly
the performance of the[µ/ρ (+/,) λ,ν]–ES involves
the members of the population that are selected for
mutation: there exist indications (Koulocheris et al.,
2003b) that the reason for the poor performance of
EA in non–linear multimodal functions is the loss of
information through the non-privileged individuals of
the population. Thus, the new deterministic mutation
operator is not applied to allλ recombined individu-
als but only to theν worst among the(µ (+/,) λ),
whereν is an additional algorithm parameter. This
means that a sorting procedure takes place twice in
every iteration step: the first time in order to yield
theν worst individuals and the second to support the
selection operator, which succeeds the new determin-
istic mutation operator. This modification enables the
strategy to yield the corresponding local optimum for
each of the selectedν worst individuals in every iter-
ation step. The advantage is reflected in terms of in-
creased convergence rate and reliability in the search
for the global optimum, while three other alternatives
were tested. In these, the deterministic mutation op-
erator was activated by:

- every individual of the involved population,

- a number of privileged individuals, and

- a number of randomly selected individuals.

The above alternatives led to three types of problem-
atic behavior. More specifically, the first increased the
computational cost of the algorithm without the desir-
able effect. The second alternative led to premature
convergence of the algorithm to local optima of the
objective function, while the third generated unstable
behavior that led to statistically low performance.

2.2 The Deterministic Mutation

As noted, quasi–Newton type methods replace the
original mutation of ES. Yet, unlike earlier ver-
sions (Vrazopoulos, 2003), it is not wise to limit
the operator in a line–search framework, since trust–
region and mixedcombined methods have also proven
to be competitive alternatives, or to enforce the exclu-
sive use of the BFGS Hessian update, as analytical or
finite–difference derivative information may, in some
cases, be either available, or costless to compute. This
fact leads to the optional implementation of full New-
ton methods, but the term quasi–Newton shall be pre-
served, in order to cover the majority of the problems
faced in practice. Thus, in the following it is assumed
that the gradient of the objective function is approx-
imated using finite–differences, while the Hessian is
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calculated using the powerful BFGS update.
The currently presented version of the

[µ/ρ (+/,) λ,ν]–ES offers three alternatives to
be used as mutation operators, which are briefly
discussed in the following.

2.2.1 Line–search

A line–search algorithm is build in a simple idea: at
iterationk, given a descent directionpk, take a step
in that direction that yields an ”acceptable” parameter
vector, that is,

xk+1 = xk+λk·pk (1)

for someλk that makesxk+1 an acceptable next iter-
ate. Since,

∇2 f (xk)·pk = ∇ f (xk) (2)

is utilized, the proposed mutation operator imple-
ments a cubic polynomial line–search procedure for
the determination ofλk, that satisfies both Wolfe con-
ditions (Nocedal and Wright, 2006). It must be noted
that in every iteration the full quasi–Newton step
(λk = 1) is always tested first.

2.2.2 Trust–region

If in Eq. 1 the full quasi–Newton step is unsatisfac-
tory, it means that the quadratic model fails to approx-
imate the objective function in this region. Instead of
calculating a search direction, trust–region methods
calculate a shorter step length by solving the problem,

mc(xk+p) = f (xk)+∇ f (xk)
T ·p (3)

+
1
2

pT∇2 f (xk)·p
wheremc is the quadratic model, subject to,

‖p‖ ≤ δk (4)

so that,

(∇2 f (xk)+ ξ·I)·pk = ∇ f (xk) (5)

for someξ > 0. Trust–region mutation utilizes two
alternatives for the calculation ofξ: the locally con-
strained optimal (”hook”) step and the double dogleg
step (Dennis and Schnabel, 1996).

2.2.3 Combined Trust–region / Line–search

The third alternative that the proposed algorithm of-
fers as mutation operator, is a combined trust–region
/ line–search framework. To this, Eqs. 3-5 are solved
approximately for the directionpk and if the full
quasi–Newton step does not result in a sufficient de-
crease of the objective function, a line–search is per-
formed, which guarantees, under certain conditions,
a lower objective function value. The corresponding
algorithm is described in (Nocedal and Yuan, 1998).

2.3 Termination Criteria

The termination criteria are distinguished as local, re-
ferring to the deterministic mutation and global, re-
ferring to [µ/ρ (+/,) λ,ν]–ES. For the former, stan-
dard tests that are presented in detail in (Nocedal and
Wright, 2006) and (Dennis and Schnabel, 1996) are
utilized:

- Objective function value smaller than a specified
tolerance,

- relative gradient norm less than a specified toler-
ance,

- relative distance between two successive itera-
tions less than a specified tolerance,

- not a descent current direction, and

- maximum mutation operator iterations exceeded.

In addition, the proposed algorithm terminates if at
least one of the following occurs:

- Absolute difference between worse and best ob-
jective function less than a specified tolerance,

- maximum function evaluations exceeded, and

- maximum iterations exceeded.

3 NUMERICAL RESULTS

3.1 Performance Evaluation

In order to assess the performance of the proposed al-
gorithm, a numberN = 100 of independent tests were
utilized using the Griewangk

f (x) = 1+
n

∑
i=1

x2
i

400·n −
n

∏
i=1

cos
( xi√

i

)
(6)

and the Rastrigin

f (x) = 10·n+
n

∑
i=1

x2
i −10·cos(2·π·xi) (7)

functions, withn = 50 parameters and known mini-
mum atxm = 0, f (xm) = 0. For the tests, a version
of the algorithm withµ= 15 parents andλ = 100 off-
spring was used, while the recombination type was
panmictic intermediate withρ= 2 parents for the gen-
eration of each offspring. For the mutation, the trust–
region approach (using the double dogleg step) of the
relative operator was implemented and in every iter-
ation theν = 3 worse vectors were mutated. The se-
lection was made among all the involved population
(that is both parents and offspring, choice that is de-
noted by the+ sign of the full notation).
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Table 1: Statistical results of the compared methods: Griewangk’s function.

Termination Reason (%)

Method P Pmin Pmax Convergence Max. Iterations Mean CPU time (s)

(15+100,3)–hES −9.90 −10.06 −9.52 100 0 10
(15+100)–ES −0.10 −0.14 −0.06 0 100 28
(15,100)–ES −2.07 −2.83 −1.09 0 100 28

meta–EP −0.12 −0.18 −0.09 0 100 25

Table 2: Statistical results of the compared methods: Rastrigin’s function.

Termination Reason (%)

Method P Pmin Pmax Convergence Max. Iterations Mean CPU time (s)

(15+100,3)–hES 1.14 0.00 2.05 100 0 5
(15+100)–ES 2.63 2.55 2.69 0 100 26
(15,100)–ES 2.56 2.35 2.66 0 100 26

meta–EP 2.59 2.52 2.62 0 100 24

Regarding the comparisons, two similar instances
of the conventional ES were used, that is the(15+
100)–ES and the(15,100)–ES with panmictic re-
combination, while a version of the meta–EP with
100 population members and 10 random members for
comparison was activated. Taking under considera-
tion the possibility of a large spectrum of orders in the
final objective function value, the following quantity
was formulated,

Pj = log10( f f inal), j = 1, ...,100 (8)

and three statistics qualified the results, that is the
mean, the minimum and the maximum values of the
Pj ’s, out of the set of all the independent tests. I must
be noted in every iteration, that prior to the execu-
tion of every corresponding code, the random num-
ber generator was reset, in order to initialize all the
compared algorithms from the same population. As
far as the termination criteria are concerned, the tol-
erance for the convergence of the population and the
number of iterations were set equal tomacheps1/3,
wheremachepsthe computer precision, and 100, re-
spectively.

The results are illustrated in Tabs.1–2, where it is
clear that the hybrid algorithm has outperformed all
other EA. Indeed, the(15+100,3)–hES with a trust–
region mutation returned the best statistics among the
four, while it converged in all the independent tests.
On the contrary, the EA didn’t managed to converge
within the specified number of iterations and required
2.5−5 times more CPU time in order to execute. Yet,
in the Rastrigin function the hybrid algorithm showed
premature convergence, an issue that requires further
investigation. In any case, the above resulted pro-
vide significant indication about the performance of

the novel algorithm and enforce its application to en-
gineering structural problems, as the one presented
next.

3.2 Application

The hybrid algorithm algorithm was subsequently ap-
plied to the problem of optimizing the performance
of a passenger vehicle, in order to improve the ride
comfort, under a vibration environment that gener-
ated vehicle–road interaction forces with certain spec-
tral characteristics, corresponding to the Draft–ISO
formulation (Cebon, 2000). To this, an equivalent
linear full–car model with seven degrees of freedom
was utilized, which is presented in Figs. 1(a)–1(b).
The objective was the optimization of the suspension
system under explicit structural and geometric con-
straints. Since a vibration environment was of inter-
est, the root–mean–square value of the vertical accel-
eration,

f (x) =
1
T

∫ T

0
ẍ 2

M(t)dt (9)

was selected as objective function, subject to the fol-
lowing constraints:
1. Parameter Bounds:

1000 ≤ ks
i j ≤ 50000 (N/m) (10)

100 ≤ cs
i j ≤ 5000 (N·s/m) (11)

for i = f , r and j = l , r.

2. Geometry:

|xM(t)+Lk·θM(t)+Bk·φM(t)−xi j (t)| ≤ 0.100m (12)
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(a) (b)

Figure 1: Structural model of a passenger vehicle: (a) pitch–bounce view and (b) roll–bounce view.

|xi j (t)|− r i j (t)| ≤ 0.075m (13)

for k= 1,2, i = f , r and j = l , r.

It can be proved (see (Rao, 1996) for details)
that a constrained optimization problem with low and
high bounds for the involved parameters can be trans-
formed into an unconstrained one, by applying a sim-
ple change of variable, a procedure that followed here,
so that the penalty functions that were added in Eq. 9,
concerned only the second type of constraints.
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Figure 2: Two tracks across an ”average” isotropic surface.

Algorithms’s performance characteristics were
examined via 50 Monte–Carlo experiments, each one
consisting of a certain profile realization (see Fig. 2
for a single realization of the road surface topogra-
phy) and 20 independent tests, for the same version
of the algorithm as before, that is the(15+ 100,3)–
hES.

The results are displayed in Figs. 3–4. Figure 3
displays the performance of the objective function in
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Monte Carlo experiment

Objective function’s performance

f(
x)

Figure 3: Mean value and dispersions of the objective func-
tion, with respect to the Monte Carlo experiments.

every Monte Carlo experiment. The horizontal line
refers to the mean value of the 20 independent tests,
while the vertical lines to the standard deviation of
the 20 values of every Monte–Carlo experiment. It
appears that the hybrid algorithm presented high sta-
tistical consistency, fact that is further supported by
the suspension results that are illustrated in Fig. 4,
from which clear suggestions about the front/rear sus-
pension set up can be made. Yet, the relatively high
standard deviations of the suspensions’ stiffness indi-
cate that more intuition is required about the role of
these structural parameters to the root–mean–square
acceleration, with respect to the mathematical model.

4 CONCLUSIONS

A novel hybrid optimization method was presented
in this paper, which attempts to combine the diverse
characteristics of deterministic and stochastic opti-
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Figure 4: Mean value and dispersions of the parameter vector, with respect to the Monte Carlo experiments.

mization algorithms. That is, to interconnect fast lo-
cal convergence and increased reliability in the search
of the global optimum, without depending on initial
values, or suffer from low convergence rate. To this,
the corresponding scheme that was developed main-
tains the stochastic kernel of ES and replaces the orig-
inal mutation operator by relative methods that utilize
derivative information and act on the non-privileged
population members, resulting in a more efficient per-
formance.

The proposed algorithm was compared to conven-
tional instances of EA using standard test functions,
such as the Griewangk and Rastrigin ones, showing
significant evidence about its performance, and subse-
quently was applied to the problem of optimizing the
performance of a passenger vehicle with satisfying re-
sults that suggest, not only its use in other engineering
problems, but also further investigation about its de-
sign parameters, as well as the user–supplied controls.
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APPENDIX A: NOTATION

µ number of parent population
ρ number of recombination population
λ number of offspring
ν number of mutation population
(+/,) plus / comma version of ES
EA Evolutionary Algorithms
ES Evolution Strategy
EP Evolutionary Pogramming
GA Genetic Algorithms
hES hybrid Evolution Strategy
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