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Abstract: An intelligent diagnostic scheme using sensor network for incipient faults is proposed using a holistic 
approach which integrates model-, fuzzy logic-, neural network- based schemes. In case the system is highly 
non-linear and there are enough training data available, a neural network based scheme is preferred; where 
the rules relating the input and output can be derived, a Fuzzy-logic approach is chosen;  and where a model 
is available, a linearized model is employed. These three schemes are integrated sequentially ensuring 
thereby that critical information about the presence or absence of a fault is monitored in the shortest possible 
time, and the complete status regarding the fault is unfolded in time. The proposed scheme is evaluated 
extensively on simulated examples and on a physical system exemplified by a benchmarked laboratory-
scale two-tank system to detect and isolate faults including sensor, actuator and leakage ones. 

1 INTRODUCTION 

Fault is an undesirable factor in any process control 
industry. It affects the efficiency of system operation 
and reduces economic benefit to the industry. The 
early detection and diagnosis of faults in mission 
critical systems becomes highly crucial for 
preventing failure of equipment, loss of productivity 
and profits, management of assets, reduction of 
shutdowns, condition-based monitoring, product 
quality, process reliability, economy, potential 
hazards, pollution, and conservation of scarce 
resources. In a chemical industry, the release of 
hazardous chemicals into the environment requires 
quick action to limit the harmful impact of such a 
release. Of much concern is the purposeful release of 
chemicals in order to cause harm. Quickly detecting 
and identifying an unknown threat caused by a fault 
is pivotal to limiting harm and possibly saving lives. 
Because of the large area covered in either a process 
control industry or water distribution systems, a 
single technique is not able to monitor all of the 
activity in the area of concern. For this reason, a 
precise pool of intelligent approaches is being 

developed to create a better response plan. There 
must be a way to process and clearly present an 
accurate picture of the fault threat. Information 
about the constraints associated with an early 
detection of hazardous material in the environment 
help shape the proposed methodology, and is one of 
the main motivations for embedding intelligent tools 
in diagnosis and decision making (R.J. Patton, 2000). 

The purpose of this paper is to present and 
advance a new methodology for the intelligent 
detection of incipient faults. New methods of 
assimilating information from highly complex and 
nonlinear physical systems with various 
nonlinearities are being developed. Intelligent tools 
that have the ability to adapt, such as neural 
networks and fuzzy inference systems, are brought 
to bear on both of these aims. Data from a 
benchmarked laboratory-scale two-tank system is 
used and the proposed approach evaluated.  

The faults include sensor, actuator and leakage 
faults, and they can be classified broadly as either 
parametric faults or additive ones. An additive fault 
manifests itself as an additive exogenous signal in 
the measured data, while a parametric fault induces a  
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Figure 1: Sensor Network. 

variation in the system parameters. 
The fault diagnosis scheme can be carried out 

using a neural network, or fuzzy logic or a model-
based technique (L. B. Palma, 2003). While neutral 
networks can be used to quickly and correctly 
classify a particular fault, they cannot unravel it and 
point out its root causes. However, these root causes 
can be uncovered by supplementing the neural 
network used by a fuzzy logic scheme, which 
through the very makeup of its rules, will accurately 
, albeit more slowly than the neural network, 
pinpoint the cause(s) that spawned this fault. The 
synergistic value of this integration will no doubt 
provide a powerful fault detection scheme.  The 
neural net and fuzzy logic approaches are not geared 
for the diagnosis of incipient faults, hence the need 
for, and the inclusion of, a model-based scheme.  

2 A SENSOR NETWORK 
PARADIGM FOR FAULT 
DIAGNOSIS 

A new scheme is proposed here whereby a sensor 
network paradigm is applied to fault diagnosis. A 
typical system including a process control system, a 
water distribution system formed of tanks and 
network of pipes, a power utility formed of 
generators and transmission lines, a communication 
network, and petrochemical  industries consisting of 
a number of control loops, including controllers, 
sensors and actuators, and various processing plants, 

as shown in Fig. 1. As such, such a large system will 
include a sensor network. 
A sensor is modelled by a gain and an additive 
noise, as given below: 

0
i si i iy k y v= +  (1) 

where siy , 0
siy and iv are the measured sensor 

output, true or fault-free output and additive noise, 
respectively. Here the gain is such that 0 1sik≤ ≤ , 
with the degree of the fault ranging from no fault at 
all for 1sik =  to a  complete  failure for 0sik = . The 
subsystems such as actuators, processors and 
controllers are denoted by transfer functions, iG . 
Many systems consisting of several closed loops, 
each with its own reference input,  can be viewed as 
a sensor network that can be described by a ring-
type topology. 

The objective of the sensor network is to 
diagnose faults in both the sensors, through the gains 

sik   and in the subsystems iG  by monitoring the 
sensor outputs iy .  

The mathematical relations governing the sensor 
outputs  iy  to the input to 0G , denoted by e  are: 

1 0 0 0sy G k e v= +  

2 0 1 1 1sy G G k e v= +  

3 0 1 2 2 2sy G G G k e v= +  
. 
. 

0 1 2 1 ( 1) 1...i i s i iy G G G G k e v− − −= +  

(2) 

where e r y= − . 
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3 FUZZY LOGIC-BASED FAULT 
DIAGNOSIS 

 
Figure 2: Fuzzy Logic-Based Fault Diagnosis Scheme. 

The fuzzy fault diagnosis scheme uses the steady-
state values of the sensor outputs, iy , denoted by ss

iy . 
A change in the gain sik or a change in the steady-
state gain of the transfer function iG , denoted 
by ss

iG , is indicative of a fault in the i-th sensor and 
i-th subsystem, respectively (see Fig.2). Assuming 
that the noise term is subsumed in the fuzzy 
membership function, the steady-state model takes 
the form: 

0 1 2 1 ( 1)...ss ss ss ss ss
i i s iy G G G G k e− −=  (3) 

Let us now define linguistic variables such as 
zero, and non-zero. For simplicity, we will consider 
the case where only one device can be faulty at any 
given time, i.e. the fault is assumed to be simple. In 
this case, the fuzzy rules may take the following 
form: 
Rule 1: If ss

iy  is non-zero, then there is a fault in  the 
steady-state gain 0

ssG or 1
ssG or 2

ssG or…or ss
iG   or  ith 

sensor gain sik  

Rule II: If ss
iy  is zero, then there is no fault in the 

subsystem’s steady-state gain 0
ssG or 1

ssG or 2
ssG or…or 

ss
iG or ith sensor gain sik  

Rule III: If  ss
iy  is zero and ( 1)s iy + is non-zero then 

there is a fault in subsystem 1
ss
iG + or sensor ( 1)s ik +  

Rule IV: If  ss
iy  is non-zero and ( 1)s iy + is zero then 

there is a fault in sensor sik  
These rules may be generalized to multiple faults.  

4 NEURAL NETWORK-BASED 
FAULT DIAGNOSIS 

A fault  in  the  sensor, sik  , and or in a subsystem,  

iG , can also be diagnosed by using a neural 
network, as shown in Fig.3. The inputs to the neural 
network are the spectrum of the coherence between 
the fault-free and measured sensor outputs. 

 

(4) 

where ω is the frequency in rad/sec, and 
( )( )0 ( )ic y j y jω ω  is the coherence spectrum. If 

there is no fault, then ( )( )0 ( ) 1ic y j y jω ω = for all 
frequencies. If the measured and fault-free outputs 
are incoherent with each other at some frequencies, 
then the coherence spectrum will be less than 1 at 
those frequencies. 

 
Figure 3: Neural Network-Based Fault Diagnosis Scheme. 

5 MODEL-BASED FAULT 
DIAGNOSIS 

A bank of Kalman filters is employed to detect 
faults. An i-th Kalman filter will be driven by the 
signal ( )e k , and the output of the i-th sensor output 

iy , 

( )ˆ( 1) ( ) ( ) ( ) ( )i i i i i i ix k Ax k Be k d K y k y k+ = + − + −  
ˆ ˆ( ) ( )i i iy k C x k=  

(5) 

where d is the delay, ˆix is the estimate of the state, 
ix , ( ), ,i i iA B C is the state-space model of the 

system with input ( )e k and the sensor output, ( )iy k . 
The above-defined Kalman filter is applied to the 
following transfer function model of the collection 
of i sub-systems:  

0 1 2 1 ( 1) 1...i i s i iy G G G G k e v− − −= +  (6) 

5.1 Kalman Filter Design 

Let us consider a generic Kalman filter for a system 
with input u and output, y.  The Kalman filter is 

( )( ) ( ) ( ) 20 *
0

2 20
, ( )

( ) ( )

i i
i i

i i

y j y j
c y j y j

y j y j

ω ω
ω ω

ω ω
=
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designed for the normal fault-free operation. The 
model of the fault-free system is given by: 

0 0( 1) ( ) ( ) ( )x k A x k B u k d w k+ = + − +  

0( ) ( ) ( )y k C x k kυ= +  (7) 

Where( )0 0 0, ,A B C  are the system matrices 
obtained from the fault-free system model, ( )w k  and 
( )v k  are the zero-mean white plant and 

measurement noise signals, respectively, with 
covariances: 

( ) ( )TQ E w k w k⎡ ⎤= ⎣ ⎦ , and ( ) ( )TR E v k v k⎡ ⎤= ⎣ ⎦  (8) 
The plant noise, ( )w k , is a mathematical artifice 

introduced to account for the uncertainty in the a-
priori knowledge of the plant model. The larger the 
covariance Q  is, the less accurate the model 
( )0 0 0, ,A B C is and vice versa.   

The Kalman filter is given by: 
( )0 0 0 0ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )x k A x k B u k d K y k C x k+ = + − + −

0 ˆ( ) ( ) ( )e k y k C x k= −  (9) 

where d is the delay and ( )e k  the residual.  

The system model has a pure time delay which is  
incorporated in the Kalman filter formulation. The 
Kalman filter estimates the states by fusing the 
information provided by the measurement ( )y k  
and the a-priori information contained in the 
model,( )0 0 0, ,A B C . This fusion is based on the a 
priori information of the plant and the measurement 
noise covariances, Q, and R, respectively. When Q is 
small, implying that the model is accurate, the state 
estimate is obtained by weighting the plant model 
more than the measurement one. The Kalman gain, 
0K , will then be small. On the other hand, when R 

is small implying that the measurement model is 
accurate, the state estimate is then obtained by 
weighting the measurement model more than the 
plant one. The Kalman gain, 0K , will then be large 
in this case. 

The larger 0K is, the faster the response of the 
filter will be and the larger the variance of the 
estimation error becomes. Thus, there is a trade-off 
between a fast filter response and a small covariance 
of the residual. An adaptive on-line scheme is 
employed to tweak the a- priori choice of the 
covariance matrices so that an acceptable trade-off 
between the Kalman filter performance and the 
covariance of the residual is reached.  

5.2 Fault Isolation 

Let ie be the residual of the i-th Kalman filter. A 
fault in 0G , 1G 2G …or iG or sik is indicated if the 
absolute mean of the residual exceeds a specified 
threshold thσ  .   
Let us define a 2(N+1) by1 vector of zeros and ones. 

0 1 2 0 1 2... ...i N Nb g g g g κ κ κ κ=⎡ ⎤⎣ ⎦ (10) 

0
1

i
i

i

no fault in G
g

fault in G
⎧

= ⎨
⎩

 (11) 

 
0
1

si
i

si

no fault in k
fault in k

κ
⎧

= ⎨
⎩

 (12) 

Case I. 
If the absolute mean of the i-th residual exceeds the 
threshold thσ , then ib  will be:  

1 1 1 .... 1 ...ib X X X X X X X X=⎡ ⎤⎣ ⎦ (13)

where X is a don’t care value (0 or 1). 
If the absolute mean of the (i+1)-st residual does 

not exceed the threshold thσ , then 1ib + will be: 

1 0 0 0 0 .... 0 ...ib X X X X X X X+ =⎡ ⎤⎣ ⎦   (14)

The intersection between the 2 binary sets ib  and 
1ib + , amounting to an element-wise binary logical 

ANDing of these 2 sets,  will then clearly indicate 
that the sensor sik is the faulty one. 

Case II. 
If the absolute mean of the ith residual does not 
exceed the specified threshold thσ , then ib  will be: 

0 0 0 .... 0 ...ib X X X X X X X X=⎡ ⎤⎣ ⎦  (15) 

If the absolute mean of the (i+1)-st residual  
exceeds the specified threshold thσ ,  then 1ib + will 
be: 

1 1 1 1 1 .... 1 ...ib X X X X X X X+ ⎡ ⎤= ⎣ ⎦  (16) 
This shows that the intersection between the 2 

binary sets ib  and 1ib + , amounting to an element-
wise binary logical ANDing of these 2 sets,  will 
then clearly indicate that either the sensor ( 1)s ik +  or 
subsystem ( 1)s iG + is the faulty one. 
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6 EVALUATION OF THE 
PROPOSED SCHEME 

oQ

pumpdc motor

i ω
iQ

leakage

LR

1H 2H

controller

Q
outflow

inflow

 
Figure 4: Two-tank Fluid System. 

An evaluation of the proposed scheme for fault 
diagnosis was performed on a benchmark 
laboratory-scale process control system using 
National Instruments LABVIEW as shown in Fig 4. 
Fault diagnosis in a fluid system has enjoyed an 
increasing importance and popularity in recent years 
from the points of view of economy, safety, 
pollution, and conservation of scarce resources 
(Marco Ferrente, 2008) (Zhang Sheng, 
2004)(Doraiswami, 1996) (R.J. Patton, 
2000)(Astrom et.,al, 2001) (C. De Persis, 2000)(H. 
Hammouri, 2002) (K.M. Kinnaert, 1999). 

 The proposed scheme is used to detect and isolate 
a fault by a sequential integration of model-free and 
model-based approaches.  

ym y2 y1 y0 

y 

ql  
leakage 

r e 

tank

actuator controller 
ua u 

G0 
0
1G  0

2G  γa 1-γl γ s 

γl 

ks1 ks2 ks0 ks3

Figure 5: Fluid system subject to a leakage. 

We will use a set of fuzzy logic rules to detect a 
leakage. The fuzzy IF and THEN rules for the two-
tank fluid system are derived using the sensor 
network shown in Fig.1. For the fault diagnosis 
problem, the equivalent of Fig. 1, is shown in Fig. 5 
whose various sub-systems and sensor blocks are all 
explained below. First, note that the first two blocks 
in Fig. 5, i.e. 0G and 0

1 1 aG G γ= , represent the 
controller and the actuator sub-systems, respectively. 
As shown in Fig. 5, the leakage is modelled by the 
gain γ  which is used to quantify the amount of 
flow lost from the tank. Thus the net outflow is 
quantified by the gain (1 γ− ).  Since the two blocks 

0
2G  and (1 γ− ) cannot be dissociated from each 

other, they are fused into a single block labelled 
( )0

2 2 1G G γ= − . The feedback sensor, modelled by 
the gain sfk , is used to feed the plant output y back to 
the controller, and is modelled by the last block 3G  
in Fig. 3, where 3 sfG k= . An additional sensor, 
termed as the redundant sensor of gain 2sk , is used 
here to discriminate between faults in the height 
sensor and feedback sensor.  Even though the 
control input u does not necessitate a separate sensor 
to monitor its output as it is freely available from the 
digital controller ( 0G ), a separate unit gain, labelled 

0 1sk = , is attributed to it. Similarly, the last sensor, 
used to monitor the feedback sensor output, is also 
attributed a unit gain, i.e. 3 1sk = . The reason for 
adding these two unit gains to Fig. 5 is motivated by 
our desire to make the overall sensor network 
structure for the leakage detection problem fit in 
well within the general sensor network-based fault 
detection paradigm shown in Fig. 3. By doing so, the 
two fuzzy rules (Rules 1 and 2 given earlier) can be 
readily applied to Fig. 5. The four residuals, 0r , 1r , 

2r  and 3r , are the deviations between the fault-free 
and fault-bearing measurements of the control input 
, flow rate,  height from the redundant sensor, and 
height from the feedback sensor, respectively.  

6.1 Fault Diagnosis using a Model-free 
Approach 

A sequential integration of an artificial neural 
network (ANN) and a fuzzy logic (FL) approach is 
employed here to isolate faults.  

Fuzzy-logic Approach. The features were chosen 
to be the steady-state values of the control input, ssu , 
measured flow ssflw and height ssh values and their 
fault-free counterparts, 0

ssu , 0
ssflw and 0

ssh , respecti-
vely. The fuzzy logic rules pertinent to this case are 
similar to those described earlier. 

The steady-state gain relating ssflw  and ssu  is 
given by:  

0 1
ss ss ss

ssflw G G u=  (17) 
The steady-state gain relating ssh  and ssu  is 

given by:  

0 1 2
ss ss ss ss

ssh G G G u=  (18) 
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Where 0 1 2, ,ss ss ssG G G  are the steady-state gains of 
the actuator, the transfer function relating the control 
input to the flow, and the transfer function relating 
the flow to the height, respectively. 

The fuzzy IF-and-THEN rules given in the 
previous section can isolate a leakage from faults in 
the actuator, flow and height (or level) sensor.  

Neural Network Approach. A neural network is  
driven by the coherence spectrum between the 
measured height h  and the corresponding fault-free 
one 0h . This coherence spectrum is defined by: 

 

(19) 

The neural network is trained to classify four 
possible faults, namely a fault in the actuator, a fault 
in the level sensor, a fault in the flow sensor, and a 
leakage. 

The fuzzy approach is then integrated 
sequentially with the neural network-based fault 
classification approach to complete the required 
fault isolation scheme. The Neural Network-based 
classifier precedes the Fuzzy Logic-based one, with 
the former providing a fast fault classification,  
followed by a fuzzy logic block to unravel the real 
cause(s) of the fault. The fault magnitude is 
estimated from the changes in the settling time, 

0
s ss sst t tΔ = − , whereas its onset is indicated by the 

changes in the height profile.  
Figs 6-8 give the profiles of the flow, height and 

the coherence spectrum. Fig. 6 shows height profiles 
in the presence of leakages of different magnitudes 
occurring when the fluid level system is operated in 
both an open-loop and a closed-loop configuration. 
For the open-loop case, one can readily deduce both 
the onset and amount of the leakage from the 
height/flow profile. The leakage flow has five 
sections corresponding to the following five degrees 
of no-leakage, small, medium, large and very large 
leakage. However, by its very nature, the closed-
loop PI controller hides the fault and hence makes it 
difficult to visually detect it.  
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Figure 6: Height/Flow Profile/Coherence under leakage 
Faults. 
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Figure 7: Height/FlowProfile/Coherence under actuator 
faults. 
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Figure 8: Height/Flow Profile/Coherence under level 
sensor faults. 

6.2 Model of the Fluid System 

A benchmark model of a cascade connection of a dc 
motor and a pump relating the input to the motor, u, 
and the flow, iQ , is a first-order system expressed 
by: 

( )i m i mQ a Q b uφ= − +  (20) 

where ma and mb are the parameters of the motor-
pump system and ( )uφ is a dead-band and 
saturation-type nonlinearity. The Proportional and 
Integral (PI) controller is given by: 

3 2

3p I

x e r h
u k e k x

= = −
= +

 (21) 

where pk and Ik are gains and r is the reference 
input. 

With the inclusion of the leakage, the liquid level 
system is modelled by (Astrom et al., 2001): 

( ) ( )1
1 12 1 2 1i

dH
A Q C H H C H

dt
ϕ ϕ= − − −        (22) 

( ) ( )2
2 12 1 2 0 2

dH
A C H H C H

dt
ϕ ϕ= − −                

(23) 
where (.) (.) 2 (.)sign gϕ = , ( )1Q C Hϕ= is the 

leakage flow rate, ( )0 0 2Q C Hϕ= is the output flow 

rate, 1H and 2H are the liquid heights in tanks 1 and 
2, respectively, 1A  and 2A  are the cross-sectional 

areas of tanks 1 and 2, respectively, g=980 2/ seccm  
is the gravitational constant, 12C  and oC  are the 

( )( ) ( )
( )

20 *
0

2 20

( )
, ( )

( )

h j h j
c h j h j

h j h j

ω ω
ω ω

ω ω
=

ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics

126



 

discharge coefficients of the inter-tank and output 
valves, respectively. The linearized model of the 
entire system formed of the motor, pump, and the 
tanks is given by: 

x Ax Br y Cx= + =  (24) 
 

1 1 11

2 22

3

0
0 0

, ,
1 0 0 0

0

0 0 1 , [1 0 0 0]

m p m I mi

T

m p

a a bh
a ah

x A
x

b k b k aq

B b k C

α
β

− −⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥ −
⎢ ⎥⎢ ⎥ − −⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤= =⎣ ⎦

 (25) 

Where iq , q , 0q , 1h and 2h are respectively the 

increments in iQ , Q , oQ , 0
1H  and  0

2H , 1a , 2a , α  
and β are parameters associated with linearization, 
α is associated with leakage and β is the output 
flow rate,  1q hα= , 2oq hβ= . 

6.3 Evaluation of the Fault Detection 
using a Bank of Kalman Filters 

A bank of two Kalman filters is used here, one with 
input u(k) and the flow-sensor output, and the other 
with input u(k) and the height-sensor output  

First the fault-free model of the system is 
identified using a recursive least-squares 
identification scheme. The order of the estimated 
model was iterated to obtain an acceptable model 
structure using a combination of the AIC criterion 
and the identified pole locations.  

The identified model is essentially a second-order 
system with a delay even though the theoretical 
model is of a fourth order. Using the fault-free 
model together with the covariance of the 
measurement noise, R, and the plant noise 
covariance, Q, the Kalman filter model was finally 
derived. As it is difficult to obtain an estimate of the 
plant covariance, Q, a number of experiments were 
performed under different plant scenarios to tune the 
Kalman gain, 0K . 

( )ˆ ˆ ˆ( 1) ( ) ( ) ( ) ( )i i i i i i i i ix k Ax k Bu k d K y k Cx k+ = + − + −         (26) 

ˆ( ) ( ) ( ) 1,2i i ir k y k C x k i= − =                   (27) 

where ix is the state, ir is the residual, ( , , )i i iA B C  is 
the state-space model of the first subsystem relating 
the control input ( )u k  to the flow output ( )iy k . The 
transfer function for the first subsystem 

1 1 1( , , )A B C relating the control input ( )u k  to the 

flow output 1( )y k .  

1 0 1( ) ( ) ( ) ( )y z G z G z u z=                                (28) 
where 0G  is the actuator transfer function and 1G  is 
the transfer function relating the actuator output to 
the flow. 2 2 2( , , )A B C  is the state-space model for  
the second subsystem relating the control input ( )u k  
to the height 2 ( )y k . The transfer function for the 
second subsystem 2 2 2( , , )A B C relating the control 
input ( )u k  to the height output 2 ( )y k   

2 0 1 2( ) ( ) ( ) ( ) ( )y z G z G z G z u z=                      (29) 

where 2G  is the transfer function relating the flow to 
the height.  

In this case, four possible fuzzy rules can be 
derived, two of which are stated in the following:  

• If  1
1

1 ( )
N

thr
i

r i
N

σ
=

>∑ , then there is a 

fault in 0G ( subsystem 0) or 1G  
( subsystem 1) or in the flow-sensor,  

• If  2
1

1 ( )
N

thr
i

r i
N

σ
=

>∑ , then there is a 

fault in 0G ( subsystem 0) or 1G  
( subsystem 1) or 2G ( subsystem 2)  or 
in the height-sensor (level-sensor).   

The Kalman filter bank was evaluated under 
different fault scenarios for an ON-OFF controller, a 
P controller, and a PI controller, as shown in Fig.9.  
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Figure 9: Kalman filter results for an On-Off and PI 
Controller: for Flow and Height under various leakage 
magnitudes. 

Comments: The model of the fluid system is 
nonlinear, complex and stochastic. A simplified 
linearized model which contains only the dominant 
poles (as it was difficult to identify the fast 
dynamics) was used in the design of the Kalman 
filter bank. Results from the evaluation on the 
physical system shows that the Kalman filter bank is 
robust in modelling uncertainties including 
nonlinearities and neglected fast dynamics, while at 
the same time being sensitive to incipient faults. 
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The height profile and the residual of Kalman filter
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7 CONCLUSIONS 

The proposed intelligent fault diagnostic scheme 
based on a sequential integration of model-free and 
model (Kalman)-based approach was found 
promising when applied to a benchmarked 
laboratory-scale two-tank system. The model-free 
approach detects a presence of a possible fault from 
the integration of both neural network and fuzzy 
logic approaches. Results from the evaluation on the 
physical system shows that the Kalman filter bank is 
robust in modeling uncertainties including 
nonlinearities and neglected fast dynamics, while 
retaining its sensitivity to incipient faults. The 
integration of fuzzy-logic and neural networks 
proved itself to be a robust way of providing a quick 
and reliable indication of a fault based on steady-
state measurements and height profile. 
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