
FORMAL METHODS: FOR ALL OR FOR CHOSEN?

Victor V. Kuliamin, Vitaliy A. Omelchenko
Institute for System Programming, Russian Academy of Sciences (ISPRAS), Solzhenitsyna, 25, Moscow, Russia

Olga L. Petrenko
Moscow Institute of Open Education, Moscow, Russia

Keywords: Formal methods, Teaching formal methods, Active learning, Cooperative learning, Critical thinking pedagog-
ical framework.

Abstract: The article presents an approach to teaching formal methods that may make them accessible for ordinary
software engineers, especially those who are not skilled in the underlying mathematics. The approach is
based on two ideas. First, we propose modification of course contents to hide the underlying mathemati-
cal techniques under some terms and actions familiar to the engineer or student learning the corresponding
application domain. This usually requires availability of mature tools supporting formal methods under con-
sideration. Second, we modify the presentation of course material and focuse mostly on active learning and
more deep students’ involvement in the learning process. This approach was successfully used in traditional
courses and trainings in UniTESK, a test development technology based on formal specifications.

1 INTRODUCTION

We are witnessing a strange trend in software devel-
opment. Modern development techniques and tools
make possible development of extremely complex
software systems. At the same time the quality of
software is perceived mostly as poor. Even without
taking into account the critical software working in
avionics, healthcare, or infrastructure systems, where
single failure can lead to loss of human life or catas-
trophic losses for a country, the economic impact of
software faults reaches the dozens of billions dollars
per year only in USA economy (Tassey, 2002).

It seems that the application of traditional soft-
ware development ‘best practices’ could not provide
the proper way to manage the sky-rocketing soft-
ware complexity. To attain the acceptable level of
software quality more systematic and rigorous ap-
proaches should be applied in industrial software de-
velopment. The only visible candidates on this role
are formal methods (FM).

Formal methods have been extensively developed
over many years. From original toy examples (Floyd,
1967; Dijkstra, 1974) they evolve into the wide vari-
ety of methods supported by tools. They have been

successfully applied in industrial software projects.
One of the largest such projects was the development
of a controller system for the Parisian driverless metro
Meteor by MATRA based on B specifications and the-
orem proving with further code generation (Abrial,
1996). In some domains formal notations and meth-
ods based on them became traditional, e.g. SDL and
TTCN with techniques based on them in the telecom-
munication software development.

Nevertheless, formal methods are still not widely
used in the software industry. The most commonly
referred reason for this situation is that formal meth-
ods require use of difficult mathematics and corre-
spondingly skilled staff. While the numbers software
projects and of software developers involved grow
each year with increasing speed, the number of peo-
ple who can adequately operate the techniques under-
lying most formal methods grows much slowly. Al-
though a lot of courses in FM are conducted in uni-
versities, the effort needed to prepare a professional
in formal methods is huge and not all the people who
can be successfully used as software engineers can be
trained in formal methods with the same success.

So, for successful introduction of formal methods
the industry requires now so many FM specialists that

217
V. Kuliamin V., A. Omelchenko V. and L. Petrenko O. (2009).
FORMAL METHODS: FOR ALL OR FOR CHOSEN?.
In Proceedings of the First International Conference on Computer Supported Education, pages 217-222
DOI: 10.5220/0002153902170222
Copyright c© SciTePress



current education system cannot produce. One can
try to solve this problem by increasing labor effec-
tiveness, polishing up existing techniques and profes-
sional skills, but in this article we propose to increase
number of FM specialists using innovative education
technologies. We defend the point that the problem of
deep involvement of mathematics in teaching formal
methods can be overcome. The idea is to put most of
the burden of formal manipulation with symbols on
tools, while giving people more skills of whole pic-
ture comprehension along with abilities to find key
issues in the problem domain.

To do this we should revise the courses used and
try to make them more comprehensible and useful
for people with no direct aptitude in mathematics by
putting focus on key issues in practically successful
formal techniques. This revision should involve both
the contents of FM courses and maybe the user inter-
face of the tools used and the course presentation and
techniques used in education process.

2 COURSE ADAPTATION
PROBLEMS

We suppose that there is no universal way to teach
any student any course. So, every course needs some
adaptation to the audience, in particular, whether it
consists of mathematically talented people or not.
This adaptation should not be based only on interests
of students, because it usually leads to decrease of ed-
ucation level.

Here we consider adaptation of FM courses for
people that have no mathematical aptitude. On the
base of our experience we suggest two ways of course
adaptation.

• Modification of course contents. This possibil-
ity is concerned with user interface of the formal
method under consideration, so we further call it
‘turning to the user’.

• Modification of course presentation, its organiza-
tion and teaching methods used. This possibil-
ity is concerned with involvement of students into
education process, transformation of this process
into active learning process, so we further call it
‘turning to the student’.

3 TURNING TO THE USER

The comprehension of a course depends on many fac-
tors. Since formal methods are not a fundamental sci-
ence (it is mathematics in this case), the formal meth-

ods course contents can vary in wide range depend-
ing on the students’ background and aptitude. The
contents depend on the number of hours we have and
position of the course in the curriculum. We can try
to escape the predominance of mathematical notation
and techniques by means of course contents modifi-
cation.

This approach is closely related with user inter-
face of the corresponding tools. For tool users it
means that the representation of a method is simpli-
fied and its mathematical background is hidden under
some simple operations, which can be performed au-
tomatically in most cases or require user to answer
some clear questions. For FM students this means
that the contents of the course can be changed to focus
on practical aspects of using a method with the help
of simple terms and tools adequately supporting the
method and the underlying mathematical techniques
can be leaved out of scope or moved to advanced part
of the course.

To see whether it is possible to decrease the level
of mathematics involved in courses in formal methods
we have compared several of them.

1. Modeling and Analysis of Complex Systems.
The course AA244 (ASM Course, 2001) is con-
ducted for 4-th year students of Department of
Computer Science, University of Pisa, Italy. It is
developed by E. Borger and consists of theoretical
lectures covering the following topics.

(a) Current state of software engineering. Abstract
State Machines as a ground foundation for rig-
orous system engineering.

(b) Definition of ASM. ASM notation. ASM se-
mantics. Multi-agent and asynchronous ASMs.
Models of concurrency. ASM as universal al-
gorithmic models.

(c) Capturing requirements in ASM. Simulation
and reasoning on ASM models. Stepwise re-
finement method.

2. Modeling and Computation.
The course CSC264 (VDM Course, 2003) is
conducted for 2-nd year students of School of
Computing Science, University of Newcastle
upon Tyne, United Kingdom. Its authors are
J. S. Fitzgerald, M. S. Kouthy, and S. Riddle. The
course includes theoretical and practical parts and
covers the following topics.

(a) Software development and software lifecycle.
Challenges in software development.

(b) Formal models of software. Their characteris-
tics and impact on the development activities.

(c) Modeling techniques. Formal specification lan-
guages.

CSEDU 2009 - International Conference on Computer Supported Education

218



(d) Vienna Development Method. VDM con-
structs. VDM types. Recursive data types.
State based modeling.

(e) Validation. Model consistency. Animating,
testing, and proving of models. Logical frame-
works. Propositional logic. Calculus of se-
quents. Logic of partial functions. Reasoning
about VDM models.

(f) Concurrency models. Models of computation.
Finite state automata.

3. Formal Specifications of Software.
The course (FM Course, 2008) is developed by
A. Petrenko and is conducted for 4-th year stu-
dents of Computing Mathematics and Cybernet-
ics Faculty of Moscow State University, Russia.
The course consists of theoretical part and practi-
cal studies covering the following topics.

(a) Software lifecycle, its main phases and activi-
ties. Software requirements. Software quality.

(b) Formal methods in software development. For-
mal specifications and their impact on differ-
ent activities. Specification techniques. Refine-
ment and abstraction.

(c) RAISE method. Iterative refinement. RSL lan-
guage. RSL notation. RSL types. Variant
types. RSL expressions. Parallel computation.

(d) Analytical verification of software. Hoare
logic. Floyd methods.

(e) Testing based on formal specifications. Test or-
acle. Test adequacy criteria. Partitioning of op-
eration domain. Test sequence construction on
the base of automata models.

(f) Formal specifications of programming lan-
guages. Syntax, static and dynamic semantics.
BNF. Attribute grammars. Correctness check-
ing. Code generation. Methods of dynamic se-
mantics description. Operational semantics.

4. Formal Software Specification Using RAISE.
The course (RAISE Course, 2003) is conducted
for graduates in computer science or other
computing-related discipline in International In-
stitute for Software Technology, United Nations
University, Macau. It is developed by C. George
and A. E. Haxthausen. The course includes both
theoretical and practical parts and covers the fol-
lowing.

(a) Software lifecycle. Formal methods in gen-
eral. Characteristics of formal methods. For-
mal specifications.

(b) RAISE method. Iterative refinement and verifi-
cation. Specification techniques.

(c) RSL notation. RSL types. Variant types. RSL
expressions. Channels and concurrency. Mod-
ularity.

This helps to find common part of most such
courses and gives ideas to lighten the mathematics
involved. The contents of all four these courses are
based of the following common scheme.

1. To make software development less error-prone
and the resulting software more manageable and
comprehensible we can useformal modelsof soft-
ware under development or analysis. They help
to explore the properties of actual software or to
construct it in such a way that it would have the
wishful properties.

2. Formal models are developed in a specializedfor-
mal frameworksproviding a language to describe
such models and methods of deducing or checking
models’ properties, or checking their counterparts
(whatever it means) in actual software. These are
the methods usually calledformal methods.

3. The iterative refinementof models is used to ob-
tain the models more and more close to the ac-
tual software or to the software we need and at
the same time retaining the properties of the pre-
viously constructed models.

This general scheme is illustrated on Fig. 1.

Figure 1: Common contents of courses in formal methods.

The formal frameworks considered in different
courses differ – in the first one it is Abstract State Ma-
chines (ASMs) (Borger and Stark, 2003), in the sec-
ond one it is Vienna Development Method (Bjorner,
1979; Fitzgerald and Larsen, 1998), in the third and
the fourth it is RAISE Method (RAISEGroup, 1995).
But the common scheme found gives us some hints
on how to modify its contents to make it more com-
prehensible for people not skilled in mathematics. We
notice that most elaborated mathematics is involved in
formal frameworks used. Usually they are based on
formal languages with specific notation and include
methods to manipulate formal constructions that look

FORMAL METHODS: FOR ALL OR FOR CHOSEN?

219



terrible for non-mathematicians. And the use of math-
ematics in work with formal models mostly depends
on the language and methods used. So, we have two
possibilities concerning with those issues in the in-
verse order.

First, we may make mathematical background of
a formal method as stable as possible and hide it in-
side the tools supporting this method. The interface
of the tools should be as close to the ‘common life’ as
possible. Users would work with it by manipulating
the familiar concepts and their relations, which are
unambiguously mapped into formal framework and
so correspond to formal concepts with relations be-
tween them. This solution can be applied if we per-
form refinements rarely and are interested in meth-
ods that allow mostly automatic operation with mod-
els and their properties. Examples of such methods
are model checking and formal testing.

Second, we may try to ‘decorate’ formal frame-
work with terms of common language in such a way
that makes its theorems and techniques more clear
to non-mathematician. Of course, such a decoration
should be performed in a very accurate way, different
for different problem domains, to eliminate problems
of misunderstanding of terms and at the same time to
provide these terms with precise meaning. This ap-
proach may simplify techniques used for proving of
software properties.

4 TURNING TO THE STUDENT

The other direction of course adaptation is to create
an effective learning environment different from the
traditional university education system based on pure
theoretical lectures and practical studies. While the
traditional education process is based mostly on stu-
dents’ attention, perception, and memorization of the
information (‘the school of memory’), some modern
education methods involve creative, dialogical think-
ing and social activity in the learning process (‘the
school of thinking’). Advanced learning techniques
use the ideas of cooperation, dialog, and partnership
between students and teacher.

This cooperation can be realized in the process
of active learning, which requires teacher to change
his attitude to the education. Good results can be
achieved if the teacher realizes that student is the fo-
cal person of the process and that the main activity
is learning, not teaching. The priorities are moved
to independent learning and practical application of
knowledge obtained in particular.

In active learning students are involved in active
cognitive work on all the phases of education pro-

cess. They independently discover the knowledge,
which in traditional approach is presented by the
teacher without active participation of the students
themselves (Smirnov, 2001). It is well known that
when active learning is used from 75% to 90% of the
information given by the teacher is acquired. Com-
pare this data with the corresponding data for tradi-
tional lecture, which helps to acquire not more than
20% of the information introduced in it (Hartley and
Davies, 1978).

Since the university education is organized as a
number of lectures and practical studies, we use the
same organizational structure. Practical studies give
more possibilities for student involvement in active
learning process and can be conducted with use of co-
operative learning techniques (Johnson et al., 1990),
projects, multi-level education. We also use the fol-
lowing techniques in presentation of the course con-
tents.

1. Work with special workbook (portfolio) for inde-
pendent tracking of subject mastering and formu-
lation of questions. This technique is used at the
lectures as a form of the students’ individual work
organization.

2. Organization of cooperative work in groups dur-
ing lectures. It is used to discuss the stated prob-
lems, to make decisions, and to find unclear issues
by the end of the day (Rae, 2000).

3. Organization of pair work on lectures with indi-
vidual tasks for students in a pair, for example,
one student tries to explain the material to the
other or one asks questions and the other answers
them.

4. Individual system of practical studies that allows
every student to go along his own way in master-
ing practical skills.

5. Use of anticipatory exercises during lectures,
when students are asked to find a solution of
some problem with the help of individual work or
discussions groups before the knowledge on the
given topic are introduced to them. Then a joint
discussion of the problem is organized and new
knowledge on the given topic is presented. Af-
ter that the problem discussion and its results are
analyzed.

6. Use of one of the basic models of active
learning – Evocation-Realization of Meaning-
Reflection (Meredith et al., 1997).
Evocation is a process of actualization of stu-
dents’ knowledge on a given topics and their mo-
tivating to investigate problems arisen. Challenge
prepares students for and sets their learning pro-
cess on the information that will be introduced

CSEDU 2009 - International Conference on Computer Supported Education

220



later. During a lecture challenge can be repre-
sented for example as the task to draw the cog-
nitive cluster of some concept or problem.
Realization of Meaningis an acquisition of new
information or ideas. This phase implies introduc-
tion of new information. The realization of any-
thing new can take place only during active learn-
ing activities. So, the special conditions should be
created to stimulate active involvement of a stu-
dent into the process of mastering new informa-
tion.
Reflectionis an introduction of new knowledge
into one’s own knowledge system.

To stimulate active involvement of a student into
learning process we suggest not use traditional syn-
opses writing on lectures. Instead we can use the ‘log-
book’ technique for memorizing information pre-
sented on lecture. The ‘log-book’ consists of the fol-
lowing parts.

• keywords;

• questions, problems;

• diagrams, charts, drawings, models;

• associations, applications.

The lecture stops after 12 minutes since lecture started
and asks students to fill the sections of the ‘log-book’.
They used about 3-4 minutes for that, then 5-6 min-
utes for discussion of the results. After that the lecture
proceeds.

The other technique that can be used is presenta-
tion of a lecture with the help of marking table. The
text of lecture is distributed among students and they
are asked to mark it with the following marks.√

– I already know this
+ – this is new for me
- – this contradicts to my knowledge
? – here I have some questions

After marking the text each student fills the ta-
ble consisting of four columns corresponding to those
marks. Then, the discussion of the questions and con-
tradictions is organized in pairs and in groups. The
lecturer sometimes takes the initiative and explains
the necessary issues.

Such an organization of learning process helps to
each student to move along his own path, his own
learning trajectory. The important issue in the de-
velopment of student’s own knowledge system is re-
flection, which is underestimated in teaching formal
methods, since reflection is usually related with the
humanities. But the only reflection helps one to com-
prehend his activity in such a way that he is definitely
aware of what and how he does. In other words, one
is aware of plan and rules of his own activity. The

purport of reflection as a learning activity is the re-
finement of one’s knowledge, uncovering of its foun-
dations and evolution process.

Other ways of lecture organization that helps to
construct individual learning trajectory are also pos-
sible.

5 CONCLUSIONS

The article presents an approach to teaching students
with no aptitude in mathematics formal methods of
software development. To have such an approach is
very important in the contemporary world where the
most part of critical infrastructure uses software in
some form and the software becomes extremely com-
plex and at the same time needs higher level of relia-
bility.

The approach presented consists of the following
two parts.

1. Course contents can be modified to hide the math-
ematical formalism often put ahead as a main
essence of formal methods under a set of com-
monly used terms and more usable interface of the
tools with several ‘magic buttons’.

2. The learning process can be made more effec-
tive by use of modern education techniques aimed
to involve as much capabilities and attention of
students as possible, to stimulate them to active
learning and independent knowledge acquisition.

Members of RedVerst group of ISPRAS success-
fully apply this approach in course on formal speci-
fication of software conducted in Moscow State Uni-
versity. It was also used in several training course
conducted for industrial software development teams
to transfer UniTesK test development technology base
on formal specifications (Petrenko and Omelchenko,
2003; Kuliamin et al., 2005).

REFERENCES

Abrial, J. R. (1996). The B Book. Cambridge University
Press.

ASM Course (2001). http://www.di.unipi.it/∼boerger/
LC01.html.

Bjorner, D. (1979).The Vienna Development Method: Soft-
ware Abstraction and Program Synthesis. Springer-
Verlag.

Borger, E. and Stark, R. (2003).Abstract State Machines:
a Method for High-Level System Design and Analysis.
Springer-Verlag.

FORMAL METHODS: FOR ALL OR FOR CHOSEN?

221



Dijkstra, E. W. (1974). Programming as a discipline of
mathematical nature.Am. Math. Monthly, 81(6):608–
612.

Fitzgerald, J. and Larsen, P. G. (1998).Modelling Systems:
Practical Tools and Techniques for Software Develop-
ment. Cambridge University Press.

Floyd, R. W. (1967). Assigning meanings to programs. In
Proc. Symposium on Applied Mathematics, pages 19–
32. American Mathematical Society.

FM Course (2008).http://www.ispras.ru/∼RedVerst/ Red-
Verst/Lectures and training courses/MSU course For-
mal specification of software/RMain.html.

Hartley, J. and Davies, I. K. (1978). Note-taking: A crit-
ical review. Programmed Learning and Educational
Technology, (15):207–224.

Johnson, R. T., Johnson, D. W., and Smith, K. A. (1990).
Cooperative learning: An active learning strategy for
the college classroom.Baylor Educator, pages 11–16.

Kuliamin, V. V., Omelchenko, V. A., and Petrenko, O. L.
(2005). Learning advanced software development
methods: problems and solutions.Proc. of ISPRAS,
pages 91–108.

Meredith, K., Steele, J., and Temple, C., editors (1997).
Guidebooks for Reading and Writing for Critical
Thinking. The International Reading Association.

Petrenko, O. L. and Omelchenko, V. A. (2003). Rapid
training on specification based testing tools. InProc.
SEEFM’2003.

Rae, L., editor (2000).Using Activities in Training and De-
velopment. Kogan Page.

RAISE Course (2003).http://www.iist.unu.edu/home/ Un-
uiist/newrh/II/2/1/1/page.html.

RAISEGroup (1995). The RAISE Development Method.
Prentice Hall.

Smirnov, S. A., editor (2001).Pedagogics: Pedagogic The-
ories, Systems, and Technology. Publishing Center
”Academia”, 4-th edition.

Tassey, G., editor (2002).The Economic Impacts of Inad-
equate Infrastructure for Software Testing, Final Re-
port. National Institute of Standards and Technology
Acquisition and Assistance Division.

VDM Course (2003).http://coursework.cs.ncl.ac.uk/ mod-
ule/2003/CSC264.

CSEDU 2009 - International Conference on Computer Supported Education

222


