
IS THE APPLICATION OF ASPECT-ORIENTED 
PROGRAMMING CONSTRUCTS BENEFICIAL? 

First Experimental Results  

Sebastian Kleinschmager and Stefan Hanenberg 
Department for Computer Science and Business Information Systems, University of Duisburg-Essen, Germany 

Keywords: Aspect-Oriented Software, Experiment, Empirical Research. 

Abstract: Aspect-oriented software development is an approach which addresses the construction of software artefacts 
which traditional software engineering constructs fail to modularize: the so-called crosscutting concerns. 
However, although aspect-orientation claims to permit a better modularization of crosscutting concerns, it is 
still not clear whether the application of aspect-oriented constructs has a measurable, positive impact on the 
construction of software artefacts. This paper addresses this issue by an empirical study which compares the 
specification of crosscutting concerns using traditional composition techniques and aspect-oriented 
composition techniques using the object-oriented programming language Java and the aspect-oriented 
programming language AspectJ. 

1 INTRODUCTION 

A typical argument for aspect-oriented software 
development (AOSD, (Filman et. al, 2004) is that 
aspects permit a better modularization of so-called 
crosscutting concerns. Such arguments focus on the 
readability and maintainability of software 
constructed from the aspect-oriented approach (see 
further (K. De Volter and T. D’Hondt, 2004)). 
However, such arguments address pieces of software 
that are constructed in order to be maintained and 
extended for some amount of time – from a software 
manager’s point of view the use of aspect-oriented 
techniques rather looks like an investment into the 
future. But such arguments do not address whether 
aspect-oriented techniques can be applied to reduce 
code in order to safe development time. However, it 
seems pursuable that aspect-orientation already safes 
time because of a reduced number of lines of code 
caused by the underlying modularization techniques. 

One example for aspect-oriented techniques that 
is quite often cited in literature is logging (c.f. (J. 
Janssen and W. Laatz, 2003) among many others): 
invocations to the logger need to appear in a large 
number of modules. Furthermore, the pieces of code 
that are to be specified need to be adapted within 
each module in order to pass for example the method 

name or the actual parameters. Without using 
techniques that permit to specify the logging 
behavior, hand coding such a feature possibly 
requires a large amount of development time and 
causes in that way additional development costs. 
From that point of view is seems clear that aspect-
oriented programming techniques decrease 
significantly the development time. 

From the other perspective, one can argue that 
aspect-oriented programming bring additional 
abstractions and therefore additional complexity into 
the development of software (cf. e.g. (F. Steimann, 
2006)). Such additional complexity reduces the 
development speed in such a way that the possible 
advantage of the technology turns out to be rather a 
burden for the developer and rather increases the 
development time. 

Although both arguments seem to be reasonable 
they contradict each other. From the scientific point 
of view this situation is not satisfactory, because 
both arguments rely on speculations. According to 
the appeal formulated in (W. Tichy, 1998) empirical 
methods (cf. (N. Juristo and A. Moreno, 2001; Shull 
et. al, 2008)) are an approach to address this 
problem. This would permit to strengthen (or 
weaken) arguments based on observed data.  
This paper introduces a controlled experiment that 
studies the development costs in terms of 

196 Kleinschmager S. and Hanenberg S. (2009).
IS THE APPLICATION OF ASPECT-ORIENTED PROGRAMMING CONSTRUCTS BENEFICIAL? - First Experimental Results .
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
196-201
DOI: 10.5220/0002007301960201
Copyright c© SciTePress



 

development time caused by the specification of 
redundant code in the object-oriented programming 
language Java in comparison to the aspect-oriented 
programming language AspectJ. Section 2 describes 
the experimental design and argues why we only 
focus on static crosscutting code. Section 3 describes 
how the experiment was performed. Section 4 
evaluates the results. After discussing the results in 
section 5, we present related work in section 6. 
Finally, we conclude the paper. 

2 EXPERIMENT 

Our study relies on static crosscutting code, i.e. code 
which does not need any dynamic condition fulfilled 
at runtime in order to determine whether it should be 
executed. In aspect-oriented terms spoken, we study 
only aspects with underlying static join points (cf. 
e.g. (S. Hanenberg, 2006)). Although the main focus 
of research in the area of aspect-oriented 
programming language constructs is in the area of 
dynamic constructs (cf. e.g. (K. Gybels and J. 
Brichau, 2003; L. Prechelt, 2001; Ostermann et. al, 
2005)) we reduce our view on aspect-orientation to 
static elements because static crosscutting can be 
unambiguously determined, i.e. for the resulting 
redundant code fragments it can be clearly defined 
where and how they should appear.  

Next, we are interested in the development time 
required to fulfill a programming task that consists 
of the specification of redundant code. Hence, we 
defined an experiment where developers are 
requested to fulfill a programming task in a pure 
object-oriented as well as in an aspect-oriented way. 
In this experiment, time is the free variable and the 
number of fulfilled programming tasks represents 
the dependent variable. 

Within the experiment subjects were ask to 
specify a number of redundant lines of code into a 
target application. As a target application, we used a 
self-specified game consisting of 9 classes within 3 
packages with 110 methods, 8 constructors, and 37 
instance variables written in pure Java (version 1.6). 
Each class was specified in its own file. The game 
consists of a small graphical user interface with an 
underlying model-view-controller architecture.  

Using this application two tasks needed to be 
done, each one in pure Java (version 1.6) and 
AspectJ (version 1.6.1) whereby the order of the 
programming language was randomly chosen. 

 
  

First Task: Logging  

The first was to add a logging-feature to the 
application, where each method (but no 
constructors) should be logged. Thereto, a 
corresponding logger-interface was provided that 
expects from each method its return type, the name 
of the classes where the method was declared in, an 
array type String with the formal parameter names 
and an array of its actual parameters.  

class C ... { 
  ... 
  public R m(int i,A a) { 
    Logger.log(“C”, “m”, “R”,  

         new Object[] {i, a},  
         new String[] {int, A}); 

    …method body… 
  } 
  ... 
 } 

Figure 1: Exemplary log-invocation in pure Java. 

For the object-oriented solution, for a public 
method m in class C with parameter types int and A 
(and the corresponding parameter names i and a) and 
the return type R the corresponding invocation of the 
logger in pure Java that needed to be defined by the 
developer looks like shown in Figure 1. 

The expected type names are simple names, i.e. 
no package names were expected by the logger. 
Altogether, such a line needed to be added to all 110 
methods.  

For the aspect-oriented solution, the aspect 
definition, consisting of the keyword aspect, an 
aspect name and the corresponding brackets was 
given to the subject. A good AspectJ (and short) 
solution for this task is to specify a pointcut that 
refers to the target classes via their package 
descriptions and a corresponding advice that reads 
from thisJoinPoint the method signature and the 
actual parameters. An example for such a piece of 
code is shown in figure 2.  
pointcut logging():  
  execution(* game.*.*(..)) || 
  execution(* filesystem.*.*(..)) ||  
  execution(* gui.*.*(..)); 
before(): logging() { 
  MethodSignature m = (MethodSignature) 
    thisJoinPoint.getSignature(); 
  Logger.log( 
    m.getReturnType(). 
      getSimpleName(), m.getName(), 
    m.getDeclaringType().getSimpleName(),  
    thisJoinPoint.getArgs(), 
    m.getParameterTypes() 
  ); 
} 

Figure 2: Exemplary log-invocation in AspectJ. 

IS THE APPLICATION OF ASPECT-ORIENTED PROGRAMMING CONSTRUCTS BENEFICIAL? - First
Experimental Results

197



 

Second Task: Nullpointer-Checks  

The second task was to add nullpointer-checks to all 
non-primitive parameters of all methods in the 
application (without constructors). In case one of the 
non-primitive parameters was null, an 
InvalidGameStateException should be thrown 
(which was part of the application). For the object-
oriented solution, 36 methods needed to be adapted. 

3 EXPERIMENT EXECUTION 

20 subjects participated in the experiment. The 
subjects performed their tasks in identical 
environmental settings (machines, rooms, etc.). As 
an IDE, Eclipse has been used. All subjects were 
students within their fifth semester or later. 

Each student was taught a short introduction into 
AspectJ which took about 1.5 hours. This tutorial 
(including exercises) was not meant to be an 
exhaustive training in AspectJ. Instead, only those 
language constructs that were required in the 
experiment were introduced. Constructs such as 
declare precedence statements or handler pointcuts 
or further advanced constructs in AspectJ were not 
trained. 

After dividing the subjects into two groups, one 
group worked on the previous tasks in the object-
oriented way and later on in the aspect-oriented way, 
the other group vice versa. Based on the results of 
the questionnaire, both groups had a similar number 
of subjects with high as well as with low 
development experience. The aspect-oriented groups 
did not get any hints how to solve the task. The only 
thing delivered to them was the aspect declaration 
(without pointcuts and advices). 

For each task, all subjects received a set of JUnit 
test cases that each subject could execute within his 
IDE. The set of test cases covered all subtasks that 
needed to be fulfilled. For example, there was an 
amount of test cases that covered for the first task all 
methods to be logged that checked, whether the 
expected log-entries corresponded to the logs 
actually performed by the code. In order to finish a 
task and to switch to the next task, subjects were 
required to pass all test cases of the current task. The 
subjects were not required but allowed to use the test 
cases while they fulfilled their tasks. The actions 
performed by each subject were logged in a way that 
permitted later on to compute how many subtasks 
have been achieved at what points in time. 
Furthermore, a screen recorder ran throughout the 

whole experiment for each subject in order to permit 
later on to extract information about each subject. 

4 RESULTS 

Figure 3 shows the collected data from the 
experiment (all times are expressed in seconds). For 
both tasks, the complete time to fulfill the task was 
measured. In order to remove the time required by 
the participants to understand the task, the starting 
point was set to the moment when subjects started to 
write code. The end point was set to the moment 
when the subjects fulfilled all test cases. 
Furthermore, the descriptive statistics, i.e. the sum, 
arithmetic mean, minimum, maximum and standard 
derivation is shown in Figure 3. 

logging null-pointer  
check 

su
bj

ec
t

t oo
 

(s
ec

.) 

t a
o 

(s
ec

.) 

t oo
-t a

o
 

t a
o/t

o
o 

t o
o 

(s
ec

.) 

t a
o  

(s
ec

.) 

t o
o-t

a
o 

t a
o/t

o
o 

1 4556 4912 -356 107,81% 1110 437 673 39,37%
2 4922 847 4075 17,21% 683 1154 -471 168,96%
3 3015 2258 757 74,89% 768 355 413 46,22%
4 7947 4916 3031 61,86% 862 2722 -1860 315,78%
5 6318 5468 850 86,55% 2036 451 1585 22,15%
6 7271 5017 2254 69,00% 1065 516 549 48,45%
7 2840 661 2179 23,27% 694 271 423 39,05%
8 4715 3758 957 79,70% 1494 355 1139 23,76%
9 4826 9902 -5076 205,18% 957 897 60 93,73%

10 2614 2581 33 98,74% 733 513 220 69,99%
11 12240 8146 4094 66,55% 915 375 540 40,98%
12 4985 7177 -2192 143,97% 1777 1510 267 84,97%
13 3791 872 2919 23,00% 630 237 393 37,62%
14 3354 566 2788 16,88% 739 415 324 56,16%
15 2727 3770 -1043 138,25% 419 348 71 83,05%
16 3001 2004 997 66,78% 441 119 322 26,98%
17 3249 682 2567 20,99% 612 189 423 30,88%
18 4586 4515 71 98,45% 684 416 268 60,82%
19 2565 3569 -1004 139,14% 390 208 182 53,33%
20 6705 5074 1631 75,67% 1069 5164 -4095 483,07%

 

 
logging null-pointer

check 

 

t oo
 

(s
ec

.) 

t ao
 

(s
ec

.) 

t oo
 

(s
ec

.) 

t ao
  

(s
ec

.) 

sum 96227 76695 18078 16652
min 2565 566 390 119
max 12240 9902 2036 5164
mean 4811 3834,8 903,9 832,6
std. deriv. 2367 2624,3 434,21 1184  

Figure 3: Results. 

First, it turns out that there is a large variety in 
the development speed among the subjects. For 
example, for the object-oriented logging task the 
slowest subject (subject no. eleven) is approximately 
five times slower than the fastest subject (subject 

ICEIS 2009 - International Conference on Enterprise Information Systems

198



 

19). The same is true for the object-oriented null-
pointer check task: while here the fastest subject is 
still subject 19, the slowest one is subject five. For 
the aspect-oriented solutions, the time differences 
between slowest and fastest are even more extreme: 
in the logging task, the slowest subject is more than 
17 times slower than the fastest one; in the null-
pointer check task it is more than 43 times slower.  

Considering the comparison of time required for 
the object-oriented versus the time required for the 
aspect-oriented solution, it turns out that for the 
logging task 5 subjects were slower using the aspect-
oriented approach. In the second task, three subjects 
were slower using the aspect-oriented approach. 

Although we do not consider the comparison of 
absolute times between the subjects to be 
meaningful (due to the different development 
speeds), it turns out that the sums of times for the 
aspect-oriented solutions are in both cases less than 
the sums of times for the object-oriented solutions. 

If we concentrate on the maximum increase of 
development speed for a single subject, we can see 
that for the logging task the use of aspect-orientation 
is only 17% of the time required for the object-
oriented solution (subject 14). For the null-pointer 
check task we see that the time required by the 
aspect-orientated solution is only 22%  of the time 
required by the object-oriented solution (subject 5). 
If we concentrate on the maximum decrease of 
development speed, we see that for the logging task 
subject 9 spent more than twice the time for solving 
it in an aspect-oriented way. For the null-pointer 
check we see that it took subject 20 five times more 
time to solve it in an aspect-oriented way. 

In order to check whether there is a significant 
difference in the object-oriented and the aspect-
oriented approach, we first check whether a pair-
samples t-test can be applied. A pair-samples t-test 
requires (according to e.g. (J. Bortz, 1999)) that the 
underlying sample comes from a normally 
distributed population. Therefore, we applied the 
Shapiro–Wilk test (S. S. Shapiro and M. B. Wilk, 
1965) which checks these characteristics. However, 
the result of the test is that the hypothesis, that the 
sample comes from a normally distributed 
population, needs to be rejected. 

Hence, we need to apply a less restrictive 
statistical method: the Wilcoxon signed-rank test 
(see e.g. (J. Bortz, 1999)) which compares two 
related samples with respect to their central 
tendency. 

According to this, we formulate the null 
hypothesis : 

H0:  The median of the object-oriented and the 
aspect-oriented solution are equal. 

The alternative hypothesis is 
H1:  The median of the object-oriented and 
the aspect-oriented solution differs. 
Performing the Wilcoxon-test on the logging 

task, we find with under significance level of 5% 
that here is a difference in the medians of the object-
oriented and the aspect-oriented solution (hence, the 
null hypothesis is rejected). A comparison of 
positive and negative ranks reveals that the median 
of the aspect-oriented solution is significantly lower 
than the median of the object-oriented solution.  

Repeating the same test on the null-pointer check 
reveals the same results.  

Hence, in both cases we can determine that 
aspect-oriented construction reveals better results 
that the object-oriented way. In both cases this 
difference is significant. 

5 DISCUSSION 

Our intention was to study the different development 
times for static crosscutting code using Java and 
AspectJ. Thereto, two tasks were given to subjects 
(logging and null-pointer check). It turned out, that 
we were able to detect a significant difference in the 
development time in the logging example as well as 
in the null-pointer check examples. From that 
perspective is looks obvious that the application of 
aspect-oriented constructs for the specification of 
redundant code is more appropriate then the use of 
object-oriented constructs. However, we should also 
be aware of the kind of redundant code 
specifications: in both cases the number of 
redundant code lines is relatively high (110 and 36 
lines of code). We think that we can conclude here 
that aspect-oriented constructs turn out to be 
beneficial in situations where the number of 
redundant code lines is relatively high. Whether the 
application of aspect-oriented constructs turns out to 
be beneficial in situations with rather a low number 
of redundant code can be doubted – however, the 
experiment is not able to make any statement about 
this. Furthermore, it should be noted that the impact 
of further potential influencing factors (for example 
the training of aspect-oriented constructs in the 
beginning of the experiment) has not been studied. 

 
 

IS THE APPLICATION OF ASPECT-ORIENTED PROGRAMMING CONSTRUCTS BENEFICIAL? - First
Experimental Results

199



 

6 RELATED WORK 

The work that is directly related to our experiment is 
the one conducted by Walker et al (Walker, et. al, 
1999). Here, a number of subjects performed a 
number of tasks on an object-oriented system using 
the aspect-oriented language AspectJ. The main 
difference to our experiment is, that there developers 
had much more freedom about how to use the 
language in order to achieve a certain goal. Our 
experiment was in that way much more restricted. 
Further related approaches are for example studies 
on the maintainability of aspect-oriented software 
(cf. (M. Bartsch and R. Harrison, 2007)). Also, 
studies about the design stability (see (Greenwood 
et. al, 2007)) or language specific features such as 
the study performed in (Coelho et. al, 2008) are in 
that way related that the impact of aspect-oriented 
language constructs on some piece of software is 
being tested. The main difference between those 
approaches and the here describes experiment is, 
that we try to focus only on the development time 
and neglects currently all other desirable attributes 
of software. 

7 CONCLUSIONS AND FUTURE 
WORK 

In this paper we presented an experiment that 
compares the use of aspect-oriented constructs for 
the purpose of specifying static crosscutting code 
with the corresponding specification using ordinary 
language constructs. In the experiment, 20 subjects 
performed two static crosscutting tasks on an object-
oriented program using an object-oriented language 
as well as an aspect-oriented. The experiment 
showed that for tasks with a relative high number of 
redundant code lines the application of aspect-
oriented techniques turns out to be useful. 

Altogether, it should be mentioned that empirical 
knowledge, especially in the area of aspect-
orientation, hardly exists and controlled experiments 
are rather rare. Hence, the here presented experiment 
cannot be considered as a final answer to the 
question of how beneficial aspect-orientation is. 
Instead, we rather consider this as a first and 
necessary step in order to explore quite a large field. 

 
 
 

REFERENCES 

Bartsch, M.; Harrison, R.: An exploratory study of the 
effect of aspect-oriented programming on 
maintainability, Software Quality, 2007. 

Bortz, J.: Statistik für Sozialwissenschaftler, 5te Auflage, 
Springer, 1999 

Box, G.; Jenkins, G. M.; Reinsel, G.: Time Series 
Analysis, Forecasting and Control, Prentice Hall, 
1994. 

Coelho, R.; Rashid, A.; Garcia, A.; Ferrari, F.; Cacho, N.; 
Kulesza, U.; von Staa, A.; Pereira de Lucena, C.: 
Assessing the Impact of Aspects on Exception Flows: 
An Exploratory Study. ECOOP 2008: 207-234 

Curtis, B.: Substantiating program variability, Proceedings 
of the IEEE, 69(7), July 1981. 

De Volder, K.; D’Hondt, T.: Aspect-Oriented Logic 
Metaprogramming, in (Filman et. al, 2004), 2004. 

Filman, R.; Elrad, T.; Clarke S.; Aksit, M. (eds.): Aspect-
Oriented Software Development, Addison-Wesley 
Longman, Amsterdam, 2004. 

Phil Greenwood, Thiago Bartolomei, Eduardo Figueiredo, 
Marcos Dosea, Alessandro Garcia, Nelio Cacho, 
Cláudio Sant’Anna1, Sergio Soares, Paulo Borba, Uirá 
Kulesza, On the Impact of Aspectual Decompositions 
on Design Stability: An Empirical Study, Proceedings 
of ECOOP 2007, pp. 176-200 

Gybels, K.; Brichau, J.: Arranging language features for 
more robust pattern-based crosscuts. Proceedings of 
AOSD, 2003, pp- 60-69. 

Hanenberg, S.: Design Dimensions of Aspect-Oriented 
Systems, PhD thesis, University of Duisburg-Essen, 
Institute for Computer Science and Business 
Information Systems, 2006. 

Janssen, J.; Laatz, W.: Statistische Datenanalyse mit 
SPSS, 4th edition, Springer, 2003. 

Juristo, N.; Moreno, A.: Basics of Software Engineering 
Experimentation, Kluwer Academic Publishers, 2001. 

Kellens, A.; Mens, K.; Brichau, J., Gybels, K.: Managing 
the Evolution of Aspect-Oriented Software with 
Model-based Pointcuts, Proceedings of the European 
Conference on Object-Oriented Programming, 2006, 
501-525. 

Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; 
Lopes, C.; Loingtier, J.-M.; Irwin, J.: Aspect-Oriented 
Programming. Proceedings of European Conference 
on Object-Oriented Programming (ECOOP), 1997, 
p.220-242. 

Ostermann, K.; Mezini, M.; Bockisch, C.: Expressive 
Pointcuts for Increased Modularity. Proceedings of 
European Conference on Object-Oriented 
Programming (ECOOP), 2005, pp. 214-240 

Prechelt, L.: Kontrollierte Experimente in der 
Softwaretechnik, Springer, 2001. 

Shapiro, S. S. and Wilk, M. B. (1965). "An analysis of 
variance test for normality (complete samples)", 
Biometrika, 52, 3 and 4, pages 591–611 

Shull, F., Singer, J., Sjøberg, D. (eds.), Guide to Advanced 
Empirical Software Engineering, Springer, 2008. 

ICEIS 2009 - International Conference on Enterprise Information Systems

200



 

Steimann, F.: The paradoxical success of aspect-oriented 
programming, ACM SIGPLAN Notices, Volume 41 ,  
Issue 10  (October 2006), pp. 481 - 497   

Tichy, W.: Should Computer Scientists Experiment More? 
IEEE Computer 31(5), 1998, pp. 32-40. 

J.Walker, R.; Baniassad, E.; Murphy, G.: An Initial 
Assessment of Aspect-oriented Programming, 
Proceedings of the 21st International Conference on 
Software Engineering (16–22 May 1999, Los Angeles, 
CA, USA). 

IS THE APPLICATION OF ASPECT-ORIENTED PROGRAMMING CONSTRUCTS BENEFICIAL? - First
Experimental Results

201


