
A SIMULATION-BASED METHODOLOGY TO ASSIST
DECISION-MAKERS IN REAL VEHICLE ROUTING PROBLEMS

Angel A. Juan, Daniel Riera, David Masip, Josep Jorba
Dep. of Computer Sciences, Open University of Catalonia, Rambla Poble Nou 156, Barcelona, Spain

Javier Faulin
Dept. of Statistics and OR, Public University of Navarra, Campus Arrosadia, Pamplona, Spain

Keywords: Vehicle routing problem, Hybrid algorithms, Heuristics, Simulation, Decision support systems.

Abstract: The aim of this work is to present a simulation-based algorithm that not only provides a competitive
solution for instances of the Capacitated Vehicle Routing Problem (CVRP), but is also able to efficiently
generate a full database of alternative good solutions with different characteristics. These characteristics are
related to solution’s properties such as routes’ attractiveness, load balancing, non-tangible costs, fuzzy
preferences, etc. This double-goal approach can be specially interesting for the decision-maker, since he/she
can make use of this algorithm to construct a database of solutions and then send queries to it in order to
obtain those feasible solutions that better fit his/her utility function without incurring in a severe increase in
costs. In order to provide high-quality solutions, our algorithm combines a CVRP classical heuristic, the
Clarke and Wright Savings method, with Monte Carlo simulation using state-of-the-art random number
generators. The resulting algorithm is tested against some well known benchmarks and the results obtained
so far are promising enough to encourage future developments and improvements on the algorithm and its
applications in real-life scenarios.

1 INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP)
is a NP-hard problem in which a set of customers’
demands have to be served by a fleet of
homogeneous vehicles departing from a depot,
which initially holds all available resources. Of
course, there are some tangible costs associated with
the distribution of these resources from the depot to
the customers. In particular, it is usual to explicitly
consider in the model costs due to moving a vehicle
from one node –customer or depot– to another. The
classical goal here consists on determining the
optimal set of routes that minimizes those tangible
costs under the following set of constraints: (a) all
routes begin and end at the depot; (b) each vehicle
has a maximum load capacity, which is considered
to be the same for all vehicles; (c) each customer has
a well-known demand that must be satisfied; (d)
each customer is supplied by a single vehicle, and
(e) a vehicle can not stop twice at the same
customer.

Even when this problem has been studied for
decades, it is still attracting a great amount of
attention from top researchers worldwide due to its
potential applications, both to real-life scenarios and
also to the development of new algorithms,
optimization methods and meta-heuristics for
solving combinatorial problems (Laporte et al.,
2000; Toth & Vigo, 2002; Golden et al., 2008). As a
matter of fact, different approaches to the CVRP
have been explored during the last decades. These
approaches range from the use of pure optimization
methods, such as linear programming, for solving
small- to medium-size problems with relatively
simple constraints, to the use of heuristics and meta-
heuristics that provide near-optimal solutions for
medium and large-size problems with more complex
constraints (Laporte, 2007). Most of the methods
cited before focus on minimizing an aprioristic cost
function –which usually models tangible costs–
subject to a set of well-defined and simple
constraints. However, real-life problems can be
really complex, with intangible costs, fuzzy

212 A. Juan A., Riera D., Masip D., Jorba J. and Faulin J. (2009).
A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING PROBLEMS.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
212-217
DOI: 10.5220/0002005602120217
Copyright c© SciTePress

constraints and desirable solution properties that are
difficult to be modeled (Poot et al., 2002; Kant et al.,
2008). In other words, it is not always
straightforward to construct an initial model which
takes into account all possible costs (environmental
costs, work risks, etc.), constraints and desirable
solution properties (time or geographical
restrictions, balanced work load among routes,
solution attractiveness, etc.). For that reason, there is
a need for new methods able to provide a large set of
alternative near-optimal solutions with different
properties, so that decision-makers can choose
among different alternative solutions according to
their specific needs and preferences, i.e., according
to their utility function, which is usually unknown
for the researcher. All in all, as some CVRP
specialists have pointed out already, there is a need
for more simple and flexible methods to solve the
problem, methods that can be used to handle the
numerous side constraints that arise in practice
(Laporte, 2007).

2 OUR APPROACH

In an effort to give response to the abovementioned
demands, this paper aims to present a simple yet
powerful hybrid algorithm that combines the parallel
version of the classical Clarke & Wright savings
(CWS) heuristic (Clarke & Wright, 1964) with
Monte Carlo simulation (MCS) and state-of-the-art
random number generators to produce a set of
alternative solutions for a given CVRP instance.
Each solution in this set outperforms the CWS
heuristic, but it also has its own characteristics and
therefore constitutes an alternative possibility for the
decision-maker where several side constraints can be
considered. Moreover, the best solution provided by
the algorithm is competitive, in terms of aprioristic
costs, with the best solution found so far by using
existing state-of-the-art algorithms, which tend to be
more complex and difficult to implement than the
method presented in this paper and, in most cases,
require parameter fine-tuning or set-up processes.

Buxey (1979) was probably the first author to
combine MCS with the CWS algorithm to develop a
procedure for the CVRP. This method was revisited
by Faulin & Juan (2008), who introduced an entropy
function to guide the random selection of nodes.
MCS has also been used by other authors to solve
the CVRP (Fernández de Córdoba et al., 2000). In
our opinion, recent advances in the development of
high-quality pseudo-random number generators
(L’Ecuyer, 2002) have opened new perspectives as

regards the use of Monte Carlo simulation in
combinatorial problems. To test how state-of-the-art
random number generators can be used to improve
existing heuristics and even push them to new
efficiency levels, we decided to combine a MCS
methodology with one of the best-known classical
heuristics for the CVRP, namely the Clarke &
Wright Savings method. In particular, we selected
the parallel version of this heuristic, since according
to Toth & Vigo (2002), it usually offers better
results than the corresponding sequential version.

Therefore, our goal here is to develop a
methodology that: (a) provides near-optimal
solutions to CVRP instances with respect the
objective function, and (b) provides the decision-
maker with a large set of alternative good solutions
for a given CVRP instance, each of them with
different characteristics. Once generated, this list of
alternative good solutions can be classified and
stored in a solutions database so that the decision-
maker can perform retrieval queries according to
different criteria or preferences regarding the
desirable properties of an ideal real-life solution.

In order to develop such a methodology, we
introduce some specific random behavior within the
CWS heuristic and then start an iterative process
with it. This random behavior helps us to start an
efficient search process inside the space of feasible
solutions. Each of these feasible solutions will
consist of a set of roundtrip routes from the depot
that, altogether, satisfy all demands of the nodes by
visiting and serving all them exactly once. At each
step of the solution-construction process, the CWS
algorithm always chooses the edge with the highest
savings value. Our approach, instead, assigns a
probability of selecting each edge in the savings list.
According to our design, this probability should be
coherent with the savings value associated with each
edge, i.e., edges with higher savings will be more
likely to be selected from the list than those with
lower savings. Finally, this selection process should
be done without introducing too many parameters in
the methodology –otherwise, it would be necessary
to perform fine-tuning processes, which tend to be
non-trivial and time-consuming. To reach all those
goals, we employ the geometric statistical
distribution with parameter α (0 < α < 1) during the
CWS solution-construction process: each time a new
edge hast to be selected from the list of available
edges, a geometric distribution is randomly selected.
This distribution is then used to assign exponentially
diminishing probabilities to each eligible edge
according to its position inside the savings list,
which has been previously sorted by its

A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING
PROBLEMS

213

corresponding savings value. That way, edges with
higher savings values are always more likely to be
selected from the list, but the probabilities assigned
are variable and they depend upon the concrete
distribution selected at each step. By iterating this
procedure, an oriented random search process is
started. Notice that this general approach has
similarities with the Greedy Randomized Adaptive
Search Procedure (GRASP) (Feo & Resende 1995).
GRASP is a typically two-phase approach where in
the first phase a constructive heuristic is
randomized. The second phase includes a local
search process. Nevertheless, it is important to
notice that our algorithm does not require any
adaptive effort –the savings list is calculated just
once, at the beginning of the process. Moreover, our
approach is strongly based on the combination of a
classical heuristic with statistical distributions and
Monte Carlo simulation, which is not the usual case
in GRASP algorithms.

Next, we describe with more detail the main
steps of our approach (Fig. 1):

Figure 1: Scheme of our approach for the CVRP.

1. Given a CVRP instance, construct the
corresponding data model and use the
classical CWS algorithm to solve it.

2. Choose a value for the parameter α for adding
random behavior to the algorithm; according
to our experience, any parameter value
between 0.10 and 0.15 will give promising
results in most tested instances, so that no
fine-tuning process is really needed.

3. Start an iterative process to generate solutions
using the SR-GCWS algorithm with the user-
defined values for parameters α and the
number of iterations to run (nIter).

4. For each one of the iterations, save the
resulting solution in a database only if it
outperforms the one provided by the CWS

algorithm, i.e., we will consider that a solution
is a good one only if it outperforms the CWS
solution from an aprioristic costs perspective.

Roughly speaking, if the size of the savings list
in the current step is large enough, the parameter α
can be interpreted as the probability of selecting the
edge with the highest savings value at the current
step of the solution-construction process. Choosing a
relatively low α-value (e.g. α = 0.05) implies
considering a large number of edges from the
savings list as potentially eligible, e.g.: assuming a
list size of 100, if we choose α = 0.05 then the list of
potentially eligible edges will cover about 44 edges
from the sorted savings list. On the contrary,
choosing a relatively high α-value (e.g. α = 0.35)
implies reducing the list of potential eligible edges
to just a few of them, e.g.: assuming a list size of
100, if we choose α = 0.35 then the list of potentially
eligible edges will be basically reduced to
approximately 5 edges.

Once a value for α is chosen, the first edge must
be selected. This same value of α can be used for all
future steps. In that case, the selection of the α-value
might require some minor fine-tuning process.
However, based on the tests we have performed so
far, we prefer to consider this α-value as a random
variable whose behavior is determined by a well-
known continuous distribution, e.g.: a uniform
distribution in the interval (0.05, 0.20). This way, we
do not only avoid a fine-tuning process, but we also
have the possibility to combine different values of
this parameter at different edge-selection steps of the
same solution-construction process. In other words,
we are interested in the possibility of combining
different strategies regarding the number of edges to
be considered as eligible at different steps through
the solution-construction process.

3 ALGORITHM DESCRIPTION

In this section, we will discuss the main parts of the
SR-GCWS algorithm. Fig. 2 shows the main
procedure, which drives the solving methodology.
First, inputs are entered in the program and both
nodes and constraints are identified. Then, an
efficiency list is constructed. This list contains the
potential edges to be selected sorted by their
associated savings. At this point, the CWS solution
is obtained by applying the Clarke & Wright
Savings heuristic. The costs associated with this
solution will be used as an upper bound limit for the
costs of what we will consider a good solution.

ICEIS 2009 - International Conference on Enterprise Information Systems

214

Therefore, from this moment on we will save in a
database all new solutions that improve those costs.
It is at this step when we start the iterative process to
generate hundred/thousands of solutions by using
our algorithm. Details of this constructive process
can be found at pseudo-codes included in Figs. 3 and
4. The former figure shows how the construction
process starts with the CWS initial solution and then
adds a randomized edge selection before proceeding
with the merging of existing routes if possible. The
later figure shows some details of the random
selection process.
procedure SR-GCWS()
1 vrp = getInstanceInputs();
2 nodes = getNodes(vrp);
3 constraints = getConstraints(vrp);
4 effList = buildEfficiencyList(nodes);
5 cwsSol = buildCWSSolution(vrp,
effList);
6 while stopping criterion not satisfied
7 sol = buildRandomizedSolution(nodes,
constraints, effList);
8 sol = improveSolUsingHashTable(sol); //
 learn from experience
9 updateSolution(sol,
 bestSolutionFound[]);
10 elihw
11 return bestSolutionFound[];
end

Figure 2: Generic SR-GCWS procedure.

procedure buildRandomizedSolution(nodes,
constraints, list)
1 sol = buildTrivialCWSSol(nodes);
2 list = sort(list); // sort edge list
3 while list contains edges
4 e = selectEdgeAtRandom(list);
5 deleteFromList(e);
6 if CWS route-merging meets all
constraints
7 sol = insertEdgeInSol(e); //merging
8 fi
9 elihw
10 return sol;
end

Figure 3: Constructive process to generate new solutions.

Finally, at each iteration, we try to improve the
solution being constructed by saving in a hash table
the best routes found so far for any specific set of
nodes. The hash table always keeps the best found-
so-far way of sorting a set of customers in a route. In
some sense, this could be considered as a learning
mechanism that makes the algorithm more efficient
as more new solutions are generated. A hash table is
used instead of an array just for computational
efficiency reasons.

procedure selectEdgeAtRandom(list)
1 beta = generateRandomNumber(a, b); //
e.g.: a = 0.05 and b = 0.20
2 randomValue = generateRandomNumber(0,
1);
3 n = 0;
4 cumulativeProbability = 0.0;
5 for each edge in list
6 edgeProbability = beta * (1 – beta)^n;
// geometr. distribution
7 cumulativeProbability +=
edgeProbability;
8 if randomValue < cumulativeProbability

9 return edge;
10 else
11 n++;
12 fi
13 rof
14 k = generateIntegerRandomNumber(0,
list size); // from 0 to list size – 1
15 return getEdgeAtPosition(k);
end

Figure 4: Randomized selection of edges from savings list.

4 EXPERIMENTAL RESULTS

The methodology described in this paper has been
implemented as a Java application. At the core of
this application, some state-of-the-art pseudo-
random number generators are employed. In
particular, we have used some classes from the SSJ
library (L’Ecuyer, 2002), among them, the subclass
GenF2W32, which implements a generator with a
period value equal to 2800-1. Using a pseudo-random
number generator with such an extremely long
period is especially useful when performing an in-
depth random search of the solutions space. In our
opinion, the use of such a long-period RNG has
other important advantages: the algorithm can be
easily parallelized by splitting the RNG sequence in
different streams and using each stream in different
threads or CPUs. This can be an interesting field to
explore in future works, given the current trend in
multi-core processors and parallel computing.

In order to verify the goodness of our approach
and its efficiency as compared with other existing
methodologies, a total of 14 classical CVRP
benchmark instances were selected from the
reference web site http://www.branchandcut.org,
which contains detailed information regarding a
large number of benchmark instances. The selection
process was based on the following criteria: (a) all 6

A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING
PROBLEMS

215

Table 1: Comparison of methodologies for six randomly selected CVRP instances.

Instance Number
of nodes

CWS
solution

Best-known
solution*

Our best
solution

Gap

A-n45-k7 45 1,199.98 1,147.28 1,146.91 -0.03%
A-n60-k9 60 1,421.88 1,355.80 1,355.80 0.00%
A-n80-k10 80 1,860.94 1,766.50 1,766.50 0.00%
B-n50-k7 50 748.80 744.78 744.23 -0.07%
B-n52-k7 52 764.90 750.08 749.97 -0.01%
B-n57-k9 57 1,653.42 1,603.63 1,602.29 -0.08%
B-n78-k10 78 1,264.56 1,229.27 1,228.16 -0.09%
E-n51-k5 51 584.64 524.94 524.61 -0.06%
E-n76-k10 76 900.26 837.36 839.13 0.21%
E-n76-k14 76 1,073.43 1,026.71 1,026.14 -0.06%
F-n135-k7 135 1,219.32 1,170.65 1,170.33 -0.03%
M-n121-k7 121 1,068.14 1,045.16 1,045.60 0.04%
P-n70-k10 70 896.86 830.02 831.81 0.22%
P-n101-k4 101 765.38 692.28 691.29 -0.14%

Average gap -0.01%
(*) Best-known solution according to the information available at http://www.branchandcut.org/

sets of instances (A, B, E, F, M and P) were used,
(b) only instances offering complete information
(e.g. specific routes in best known solution) were
considered, (c) instances with less than 45 nodes
were avoided, since they can be easily optimized by
using exact methods. The selected benchmark files
are shown on Table 1. These instances differ in the
number of nodes (ranging from 45 to 135) and also
in the location of the depot with respect to the
customers (in some cases the depot occupies a
central position in the scatterplot of customers while
in others the depot is located at one corner). Some
instances characterized by having clusters of
customers have also been considered.

A standard personal computer, Intel® Core™2
Duo CPU at 2.4 GHz and 2 GB RAM, was used to
perform all tests. Results of these tests are
summarized in Table 1, which contains the
following information for each instance: (a) number
of nodes, (b) costs associated with the solution given
by the parallel version of the CWS heuristic, (c)
costs associated to the best-known-so-far solution,
C , according to the information available at the
referred web site, (d) costs associated with the best-
known-so-far solution provided by our algorithm,
C′ , and finally (e) gap between both solutions
calculated as the quotient CCC /)(−′ and expressed
as a percentage value. Notice that, as defined, a
positive gap will imply that our solution costs are
higher than the ones associated with the best-known-
so-far solution, while a negative gap will imply just
the opposite, i.e., better solutions found by our
approach.

From Table 1 it can be deduced that, for each of
the 14 randomly selected instances, our
methodology has been able to provide a virtually
equivalent solution to the one considered as the best-
known-so-far. In fact, in 9 out of the 14 tested
instances, our methodology has been able to slightly
improve the best-known solution, offering negative
gaps. When considering all instances together, the
average gap is still negative (its value is equal to -
0.01%). Generally speaking, according to these
results, it seems licit to say that the hybrid
methodology presented here is able to generate
excellent CVRP solutions.

As described before, our approach makes use of
an iterative process to generate a set of random
feasible solutions. According to the experimental
tests carried out, each iteration is completed in just a
few milliseconds by using a standard computer. By
construction, odds are than the generated solution
outperforms the one given by the CWS heuristic.
This means that our approach provides, almost
immediately (even for the instance with 200 nodes),
what we call “a class C solution”, i.e., a feasible
solution which outperforms the CWS heuristic in
aprioristic costs. Moreover, as verified by testing,
hundreds or even thousands of alternative class C
solutions can be obtained after some minutes of
computation, each of them having different
attributes regarding non-aprioristic costs, workload
balance, visual attractiveness, etc. By doing so, a list
of alternative solutions can be constructed, thus
allowing the decision-maker to filter this solutions
list according to different criteria. This offers the
decision-maker the possibility to choose, among

ICEIS 2009 - International Conference on Enterprise Information Systems

216

different solutions with similar aprioristic costs, the
one which best fulfils his or her preferences
according to his or her utility function.

Furthermore, and again according to
experimental results, our algorithm is able to provide
a “class B” solution, i.e., a feasible solution inside
the 2% gap from the best-known solution, in just
some hundred or some thousand iterations, which in
small- and medium-size instances takes only a few
seconds to run. Of course, as it has been already
discussed in the previous section, with more
computing time our algorithm is capable to provide
“class A” solutions, i.e., feasible solutions that are
virtually equivalent, or even better in some cases, to
the best-known-so-far solution for every tested
instance. Another important point to consider here is
the simplicity of the presented methodology. In
effect, our algorithm needs little instantiation and
does not require any fine-tuning or set-up processes.
This is quite interesting in our opinion, since
according to (Kant et al., 2008) some of the most
efficient heuristics and meta-heuristics are not used
in practice because of the difficulties they present
when dealing with real-life problems and
restrictions. On the contrary, simple hybrid
approaches like the one introduced here tend to be
more flexible and, therefore, they seem more
appropriate to deal with real restrictions and
dynamic work conditions. Notice also that our
approach seems to work well in all tested instances
without requiring any special fine-tuning or set-up
process.

Finally, it is convenient to highlight that the
introduced methodology can be used beyond the
CVRP scenario: with little effort, similar hybrid
algorithms based on the combination of Monte Carlo
simulation with already existing heuristics can be
developed for other routing problems and, in
general, for other combinatorial optimization
problems. In our opinion, this opens a new range of
potential applications that could be explored in
future works.

5 CONCLUSIONS

In this paper a simple yet efficient hybrid
methodology for solving the Capacitated Vehicle
Routing Problem has been presented. This
methodology, which does not require any particular
fine-tuning or configuration process, combines the
classical Clarke & Wright heuristic with Monte
Carlo simulation using a geometric distribution and
a state-of-the-art pseudo-random number generator.
Results show that our methodology is able to

provide top-quality solutions which can compete
with the ones provided by much more complex
meta-heuristics, which usually are difficult to
implement in practice. Moreover, being a
constructive approach, it can generate hundreds of
alternative good solutions in a reasonable time-
period, thus offering the decision-maker the
possibility to apply different non-aprioristic criteria
when selecting the solution that best fits his or her
utility function.

REFERENCES

Buxey, G.M. 1979. The Vehicle Scheduling Problem and
Monte Carlo Simulation. Journal of Operational
Research Society, 30, 563-573

Clarke, G. and J. Wright. 1964. Scheduling of Vehicles
from a central Depot to a Number of Delivering
Points. Operations Research, 12, 568-581

Faulin, J. and A. Juan. 2008. The ALGACEA-1 Method
for the Capacitated Vehicle Routing Problem.
International Transactions in Operational Research,
15, 1-23

Feo, T. A, Resende, M.G. C. 1995. Greedy randomized
adaptive search procedures. Journal of Global
Optimization, 6, 109-133

Fernández de Córdoba, P., García Raffi, L.M., Mayado, A.
and J.M. Sanchis. 2000. A Real De-livery Problem
Dealt with Monte Carlo Techniques. TOP, 8, 57-71

Golden, B., Raghavan, S. and E. Edward Wasil (eds.).
2008. The Vehicle Routing Problem: Lat-est Advances
and New Challenges. Springer

Kant, G., Jacks, M. and C. Aantjes. 2008. Coca-Cola
Enterprises Optimizes Vehicle Routes for Efficient
Product Delivery. Interfaces, 38: 40-50

Laporte, G. 2007. What you should know about the
Vehicle Routing Problem. Naval Research Logistics,
54: 811-819

Laporte, G., Gendreau, M., Potvin, J.Y. and F. Semet.
2000. Classical and Modern Heuristics for the Vehicle
Routing Problem. International Transactions in
Operational Research, 7, 285-300

Law, A. 2007. Simulation Modeling & Analysis.
McGraw-Hill

L’Ecuyer, P. 2002. SSJ: A Framework for Stochastic
Simulation in Java. In Proceedings of the 2002 Winter
Simulation Conference, pp. 234 – 242

Poot, A., Kant, G. and A Wagelmans. 2002. A savings
based method for real-life vehicle routing problems.
Journal of the Operational Research Society, 53, 57-68

Toth, P. and D. Vigo. 2002. The Vehicle Routing
Problem. SIAM Monographs on Discrete Mathematics
and Applications. SIAM

A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING
PROBLEMS

217

