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Abstract: The aim of this work is to present a simulation-based algorithm that not only provides a competitive 
solution for instances of the Capacitated Vehicle Routing Problem (CVRP), but is also able to efficiently 
generate a full database of alternative good solutions with different characteristics. These characteristics are 
related to solution’s properties such as routes’ attractiveness, load balancing, non-tangible costs, fuzzy 
preferences, etc. This double-goal approach can be specially interesting for the decision-maker, since he/she 
can make use of this algorithm to construct a database of solutions and then send queries to it in order to 
obtain those feasible solutions that better fit his/her utility function without incurring in a severe increase in 
costs. In order to provide high-quality solutions, our algorithm combines a CVRP classical heuristic, the 
Clarke and Wright Savings method, with Monte Carlo simulation using state-of-the-art random number 
generators. The resulting algorithm is tested against some well known benchmarks and the results obtained 
so far are promising enough to encourage future developments and improvements on the algorithm and its 
applications in real-life scenarios.  

1 INTRODUCTION 

The Capacitated Vehicle Routing Problem (CVRP) 
is a NP-hard problem in which a set of customers’ 
demands have to be served by a fleet of 
homogeneous vehicles departing from a depot, 
which initially holds all available resources. Of 
course, there are some tangible costs associated with 
the distribution of these resources from the depot to 
the customers. In particular, it is usual to explicitly 
consider in the model costs due to moving a vehicle 
from one node –customer or depot– to another. The 
classical goal here consists on determining the 
optimal set of routes that minimizes those tangible 
costs under the following set of constraints: (a) all 
routes begin and end at the depot; (b) each vehicle 
has a maximum load capacity, which is considered 
to be the same for all vehicles; (c) each customer has 
a well-known demand that must be satisfied; (d) 
each customer is supplied by a single vehicle, and 
(e) a vehicle can not stop twice at the same 
customer. 

Even when this problem has been studied for 
decades, it is still attracting a great amount of 
attention from top researchers worldwide due to its 
potential applications, both to real-life scenarios and 
also to the development of new algorithms, 
optimization methods and meta-heuristics for 
solving combinatorial problems (Laporte et al., 
2000; Toth & Vigo, 2002; Golden et al., 2008). As a 
matter of fact, different approaches to the CVRP 
have been explored during the last decades. These 
approaches range from the use of pure optimization 
methods, such as linear programming, for solving 
small- to medium-size problems with relatively 
simple constraints, to the use of heuristics and meta-
heuristics that provide near-optimal solutions for 
medium and large-size problems with more complex 
constraints (Laporte, 2007). Most of the methods 
cited before focus on minimizing an aprioristic cost 
function –which usually models tangible costs– 
subject to a set of well-defined and simple 
constraints. However, real-life problems can be 
really complex, with intangible costs, fuzzy 
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constraints and desirable solution properties that are 
difficult to be modeled (Poot et al., 2002; Kant et al., 
2008). In other words, it is not always 
straightforward to construct an initial model which 
takes into account all possible costs (environmental 
costs, work risks, etc.), constraints and desirable 
solution properties (time or geographical 
restrictions, balanced work load among routes, 
solution attractiveness, etc.). For that reason, there is 
a need for new methods able to provide a large set of 
alternative near-optimal solutions with different 
properties, so that decision-makers can choose 
among different alternative solutions according to 
their specific needs and preferences, i.e., according 
to their utility function, which is usually unknown 
for the researcher. All in all, as some CVRP 
specialists have pointed out already, there is a need 
for more simple and flexible methods to solve the 
problem, methods that can be used to handle the 
numerous side constraints that arise in practice 
(Laporte, 2007).  

2 OUR APPROACH 

In an effort to give response to the abovementioned 
demands, this paper aims to present a simple yet 
powerful hybrid algorithm that combines the parallel 
version of the classical Clarke & Wright savings 
(CWS) heuristic (Clarke & Wright, 1964) with 
Monte Carlo simulation (MCS) and state-of-the-art 
random number generators to produce a set of 
alternative solutions for a given CVRP instance. 
Each solution in this set outperforms the CWS 
heuristic, but it also has its own characteristics and 
therefore constitutes an alternative possibility for the 
decision-maker where several side constraints can be 
considered. Moreover, the best solution provided by 
the algorithm is competitive, in terms of aprioristic 
costs, with the best solution found so far by using 
existing state-of-the-art algorithms, which tend to be 
more complex and difficult to implement than the 
method presented in this paper and, in most cases, 
require parameter fine-tuning or set-up processes. 

Buxey (1979) was probably the first author to 
combine MCS with the CWS algorithm to develop a 
procedure for the CVRP. This method was revisited 
by Faulin & Juan (2008), who introduced an entropy 
function to guide the random selection of nodes. 
MCS has also been used by other authors to solve 
the CVRP (Fernández de Córdoba et al., 2000). In 
our opinion, recent advances in the development of 
high-quality pseudo-random number generators 
(L’Ecuyer, 2002) have opened new perspectives as 

regards the use of Monte Carlo simulation in 
combinatorial problems. To test how state-of-the-art 
random number generators can be used to improve 
existing heuristics and even push them to new 
efficiency levels, we decided to combine a MCS 
methodology with one of the best-known classical 
heuristics for the CVRP, namely the Clarke & 
Wright Savings method. In particular, we selected 
the parallel version of this heuristic, since according 
to Toth & Vigo (2002), it usually offers better 
results than the corresponding sequential version.  

Therefore, our goal here is to develop a 
methodology that: (a) provides near-optimal 
solutions to CVRP instances with respect the 
objective function, and (b) provides the decision-
maker with a large set of alternative good solutions 
for a given CVRP instance, each of them with 
different characteristics. Once generated, this list of 
alternative good solutions can be classified and 
stored in a solutions database so that the decision-
maker can perform retrieval queries according to 
different criteria or preferences regarding the 
desirable properties of an ideal real-life solution.  

In order to develop such a methodology, we 
introduce some specific random behavior within the 
CWS heuristic and then start an iterative process 
with it. This random behavior helps us to start an 
efficient search process inside the space of feasible 
solutions. Each of these feasible solutions will 
consist of a set of roundtrip routes from the depot 
that, altogether, satisfy all demands of the nodes by 
visiting and serving all them exactly once. At each 
step of the solution-construction process, the CWS 
algorithm always chooses the edge with the highest 
savings value. Our approach, instead, assigns a 
probability of selecting each edge in the savings list. 
According to our design, this probability should be 
coherent with the savings value associated with each 
edge, i.e., edges with higher savings will be more 
likely to be selected from the list than those with 
lower savings. Finally, this selection process should 
be done without introducing too many parameters in 
the methodology –otherwise, it would be necessary 
to perform fine-tuning processes, which tend to be 
non-trivial and time-consuming. To reach all those 
goals, we employ the geometric statistical 
distribution with parameter α (0 < α < 1) during the 
CWS solution-construction process: each time a new 
edge hast to be selected from the list of available 
edges, a geometric distribution is randomly selected. 
This distribution is then used to assign exponentially 
diminishing probabilities to each eligible edge 
according to its position inside the savings list, 
which has been previously sorted by its 

A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING
PROBLEMS

213



 

corresponding savings value. That way, edges with 
higher savings values are always more likely to be 
selected from the list, but the probabilities assigned 
are variable and they depend upon the concrete 
distribution selected at each step. By iterating this 
procedure, an oriented random search process is 
started. Notice that this general approach has 
similarities with the Greedy Randomized Adaptive 
Search Procedure (GRASP) (Feo & Resende 1995). 
GRASP is a typically two-phase approach where in 
the first phase a constructive heuristic is 
randomized. The second phase includes a local 
search process. Nevertheless, it is important to 
notice that our algorithm does not require any 
adaptive effort –the savings list is calculated just 
once, at the beginning of the process. Moreover, our 
approach is strongly based on the combination of a 
classical heuristic with statistical distributions and 
Monte Carlo simulation, which is not the usual case 
in GRASP algorithms. 

Next, we describe with more detail the main 
steps of our approach (Fig. 1): 

 
Figure 1: Scheme of our approach for the CVRP. 

1. Given a CVRP instance, construct the 
corresponding data model and use the 
classical CWS algorithm to solve it. 

2. Choose a value for the parameter α for adding 
random behavior to the algorithm; according 
to our experience, any parameter value 
between 0.10 and 0.15 will give promising 
results in most tested instances, so that no 
fine-tuning process is really needed. 

3. Start an iterative process to generate solutions 
using the SR-GCWS algorithm with the user-
defined values for parameters α and the 
number of iterations to run (nIter). 

4. For each one of the iterations, save the 
resulting solution in a database only if it 
outperforms the one provided by the CWS 

algorithm, i.e., we will consider that a solution 
is a good one only if it outperforms the CWS 
solution from an aprioristic costs perspective. 

Roughly speaking, if the size of the savings list 
in the current step is large enough, the parameter α 
can be interpreted as the probability of selecting the 
edge with the highest savings value at the current 
step of the solution-construction process. Choosing a 
relatively low α-value (e.g. α = 0.05) implies 
considering a large number of edges from the 
savings list as potentially eligible, e.g.: assuming a 
list size of 100, if we choose α = 0.05 then the list of 
potentially eligible edges will cover about 44 edges 
from the sorted savings list. On the contrary, 
choosing a relatively high α-value (e.g. α = 0.35) 
implies reducing the list of potential eligible edges 
to just a few of them, e.g.: assuming a list size of 
100, if we choose α = 0.35 then the list of potentially 
eligible edges will be basically reduced to 
approximately 5 edges.  

Once a value for α is chosen, the first edge must 
be selected. This same value of α can be used for all 
future steps. In that case, the selection of the α-value 
might require some minor fine-tuning process. 
However, based on the tests we have performed so 
far, we prefer to consider this α-value as a random 
variable whose behavior is determined by a well-
known continuous distribution, e.g.: a uniform 
distribution in the interval (0.05, 0.20). This way, we 
do not only avoid a fine-tuning process, but we also 
have the possibility to combine different values of 
this parameter at different edge-selection steps of the 
same solution-construction process. In other words, 
we are interested in the possibility of combining 
different strategies regarding the number of edges to 
be considered as eligible at different steps through 
the solution-construction process. 

3 ALGORITHM DESCRIPTION 

In this section, we will discuss the main parts of the 
SR-GCWS algorithm. Fig. 2 shows the main 
procedure, which drives the solving methodology. 
First, inputs are entered in the program and both 
nodes and constraints are identified. Then, an 
efficiency list is constructed. This list contains the 
potential edges to be selected sorted by their 
associated savings. At this point, the CWS solution 
is obtained by applying the Clarke & Wright 
Savings heuristic. The costs associated with this 
solution will be used as an upper bound limit for the 
costs of what we will consider a good solution. 
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Therefore, from this moment on we will save in a 
database all new solutions that improve those costs. 
It is at this step when we start the iterative process to 
generate hundred/thousands of solutions by using 
our algorithm. Details of this constructive process 
can be found at pseudo-codes included in Figs. 3 and 
4. The former figure shows how the construction 
process starts with the CWS initial solution and then 
adds a randomized edge selection before proceeding 
with the merging of existing routes if possible. The 
later figure shows some details of the random 
selection process. 
procedure SR-GCWS() 
1 vrp = getInstanceInputs(); 
2 nodes = getNodes(vrp); 
3 constraints = getConstraints(vrp); 
4 effList = buildEfficiencyList(nodes); 
5 cwsSol = buildCWSSolution(vrp, 
effList); 
6 while stopping criterion not satisfied  
7 sol = buildRandomizedSolution(nodes, 
constraints, effList); 
8 sol = improveSolUsingHashTable(sol); // 
  learn from experience 
9 updateSolution(sol, 
  bestSolutionFound[]); 
10 elihw 
11 return bestSolutionFound[];  
end 

Figure 2: Generic SR-GCWS procedure. 

procedure buildRandomizedSolution(nodes, 
constraints, list) 
1 sol = buildTrivialCWSSol(nodes);  
2 list = sort(list); // sort edge list  
3 while list contains edges  
4    e = selectEdgeAtRandom(list); 
5    deleteFromList(e); 
6    if CWS route-merging meets all 
constraints  
7   sol = insertEdgeInSol(e); //merging 
8    fi 
9 elihw 
10 return sol; 
end 

Figure 3: Constructive process to generate new solutions. 

Finally, at each iteration, we try to improve the 
solution being constructed by saving in a hash table 
the best routes found so far for any specific set of 
nodes. The hash table always keeps the best found-
so-far way of sorting a set of customers in a route. In 
some sense, this could be considered as a learning 
mechanism that makes the algorithm more efficient 
as more new solutions are generated. A hash table is 
used instead of an array just for computational 
efficiency reasons. 

 

procedure selectEdgeAtRandom(list) 
1 beta = generateRandomNumber(a, b); // 
e.g.: a = 0.05 and b = 0.20 
2 randomValue = generateRandomNumber(0, 
1); 
3 n = 0; 
4 cumulativeProbability = 0.0; 
5 for each edge in list  
6  edgeProbability = beta * (1 – beta)^n; 
// geometr. distribution 
7  cumulativeProbability += 
edgeProbability; 
8  if randomValue < cumulativeProbability 
 

9     return edge; 
10 else 
11    n++; 
12 fi 
13 rof 
14 k = generateIntegerRandomNumber(0, 
list size); // from 0 to list size – 1 
15 return getEdgeAtPosition(k); 
end

Figure 4: Randomized selection of edges from savings list. 

4 EXPERIMENTAL RESULTS 

The methodology described in this paper has been 
implemented as a Java application. At the core of 
this application, some state-of-the-art pseudo-
random number generators are employed. In 
particular, we have used some classes from the SSJ 
library (L’Ecuyer, 2002), among them, the subclass 
GenF2W32, which implements a generator with a 
period value equal to 2800-1. Using a pseudo-random 
number generator with such an extremely long 
period is especially useful when performing an in-
depth random search of the solutions space. In our 
opinion, the use of such a long-period RNG has 
other important advantages: the algorithm can be 
easily parallelized by splitting the RNG sequence in 
different streams and using each stream in different 
threads or CPUs. This can be an interesting field to 
explore in future works, given the current trend in 
multi-core processors and parallel computing. 

In order to verify the goodness of our approach 
and its efficiency as compared with other existing 
methodologies, a total of 14 classical CVRP 
benchmark instances were selected from the 
reference web site http://www.branchandcut.org, 
which contains detailed information regarding a 
large number of benchmark instances. The selection 
process was based on the following criteria: (a) all 6  
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Table 1: Comparison of methodologies for six randomly selected CVRP instances. 

Instance Number 
of nodes 

CWS 
solution

Best-known 
solution*

Our best 
solution

Gap 

A-n45-k7 45 1,199.98 1,147.28 1,146.91 -0.03% 
A-n60-k9 60 1,421.88 1,355.80 1,355.80 0.00% 
A-n80-k10 80 1,860.94 1,766.50 1,766.50 0.00% 
B-n50-k7 50 748.80 744.78 744.23 -0.07% 
B-n52-k7 52 764.90 750.08 749.97 -0.01% 
B-n57-k9 57 1,653.42 1,603.63 1,602.29 -0.08% 
B-n78-k10 78 1,264.56 1,229.27 1,228.16 -0.09% 
E-n51-k5 51 584.64 524.94 524.61 -0.06% 
E-n76-k10 76 900.26 837.36 839.13 0.21% 
E-n76-k14 76 1,073.43 1,026.71 1,026.14 -0.06% 
F-n135-k7 135 1,219.32 1,170.65 1,170.33 -0.03% 
M-n121-k7 121 1,068.14 1,045.16 1,045.60 0.04% 
P-n70-k10 70 896.86 830.02 831.81 0.22% 
P-n101-k4 101 765.38 692.28 691.29 -0.14% 

Average gap -0.01% 
(*) Best-known solution according to the information available at http://www.branchandcut.org/ 

sets of instances (A, B, E, F, M and P) were used, 
(b) only instances offering complete information 
(e.g. specific routes in best known solution) were 
considered, (c) instances with less than 45 nodes 
were avoided, since they can be easily optimized by 
using exact methods. The selected benchmark files 
are shown on Table 1. These instances differ in the 
number of nodes (ranging from 45 to 135) and also 
in the location of the depot with respect to the 
customers (in some cases the depot occupies a 
central position in the scatterplot of customers while 
in others the depot is located at one corner). Some 
instances characterized by having clusters of 
customers have also been considered. 

A standard personal computer, Intel® Core™2 
Duo CPU at 2.4 GHz and 2 GB RAM, was used to 
perform all tests. Results of these tests are 
summarized in Table 1, which contains the 
following information for each instance: (a) number 
of nodes, (b) costs associated with the solution given 
by the parallel version of the CWS heuristic, (c) 
costs associated to the best-known-so-far solution, 
C , according to the information available at the 
referred web site, (d) costs associated with the best-
known-so-far solution provided by our algorithm, 
C′ , and finally (e) gap between both solutions 
calculated as the quotient CCC /)( −′  and expressed 
as a percentage value. Notice that, as defined, a 
positive gap will imply that our solution costs are 
higher than the ones associated with the best-known-
so-far solution, while a negative gap will imply just 
the opposite, i.e., better solutions found by our 
approach. 

From Table 1 it can be deduced that, for each of 
the 14 randomly selected instances, our 
methodology has been able to provide a virtually 
equivalent solution to the one considered as the best-
known-so-far. In fact, in 9 out of the 14 tested 
instances, our methodology has been able to slightly 
improve the best-known solution, offering negative 
gaps. When considering all instances together, the 
average gap is still negative (its value is equal to -
0.01%). Generally speaking, according to these 
results, it seems licit to say that the hybrid 
methodology presented here is able to generate 
excellent CVRP solutions. 

As described before, our approach makes use of 
an iterative process to generate a set of random 
feasible solutions. According to the experimental 
tests carried out, each iteration is completed in just a 
few milliseconds by using a standard computer. By 
construction, odds are than the generated solution 
outperforms the one given by the CWS heuristic. 
This means that our approach provides, almost 
immediately (even for the instance with 200 nodes), 
what we call “a class C solution”, i.e., a feasible 
solution which outperforms the CWS heuristic in 
aprioristic costs. Moreover, as verified by testing, 
hundreds or even thousands of alternative class C 
solutions can be obtained after some minutes of 
computation, each of them having different 
attributes regarding non-aprioristic costs, workload 
balance, visual attractiveness, etc. By doing so, a list 
of alternative solutions can be constructed, thus 
allowing the decision-maker to filter this solutions 
list according to different criteria. This offers the 
decision-maker the possibility to choose, among 
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different solutions with similar aprioristic costs, the 
one which best fulfils his or her preferences 
according to his or her utility function.  

Furthermore, and again according to 
experimental results, our algorithm is able to provide 
a “class B” solution, i.e., a feasible solution inside 
the 2% gap from the best-known solution, in just 
some hundred or some thousand iterations, which in 
small- and medium-size instances takes only a few 
seconds to run. Of course, as it has been already 
discussed in the previous section, with more 
computing time our algorithm is capable to provide 
“class A” solutions, i.e., feasible solutions that are 
virtually equivalent, or even better in some cases, to 
the best-known-so-far solution for every tested 
instance. Another important point to consider here is 
the simplicity of the presented methodology. In 
effect, our algorithm needs little instantiation and 
does not require any fine-tuning or set-up processes. 
This is quite interesting in our opinion, since 
according to (Kant et al., 2008) some of the most 
efficient heuristics and meta-heuristics are not used 
in practice because of the difficulties they present 
when dealing with real-life problems and 
restrictions. On the contrary, simple hybrid 
approaches like the one introduced here tend to be 
more flexible and, therefore, they seem more 
appropriate to deal with real restrictions and 
dynamic work conditions. Notice also that our 
approach seems to work well in all tested instances 
without requiring any special fine-tuning or set-up 
process.  

Finally, it is convenient to highlight that the 
introduced methodology can be used beyond the 
CVRP scenario: with little effort, similar hybrid 
algorithms based on the combination of Monte Carlo 
simulation with already existing heuristics can be 
developed for other routing problems and, in 
general, for other combinatorial optimization 
problems. In our opinion, this opens a new range of 
potential applications that could be explored in 
future works. 

5 CONCLUSIONS 

In this paper a simple yet efficient hybrid 
methodology for solving the Capacitated Vehicle 
Routing Problem has been presented. This 
methodology, which does not require any particular 
fine-tuning or configuration process, combines the 
classical Clarke & Wright heuristic with Monte 
Carlo simulation using a geometric distribution and 
a state-of-the-art pseudo-random number generator. 
Results show that our methodology is able to 

provide top-quality solutions which can compete 
with the ones provided by much more complex 
meta-heuristics, which usually are difficult to 
implement in practice. Moreover, being a 
constructive approach, it can generate hundreds of 
alternative good solutions in a reasonable time-
period, thus offering the decision-maker the 
possibility to apply different non-aprioristic criteria 
when selecting the solution that best fits his or her 
utility function. 

REFERENCES 

Buxey, G.M. 1979. The Vehicle Scheduling Problem and 
Monte Carlo Simulation. Journal of Operational 
Research Society, 30, 563-573 

Clarke, G. and J. Wright. 1964. Scheduling of Vehicles 
from a central Depot to a Number of Delivering 
Points. Operations Research, 12, 568-581 

Faulin, J. and A. Juan. 2008. The ALGACEA-1 Method 
for the Capacitated Vehicle Routing Problem. 
International Transactions in Operational Research, 
15, 1-23 

Feo, T. A, Resende, M.G. C. 1995. Greedy randomized 
adaptive search procedures. Journal of Global 
Optimization, 6, 109-133 

Fernández de Córdoba, P., García Raffi, L.M., Mayado, A. 
and J.M. Sanchis. 2000. A Real De-livery Problem 
Dealt with Monte Carlo Techniques. TOP, 8, 57-71 

Golden, B., Raghavan, S. and E. Edward Wasil (eds.). 
2008. The Vehicle Routing Problem: Lat-est Advances 
and New Challenges. Springer 

Kant, G., Jacks, M. and C. Aantjes. 2008. Coca-Cola 
Enterprises Optimizes Vehicle Routes for Efficient 
Product Delivery. Interfaces, 38: 40-50 

Laporte, G. 2007. What you should know about the 
Vehicle Routing Problem. Naval Research Logistics, 
54: 811-819 

Laporte, G., Gendreau, M., Potvin, J.Y. and F. Semet. 
2000. Classical and Modern Heuristics for the Vehicle 
Routing Problem. International Transactions in 
Operational Research, 7, 285-300 

Law, A. 2007. Simulation Modeling & Analysis. 
McGraw-Hill 

L’Ecuyer, P. 2002. SSJ: A Framework for Stochastic 
Simulation in Java. In Proceedings of the 2002 Winter 
Simulation Conference, pp. 234 – 242 

Poot, A., Kant, G. and A Wagelmans. 2002. A savings 
based method for real-life vehicle routing problems. 
Journal of the Operational Research Society, 53, 57-68 

Toth, P. and D. Vigo. 2002. The Vehicle Routing 
Problem. SIAM Monographs on Discrete Mathematics 
and Applications. SIAM  

A SIMULATION-BASED METHODOLOGY TO ASSIST DECISION-MAKERS IN REAL VEHICLE ROUTING
PROBLEMS

217


