

AN MDA APPROACH FOR OBJECT-RELATIONAL MAPPING

Cătălin Strîmbei and Marin Fotache
Al.I. Cuza University of Iaşi, Dept. of Business Information Systems

Bd. Carol I, 22, Iasi, 700505 Romania

Keywords: Object-Relational Databases, UML, SQL, Oracle, MDA.

Abstract: This paper reviews several emergent approaches that attempt to capitalize on SQL data “engineering”
standard in current <object>-to-<object relational> mapping methodologies. As a particular contribution we
will discuss a slightly different OR mapping approach, based on ORDBMS extension mechanisms that
allow to publish new data structures as Abstract Data Types (ADT).

1 ARE OBJECT-RELATIONAL
DATABASE SYSTEMS SO
SUCCESSFUL?

Despite the semantic richness, the huge support and
enthusiasm from the academic and scientific
community, the Object Oriented (OO) data model
has failed to supersede the relational model on the
market. This failure could be explained not only by
the lack of performance of OODBMSs, but also by
the weaker management services, the breaking of the
data independence principle which results into
diminishing portability between technological
application frameworks.

OR databases are not implemented at the scale of
relational ones in business applications and Object-
to-Object-Relational (O-OR) mapping theory does
not seem to be as mature. Also, the number of case
studies disseminating O-OR successful projects is
quite small, so OR databases are far from fully being
exploited. Though, the most obvious strength of O-R
databases is the natural representation of complex
objects. Business semantics are better implemented
using extended types or extended structures of OR
model (such as ROW, NESTED TABLE, etc.).

We argue that producing a mass-switch from
relational to real OR systems requires building new
consistent methodologies for transforming business-
oriented object models into data-based OR models.
These new methodologies must be incorporated in
consistent technological frameworks which integrate
existing types of business application components
and advanced OR databases. More than the simple

UML-to-SQL3 basic mapping these methodological
approaches must support:
 embedding the OR database design into the

development process of the entire (business)
information system lifecycle;

 a code of good design practices concerning rich
OR model extensions at pair with the larger
object-oriented design context;

 a (technological) framework for the automating
schema generation process and for the reverse
engineering of existing OR schemas.

2 ANALYSIS AND SOME
“CRITICISM” OF
OBJECT-RELATIONAL
RELATED PAPERS

In the area of object oriented methodologies for
designing OR database schemas, the debates on
object representation as row in a table or value in a
column have led to two methodological approaches,
one based on SQL standard (SQL:1999 and
SQL2008) (Feuerlich et al., 2007), (Stonebraker et
al., 1990) and another based on The Third Manifesto
“D” language (Darwen and Date, 1995) (Date and
Darwen, 2007).

Our opinion is that it is better and more effective
to manage these two approaches by trying to
compare, correlate and mediate them rather than by
setting them one against the other.

295Strîmbei C. and Fotache M. (2009).
AN MDA APPROACH FOR OBJECT-RELATIONAL MAPPING.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
295-298
DOI: 10.5220/0002003802950298
Copyright c© SciTePress

An object sometimes is the “equivalent” of a row
in a table (the tuple type of table rows corresponds
with the class equivalent) and sometimes is the
equivalent of the value of a column. The Domain
Driven Design methodology approach to Entity
types described by Value types opens a relevant and
semantically pertinent argumentation. But the
discussion about ROW-CLASS equivalence implies
another issue: in object oriented design there is a
difference between CLASS and TYPE concepts,
originated in OO debate about declaration/interface
vs. implementation theory.

As for MDA for OO-OR model mapping, there
are two representative approaches for the
transformation of OO models formalized as UML
class diagrams into OR schemas. One focuses on
building an UML model adapted to OR construct by
using UML extension mechanisms (like stereotypes)
(Fern et al., 2005), (Marcos et al., 2003) and the
other takes into consideration a plain UML model
prepared to generate nested normal forms (Mok and
Paper, 2001) (Chennamaneni and Grant, 2004).

We argue that MDA mapping rules might
provide the basis for another meta-model formalized
by using UML extension mechanism and OCL.
MDA mapping rule will have to preserve the
following semantics: (a) at base level: attribute,
class, association; (b) at enhanced level (complex
objects): complex entities through aggregation,
composition and derivation.

Mapping composed attributes to SQL OR types
like ARRAY, MULTI SET or NESTED TABLE
might be a natural choice, but, in our opinion, the
problem is not such simple. The selection of one of
the options available requires a serious semantic
analysis (Marcos et al., 2003) (Eessaar, 2006). One
must make distinctions between:
 the multi-valued attributes with descriptive

function and the associations and other entities
in the frame of a composed structure,

 REFs (OIDs) and the foreign keys for simple
associations,

 NESTED TABLES either for composition or
aggregations,

 collection types like ARRAYS and MULTISET
for multi-valued attributes.

SQL NESTED TABLE construct may not be
suitable for implementing associations that are not
aggregations, because this kind of design may cause
redundancy problems (Mok and Paper, 2001).
Therefore the database schema will be weaker to
BCNF tables.

With respect to MDA layered architecture, the
analysed proposals reveal the following alternatives:

MDA1: from plane simple UML diagrams to OR
implemented structures; MDA2: from UML-OR
extended diagrams to OR implemented structures;
and MDA3 : UML plan diagram (conceptual model)
to UML-extended OR diagrams (UML for SQL3) to
OR implemented structures (Oracle concrete
Model).

In our opinion, the MDA3 alternative can be
further refined (let’s say in MDA4) by taking into
consideration the enterprise or business application
systems. This refinement divides MDA1 into:
(1) UML-extended for business components and
(1’) UML-extended OR diagrams (UML for SQL)
and MDA2 (the implementation level) into:
(2) platform specific business components (e.g. EJB)
and (2’) OR implemented structures (such as Oracle
DB concrete Model).

To sum-up, a full-blown MDA architecture can
assume the following levels:
 Layer 1: UML plain model (class diagrams)
 Layer 2: UML “prepared” (restricted) model

(class diagrams)
 Layer 3: UML-OR SQL extended model (class

diagrams to represent relational and extended
structures)

 Layer 4: UML-OR Technological/Product
extended model (relational and extended
structures)

 Layer 4’: UML for business components
integration with OR-DBMS structures (DBMS
product specific bridge extensions).

3 A DIFFERENT OO-OR
MAPPING APPROACH TO
IMPLEMENT SQL ABSTRACT
DATA TYPES

The basic idea of our approach takes into
consideration the possibility to expose SQL
compliant O-R types using an ORDBMS. The
implementation of types is made with a “true” object
oriented language and platform (Java and Java
Runtime Environment

The main objectives of this approach are: (1) to
develop models that are semantically compliant with
OO principles using an object-orthogonal approach
such as the one proposed by Date and Darwen
(Darwen and Date, 1995); (2) to maximize OR
abstract data types portability using ORDBMS
extension mechanisms.

ICEIS 2009 - International Conference on Enterprise Information Systems

296

The proposed MDA architecture comes into two
versions: an extended form for methodological
reasons, and a slight compressed form for practical
reasons. The Extended form (Figure 1) involves four
layered models: (1) a platform independent model
(PIM) containing the initial data structure types; (2)
(3) a platform specific model (PSM-1) for Java
platform embedded in the ORDBMS; an SQL
specific model that preserves its independence
against ORDBMS; (4) a platform specific model of
targeted ORDBMS that will both contain: the SQL-
ORDBMS specific type definitions, and the
integration structures between implementation
platform and ORDBMS exposure mechanism.

PIM

PSM

Java Source
Code,

Implementation
definitions

Original Logic Typed
Model,

SQL3 adapted

Implementation Model
Target Platform: Java

6.0

Specific O-R Model
target DBMS:

Oracle 11g

DDL Script,
OBJECT TYPE

declarations

Java Code Source,
adapted structures

definitions

Figure 1: Simplified MDA architecture.

The Compressed form (Figure 1) merges UML
and SQL models into a single PIM model taking into
consideration their platform-independent nature and
their semantic equivalent constructs.

For getting practical results we used two kinds of
tools. First, UML Case Tool produces an UML-PIM
adapted model, a graphically and encoded form that
is compliant with the MOF-XMI standard format of
the OMG (http://www.omg.org/mof). Second, an MDA-
generation tool parses, interprets and processes the
XMI form of the UML model in order to produce
the Java and Oracle OR specific SQL code. Our
choices are ArgoUML and AndroMDA which have
the advantage of compatibility and easy integration,
aside from being leading open-source products
based on open-standards (like MOF-XMI). Our
UML-PIM model is formalized with UML
stereotypes, presented in figure 2.

Figure 2: UML-OR Profile from ArgoUML.

The stereotypes mark the UML classes in order
to enable the mapping and generation rules of the
PSM Java and Oracle SQL structures. The
ScalarDataType designates UML classes mapped
into the immutable SQL abstract data types defining
components (attributes) of SQL structured types.
The structured types will result from the UML
classes marked as CompositeDataType. These types
will be further used to define SQL table structures to
store their instances, or to define components of
other structured types as single attributes or as
collections (ARRAYs or NESTED TABLES). The
generation strategies in PSM of those UML classes
connected with generalization/specialization rela-
tionships will be guided through CompositeData-
TypeSpecialization stereotype. Every mapping rule
will be converted into a generation rule within
AndroMDA context. The AndroMDA engine will
process UML elements annotated with stereotypes
through the metafacade-template system that
produces Java and Oracle SQL structures. In short,
the conversion logic should be incorporated in
AndroMDA metafacades and the result will be
interpreted by scripts from template files (see figure
3).

4 CONCLUSIONS
AND OPEN ISSUES

An OO-OR framework could not be complete
without closing the “gap” so that the objects stored
in typed tables of ORDBMS could seamlessly
“pass” forward and backward to concrete business
components hosted by application servers or self-
contained business applications. Taking into
consideration the Java technological space, there are
already two persistence frameworks, JPA and JDO

AN MDA APPROACH FOR OBJECT-RELATIONAL MAPPING

297

Figure 3: AndroMDA process to generate Oracle SQL Object Types and Java implementation classes.

But because they were built in an opaque manner
concerning OR “native” types (SQL3 types), we
have to rely on the lower JDBC standard API to
communicate with databases. Form its 2.0 version,
the JDBC standard has introduced some interesting
extensions to support as closely as possible, the
abstract-typed values from OR-DBMS.

In order to produce a full-fledged OO-OR
framework, that have to be coherent, complete and
at pair with JPA and JDO, we must to further
explore a rich set of problems such as:
 an extensive set of good practices must be

delivered to cover all OR SQL3 types in business
application-specific types (e.g. the aggregation
and sub-typing or generalization issues);

 the conversion from typed tables to application-
specific collections;

 an OR compliant but OO specific query API must
be designed and built with reasonable
performance concerning scalability and queries’
metrics (overall time and cost).

REFERENCES

Chennamaneni, R., Grant, E.S., 2004. Comparison and
Evaluation of Methodologies for Transforming UML
Models to Object-Relational Databases, Proceeding of
Midwest Instruction and Computing Symposium,
Morris, Minnesota.

Date, C.J., Darwen, H., 2007. Databases, types, and the
relational model. The third manifesto (Reading, MA:
Addison-Wesley).

Darwen, H., Date, C.J., 1995. The Third Manifesto, ACM
SIGMOD Record, 24(1),, 39-49.

Eessaar, E., 2006. Whole-Part Relationships in the Object-
Relational Databases, Proceedings of the 10th
WSEAS International Conference on Computers,
Vouliagmeni, Athens.

Fern M, Golobisky, A, Golobisky, V., 2005. Mapping
UML Class Diagrams into Object-Relational
Schemas, Proc. Of Argentine Symposium on Software
Engineering, pg. 65-79.

Feuerlich, G., Pokorny, J., Richta, K., 2007. Object-
Relational Database Design: Can your Application
Benefit from SQL:2003?, Proceedings of the 16th
International Conference on Information Systems
Development Galway, Ireland, August 29-31.

Fortier, P., 1999 SQL3. Implementing the SQL Foundation
Standard, McGraw-Hill.

Kleppe, A., Warmer, J., Bast, W., 2003. MDA Explained:
The Model Driven Architecture™: Practice and
Promise, Addison Wesley Professional.

Marcos, E., Vela, B., Cavero, J.M., 2003. A
methodological Approach for Object-Relational
Database Design using UML, Software System
Modeling, Springer-Verlag.

Mok, W.Y, Paper, D.P., 2001 On transformations from
UML models to object-relational databases,
Proceedings of the 34th Annual Hawaii International
Conference on System SciencesVolume , Issue , 3-6
Jan.

Stonebraker, M., Anton, J., Hanson, E., 1987. Extending a
Database System with Procedures, ACM Transactions
on Database Systems, 12(3), 1987, 350-376.

Stonebraker, M., Rowe, L.A., Lindsey, B., Gray, J., Carey,
M., Brodie, M., Bernstein, P., Beech, D., 1990. Third-
Generation Database Systems Manifesto, ACM
SIGMOD Record, 19(3), 31-44.

ICEIS 2009 - International Conference on Enterprise Information Systems

298

