
A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE
OPTIMIZATION OF DECISION-SUPPORT QUERIES

Ricardo Jorge Santos1 and Jorge Bernardino1,2
1 CISUC – Centre of Informatics and Systems of the University of Coimbra, Coimbra, Portugal

2 ISEC – IPC – Superior Institute of Engineering – Polytechnic Institute of Coimbra, Coimbra, Portugal

Keywords: OLAP Query Performance Optimization, Bitmap and Bitwise Operations in OLAP.

Abstract: Performance optimization of decision support queries has always been a major issue in data warehousing. A
large amount of wide-ranging techniques have been used in research to overcome this problem. Bit-based
techniques such as bitmap indexes and bitmap join indexes have been used and are generally accepted as
standard common practice for optimizing data warehouses. These techniques are very promising due to their
relatively low overhead and fast bitwise operations. In this paper, we propose a new technique which
performs optimized row selection for decision support queries, introducing a bit-based attribute into the fact
table. This attribute’s value for each row is set according to its relevance for processing each decision
support query by using bitwise operations. Simply inserting a new column in the fact table’s structure and
using bitwise operations for performing row selection makes it a simple and practical technique, which is
easy to implement in any Database Management System. The experimental results, using benchmark TPC-
H, demonstrates that it is an efficient optimization method which significantly improves query performance.

1 INTRODUCTION

Over the last decades, data warehouses (DW) have
become excellent decision-support means for almost
every business area. Decision making information is
mainly obtained through usage of tools performing
On-Line Analytical Processing (OLAP) against DW
databases. Since these databases usually store the
whole business’ history, they frequently have a huge
number of rows, and grow to gigabytes or terabytes
of storage size, making query performance one of
the most important issues in data warehousing.

In the past, much research has been done
proposing a wide range of techniques which can be
used to achieve performance optimization of OLAP
databases, such as, among others: Partitioning
(Agrawal, 2004; Bellatreche, 2005; Bernardino,
2001), Materialized Views and Aggregates
(Agrawal, 2000; Gupta, 1999), Indexing (Chaudhuri,
1997; Chee-Yong, 1999; Gupta, 1997), Data
Sampling (Furtado, 2002), Redefining database
schemas (Bizarro, 2002; Vassiliadis, 1999), and
Hardware optimization, such as memory and CPU
upgrading, distributing data through several physical
drives, etc. to improve data distribution and/or
access seeking efficient table balancing.

Sampling has an implicit statistical error margin
and almost never supplies an exact answer to the
queries according to the whole original data. Using
materialized views is often considered as a good
technique, but it has a big disadvantage. Since they
consist on aggregating the data to a certain level,
they have poor generic usage and each materialized
view is usually built for speeding up a limited class
of queries instead of the whole set of usual decision
queries. Furthermore, they use a large amount of
storage space and they also increase database
maintenance efforts. Hardware improvements for
optimization issues are not part of the scope of this
paper. Although much work has been done with
these techniques separately, few have focused on
their combination, except for aggregation and
indexing (Bellatreche, 2002, 2004; Santos, 2007).

The author in (Pedersen, 2004) refers that
standard decision making OLAP queries which are
executed periodically at regular intervals are, by far,
the most usual form of obtaining decision making
information. This means that this information is
usually based on the same regular SQL instructions.
This makes it relevant and important to optimize the
performance of a set of predefined decision support
queries, which would be executed repeatedly at any
time, by a significant number of OLAP users.

151Santos R. and Bernardino J. (2009).
A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE OPTIMIZATION OF DECISION-SUPPORT QUERIES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
151-157
DOI: 10.5220/0001993001510157
Copyright c© SciTePress

Therefore, our goal is to optimize performance
for a workload of given representative decision
support queries, without defeating the readability
and simplicity of its schema. The performance of ad-
hoc queries is not treated. The presented technique
aims to optimize the access to all fact table rows
which are relevant for processing each decision
support query, thus optimizing their execution time.
As we shall demonstrate throughout the paper, this
technique is very easy and simple to implement in
any DBMS. Basically, it takes advantage of using an
extra bit-based attribute which should be included in
the fact table, for marking which rows are relevant
for processing each decision support query.

The remainder of this paper is organized as
follows. Section 2 presents related work on
performance optimization research and specific bit-
based methods. Section 3 explains our bit-selector
technique and how to implement and use it. Section
4 presents an experimental evaluation using the
TPC-H benchmark. Finally, some conclusions and
future work are given in Section 5.

2 RELATED WORK

Data warehousing typically uses the relational data
schema for modelling data in a warehouse. The data
is modelled either using the star schema or the
snowflake schema. In this context, OLAP queries
require extensive join operations between fact and
dimension tables (Kimball, 2002). Many techniques
have been proposed to improve query performance,
such as those which we have referred in the first
section of this paper, among others.

Work in (Bellatreche, 2005) proposes a genetic
algorithm for schema fragmentation, focused on how
to fragment fact tables based on dimension table’s
partitioning schemas. Fragmenting the DW as a way
of speeding up multi-way joins and reducing query
execution cost is a possible optimization method, as
shown in that paper. In (Bellatreche, 2004; Santos,
2007) the authors obtain tuning parameters for better
use of partitioning, join indexes and views to
optimize the total cost in a systematic system usage
form. The method in (Bizarro, 2002) shows how to
tune database schemas towards performance-
orientation, illustrating their proposal with the same
benchmark used in this paper to demonstrate our
technique. We shall compare our results with theirs
in this paper’s experimental evaluation.

As we mentioned before, optimization research
based on bitmaps has been proposed and regularly
used in practice almost since the beginning of data

warehousing, mainly in indexing (Gupta, 1997;
O’Neil, 1995; Wu, 1998). The authors in (Hu, 2003)
present bitmap techniques for optimizing queries
together with association rule algorithms. They show
how to use a new type of bitmap join index to
efficiently execute complex decision support queries
with multiple outer join operations involved and
push the outer join operations from the data flow
level to the bitmap level, achieving significant
performance gain. They also discuss a bitmap based
association rule algorithm. In (Agrawal, 2004) the
authors propose novel techniques for designing a
scalable solution to a physical design issue such as
incorporating adequately partitioning with database
design. Both horizontal and vertical partitioning is
considered. The technique uses bitmaps for
referencing the relevant columns of a given table for
each query executed for a given workload. These
bitmaps are then used to generate which column-
groups of the table are interesting to consider for its
horizontal and/or vertical partitioning.

Our technique essentially consists on adding a
new integer attribute to be used as a bitmap for each
row referring if it is relevant or not for each query.
To know which rows are needed for processing each
query we only need to test this new attribute’s value
– the bit-selector – recurring to a simple bitwise
modulus operation (by comparing the remainder of
an integer division, identifying the executing query).
We aim for minimizing data access costs for
processing the query workload, thus improving its
performance by reducing execution time.

3 BIT-SELECTOR TECHNIQUE

Bitmap indexes are very common techniques used
for upgrading performance, for they accelerate data
searching and reduce data accesses. It is well known
that the list of rows associated with a given index
key value can be represented by a bitmap or bit
vector. In this case, each row in a table is associated
with a bit in a long string, an N-bit string if there are
N rows in the table, with the bit set to 1 in the
bitmap if the associated row is contained in the
represented list; otherwise, the bit is set to 0. Our
technique uses the same principle, but relating if the
row is relevant for executing a given query.

3.1 Defining the Bit-Selector

Consider a table T with rows TR1, TR2, TR3, and TR4.
Suppose a given workload with queries Q1, Q2 and
Q3. If all rows were necessary for processing query

ICEIS 2009 - International Conference on Enterprise Information Systems

152

Q1, only the second and third rows were needed for
query Q2, and only the first three rows were
necessary for processing query Q3, we could
represent this according to Table 1. For each row,
we use 1 to define it as relevant for each query in
column, and 0 if it is not.

Table 1: A bitmap example for Row-Query Bit-selecting.

 Q3 Q2 Q1
Binary
Value

Decimal
Value

TR1 1 0 1 101 5
TR2 1 1 1 111 7
TR3 1 1 1 111 7
TR4 0 0 1 001 1

This way, the decimal value for each row may be

obtained by transforming the binary value for the
query workload. Observing Formula 1, we present
the general conversion formula for obtaining the
decimal value for bit-selection of each table row
TRi, given a workload of N queries { Q1, Q2, …, QN }:

TRi Bit-Selector Decimal Value =
 QS1 x 20 + QS2 x 21 + … + QSN x 2(N-1)

(1)

(Bit-Selector decimal value formula)

where QSN represents the value 1 if row TRi is
relevant for QN, and 0 otherwise. This can be
formulated simplified and generalized to Formula
(2).

TRi Bit Selector Decimal Value =
 Σ (QSJ x 2(J-1))

(2)

(Bit-Selector decimal value generic formula)

3.2 Using the Bit-Selector

Since the Bit-Selector is bit based, to know if a row
TRi is needed for processing a given query QN, we
need to test if the Nth bit of its binary value is equal
to 1. To do this, we only need to perform a modulus
(MOD) operation (equal to the remainder of an
integer division) on its bit-selector decimal value,
using a power of base 2 and exponent equal to N.
The generic formula for this is shown in Formula 3.

Row TRi is interesting for QN
if (Bit-Selector Value MOD 2N) >= 2(N-1) (3)

(Rule for defining if a given row is relevant for a given
query using the Bit-Selector technique)

Mainly, data access issues in data warehousing
address fact tables, since they usually have a huge
number of rows, when comparing to dimension
tables. To use the bit-selector in the DW, we propose
adding it as a column in its fact tables. This implies

that query instructions executed against fact tables
need to take this under consideration if they are to
take advantage in using the bit-selector technique.

Using the decision support benchmark TPC-H
(TPC-H) and DBMS Oracle 10g (Oracle), we shall
now demonstrate examples on how to adapt queries
for using our technique, for the whole set of 22
queries which belong to this benchmark.

To use our technique, note that the only
modification in the schema is adding an integer
column L_BitSelector in fact table LineItem.
We shall now demonstrate how to update the Bit-
Selector value for using our technique, and how to
rewrite query instructions to take advantage of it.
Since we cannot present an explanation for each of
the queries due to space constraints, we shall use
queries Q1 and Q21 as examples. We also make
considerations over each of the rewritten queries,
comparing them to their respective original, in what
concerns involved data operations and probable
impact in query processing time.

Consider TPC-H query 1 (Q1), which uses only
the fact table LineItem, presented next:

SELECT
 L_ReturnFlag, L_LineStatus,
 SUM(L_Quantity) AS Sum_Qty,
 SUM(L_ExtendedPrice) AS Sum_Base_Price,
 SUM(L_ExtendedPrice*(1-L_Discount)) AS
 Sum_Disc_Price,
 SUM(L_ExtendedPrice*(1-L_Discount)*
 (1+L_Tax)) AS Sum_Charge,
 AVG(L_Quantity) AS Avg_Qty,
 AVG(L_ExtendedPrice) AS Avg_Price,
 AVG(L_Discount) AS Avg_Discount,
 COUNT(*) AS Count_Order
FROM
 LineItem
WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90
GROUP BY
 L_ReturnFlag, L_LineStatus
ORDER BY
 L_ReturnFlag, L_LineStatus

To practice our technique, we account all fact
table rows which are relevant for Q1. This is done by
using the fixed conditions in Q1’s WHERE clause,
which defines the row filters. If this is the first time
we are setting the L_BitSelector column for
query Q1, by applying Formula 2, the SQL statement
for marking which rows of LineItem are relevant
for processing this query is similar to:

UPDATE LineItem
 SET L_BitSelector = L_BitSelector + 1
WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90

To rewrite query Q1 to take advantage of the Bit-
Selector attribute, the only modification in Q1 would
be in the WHERE clause, using Formula 3. The

A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE OPTIMIZATION OF DECISION-SUPPORT QUERIES

153

WHERE clause of the rewritten query Q1 would be:
WHERE MOD(L_BitSelector,2)>=1

This is a very slight modification to the original
instruction, and should imply a small increase in its
execution time, for instead of just executing a
comparison of preset values (original Q1 WHERE
clause), in the modified instruction there is the need
to execute a MOD operation for each row, and then
compare values.

Consider TPC-H query 21 (Q21), which performs
a join with dimension table Orders. This table is
only mentioned in the WHERE clause, in which it is
used as a filter for selecting which rows in
LineItem are needed in the query. Since our
technique selects only the table’s relevant rows, the
join with table Orders becomes unnecessary,
therefore discarding a heavy table join, leaving
Orders out of the modified query. For the same
reason, we can also exclude table Nation by
selecting as relevant all LineItem rows (in
conjunction with the selection criteria mentioned
before due to the Orders row filtering in the
WHERE clause) with L_SuppKey = S_SuppKey only for
Saudi Arabia suppliers (N_Name=‘SAUDI ARABIA’).
There are also conditional filters based on the fact
table itself, with EXISTS and NOT EXISTS
conditions, which should also be coped with to
perform the selection of the relevant LineItem
rows pretended for Q21.

The original TPC-H query Q21 is similar to:
SELECT * FROM (
 SELECT
 S_Name, COUNT(*) AS NumWait
 FROM
 Supplier, LineItem L1, Orders, Nation
 WHERE
 S_SuppKey = L1.L_SuppKey AND
 O_OrderKey = L1.L_OrderKey AND
 O_OrderStatus = ‘F’ AND
 L1.L_ReceiptDate>L1.L_CommitDate AND
 EXISTS (
 SELECT *
 FROM LineItem L2
 WHERE L2.L_OrderKey=L1.L_OrderKey AND
 L2.L_SuppKey<>L1.L_SuppKey) AND
 NOT EXISTS (
 SELECT *
 FROM LineItem L3
 WHERE L3.L_OrderKey=L1.L_OrderKey AND
 L3.L_SuppKey<>L1.L_SuppKey AND
 L3.L_ReceiptDate>L3.L_CommitDate)
 AND
 S_NationKey = N_NationKey AND
 N_Name = ‘SAUDI ARABIA’
 GROUP BY
 S_Name
 ORDER BY
 NumWait DESC, S_Name)
WHERE RowNum <= 100

After updating the value of L_BitSelector for
the first time to optimize query Q21 according to our

technique, the new instruction for Q21 would be:
SELECT * FROM (
 SELECT
 S_Name, COUNT(*) AS NumWait
 FROM
 Supplier, LineItem
 WHERE
 S_SuppKey = L_SuppKey AND
 MOD(L_Queries,2^21) >= 2^20
 GROUP BY
 S_Name
 ORDER BY
 NumWait DESC, S_Name)
WHERE RowNum <= 100

As it can be seen, the complexity of the original
instruction Q21 has mostly decreased. Sub-querying
and selection within the fact table itself has been
discarded. The joins of LineItem with Orders, and
Supplier with Nation, have been ruled out.
Several condition testing such as value comparisons
have also been discarded. The gain of processing
time in this case should be very significant.

In conclusion, we may state that most decision
support queries modified to comply with the
proposed technique become simpler than the original
instructions. They also significantly reduce the
number of conditions to be tested and calculations to
be performed on each row, reducing query
processing costs. As seen in TPC-H query 21 (Q21),
the technique can also lead to avoid the need to
execute heavy table joins involving fact tables.

3.3 Practical Update Procedures for
the Bit-Selector

According to Formula 2, the generic instruction for
updating the Bit-Selector column in any fact table
for a given Query N would be similar to:

UPDATE FactTable
 SET
 L_BitSelector = L_BitSelector+2(N-1)
 WHERE
 {List of Conditions in the QN WHERE clause}

For new incoming fact rows, the update may be
performed both for new or previously considered
queries. On the other hand, if a predefined query,
which has already modified the Bit-Selector values,
changes in a way that it needs to access a different
set of rows than the ones that were marked as
relevant, this change implies that the Bit-Selector
must also be updated. To do this, we need to unmark
the rows marked earlier as significant, and then mark
again those which are now significant. Using Q1 as
an example, suppose we had already marked the
significant rows, executing an instruction similar to:

ICEIS 2009 - International Conference on Enterprise Information Systems

154

Table 2: Time execution of the TPC-H query workload (Standard vs. Bit-Selector).

Database Size Standard Exec. Time (seconds) Bit-Sel. Exec. Time (sec) Difference % Exec. Time Times Faster/Slower
1 Gbytes 675 418 -257 62% 1.61 times faster
2 Gbytes 1 831 882 -949 48% 2.08 times faster
4 Gbytes 4 266 1 634 -2 632 38% 2.61 times faster
8 Gbytes 10 332 3 384 -6 948 33% 3.05 times faster

Figure 1: Query execution difference time – 8 Gbytes data warehouse.

UPDATE LineItem
 SET
 L_BitSelector = L_BitSelector + 1
 WHERE
 L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–90

As we discussed in the previous section, to
determine which LineItem rows should be used for
Q1, we only need to test if MOD(L_BitSelector,2)>=1 in
its WHERE clause. Now assume that, instead of
wanting the rows where L_ShipDate<=TO_DATE(‘1998-
12-01’,‘YYYY-MM-DD’)–90, we want rows where
L_ShipDate<=TO_DATE(‘1998-12-01’,‘YYYY-MM-DD’)–180.
The algorithm for updating L_BitSelector to do
this should be:

FOR EACH Row IN LineItem
 IF (MOD(L_BitSelector,2)>=1) AND
 (L_ShipDate>TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–180)
 SET L_BitSelector = L_BitSelector - 1
 ELSE
 IF (MOD(L_BitSelector,2)=0) AND
 (L_ShipDate<=TO_DATE(‘1998-12-01’,
 ‘YYYY-MM-DD’)–180)
 SET L_BitSelector = L_BitSelector + 1
 END IF
NEXT

The first half of this algorithm voids all rows
previously defined as relevant for Q1 and which are
now to be discarded, by diminishing the decimal
value responsible for its corresponding significant
bit. The second half of the algorithm defines which
fact table rows that were not and are now relevant
for Q1, in the same manner, by using the generic
Formula 2. The rows which were already considered
as relevant for the original Q1 and remain relevant
for the altered Q1 do not need to be updated and are
not, saving update time and resource consumption.

4 EVALUATION

To test our technique, we used TPC-H benchmark
using DBMS Oracle 10g on a Pentium IV 2.8GHz
machine, with 1 Gbyte SDRAM and 7200 rpm 160
Gbytes hard disk, with Windows XP Professional.
We performed all experiments on 4 different scale
sizes of the database: 1, 2, 4 and 8 Gbytes. Note that
the sequence represents each next size as the double
of the precedent. This will allow us to state
conclusions regarding scalability of the results.

Table 2 presents the execution time for the set
of TPC-H queries that need data from the fact table,
for each database size. These are the queries to
which our technique can be applied. For the fairness
of experiments, all databases where index optimized
the “standard” way, defining each table’s primary
key and building all relevant bitmap join indexes.
Figure 1 shows the differences between standard and
our technique’s execution times, for each modified
query, in the largest sized database.

It can be seen in Figure 1 that our technique
brings advantages for most queries in the workload.
As expected, queries Q1 and Q15 present a small
increase of execution time in all scenarios, for
instead of just executing a comparison of fixed
values (in the original Q1 WHERE clause), modified
instructions include executing a MOD operation for
each row and then compare values. As also
expected, queries Q5, Q8, Q19 and Q21 present the
highest gains, because our technique discards the
need for doing heavy join operations. Figure 2
shows overall workload execution time for each
sized database.

A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE OPTIMIZATION OF DECISION-SUPPORT QUERIES

155

Table 3: TPC-H original queries execution time with original fact table size vs. modified bit-selector fact table.

Database Size Execution Time in the Original Schema Execution Time in the Altered Schema % Exec. Time Increase
1 Gbytes 675 seconds 706 seconds 4,6 %
2 Gbytes 1 831 seconds 1 921 seconds 4,9 %
4 Gbytes 4 266 seconds 4 484 seconds 5,1 %
8 GBytes 10 332 seconds 10 911 seconds 5,6 %

Authors in (Bizarro, 2002) use TPC-H as

motivation for modifying the database schema in a
performance-oriented manner. In their experimental
evaluation, a workload of 10 TPC-H queries {Q1, Q3,
Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q21} is executed against a 1
Gbyte database and execution time is analyzed.
Their results show that the workload executes 2.19
times faster using the new schema, than with the
original one. Consulting Table 3 in this paper, we
can calculate that our Bit-Selector technique
executes this same query workload 1.69 times faster.
However, results presented in (Bizarro, 2002) are
mainly due to one query only (Q5). If Q5 was
excluded from the workload, their proposal would
execute 1.84 times faster, while our proposal would
execute 1.67 times faster. Furthermore, their
experiments only consider 10 TPC-H queries, while
we consider all of them. Therefore, we can state that
our proposal seems better for optimizing a wide
range of queries, compared with (Bizarro, 2002).

Analyzing Figure 2, we can state that the results
indicate a very significant performance optimization,
speeding up an increasing percentage of standard
query execution time while the database size grows.

675 418

1831
882

4266

1634

10332

3384

0

2000

4000

6000

8000

10000

12000

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1GB 2GB 4GB 8GB

Data Warehouse Dimension (GBytes)

Query Workload Execution Time - Modified Fact Table Queries
(Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, Q14, Q15, Q17, Q18, Q19, Q20, Q21)

Standard
Bit-Selector

Figure 2: Query workload execution time for the modified
fact table queries.

Figure 3 shows execution results for the TPC-H
queries which were not modified because they do
not access the fact table’s data. As can be seen, these
queries approximately maintained their execution
times using the Bit-Selector technique. Since the
schema modifications in our technique only changes
the fact tables and queries which execute against it,
other queries do not suffer any impact.

In what concerns database size, the modified
schema in (Bizarro, 2002) increases 612 Mbytes
(66%) of its original size. The size increase implied

in our proposal (with the Bit-Selector as a 4 byte
integer) is very low (3%), compared to the prior.

Finally, we address queries which access the fact
table, but do not use the Bit-Selector column, i.e, the
Bit-Selector column has not been updated for
optimizing these queries. This can be measured by
executing the exact original query instructions, using
the fact table modified with the inclusion of the Bit-
Selector column. Therefore, we executed workload
{Q1, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q12, Q14, Q15, Q17,
Q18, Q19, Q20, Q21} using original TPC-H query
instructions against the new Bit-Selector fact table
for each database. The results, presented in Table 3,
show that execution time increased around 5%. This
is the average increase for ad-hoc queries which
access the fact table and are not to include in the set
of queries used for the Bit-Selector, for the database
used in our experiments. This was expected, because
the altered fact table is bigger, due to the inclusion
of the Bit-Selector, implying that the DBMS
accesses a slightly bigger amount of data blocks.

30 30

64 65

155 159

293 293

0

50

100

150

200

250

300

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

1GB 2GB 4GB 8GB

Data Warehouse Dimension (GBytes)

Query Workload Execution Time - Non-Modified Queries
(Q2, Q11, Q13, Q16, Q22)

Standard
Bit-Selector

Figure 3: Query workload execution time for the modified
fact table queries.

Many proposals in past research work in
optimization imply data structure changes, increase
of database size and query complexity, loss of
schema legibility, among other negative aspects. As
we stated earlier, the only modification to do within
the database schema is the inclusion of a new integer
type column (the Bit-Selector) in its fact tables,
which will imply database size growth multiplying
the Bit-Selector’s size by the number of rows in the
fact tables. Compared with most research work, our
technique seems to be one of the best in what
concerns database size overhead and schema
modifications, while providing a very significant
gain of query execution time.

ICEIS 2009 - International Conference on Enterprise Information Systems

156

5 CONCLUSIONS

This paper presents an efficient, simple and easy to
implement alternative technique for optimizing
OLAP query performance. It significantly reduces
execution time of repeatable queries which need to
access at least one fact table. Using our technique,
the TPC-H workload executed 1.61, 2.08, 2.61 and
3.05 times faster than when “traditionally” index
optimized, for the 1, 2, 4 and 8 GByte sized
databases, respectively. Queries which do not access
a fact table maintain their average response time.

We have also referred that ad-hoc query
processing time increases because of the inclusion of
an extra attribute in the fact table, which implies a
size growth. However, both measured size and time
increases are very small and should be considered as
acceptable, when compared with the needed storage
size in other optimization data structures such as
partitions, pre-built aggregates and materialized
views. We can state that the results show a very
significant performance gain, speeding up an
increasing percentage of standard query execution
time while the database size grows.

Although query instructions need to be modified
to take advantage of the proposed technique, the
resulting rewritten instructions are often simpler
than the original ones. The technique also makes it
possible, for certain queries, to discard heavy time
and resource consuming operations such as fact table
joins. We also illustrated how to update the bit-
selector attribute to optimize the performance for
new queries or modify the row selecting of
previously defined queries.

As future work, we intend to implement this
method in real-world data warehouses and measure
its impact on real world system’s performance.

REFERENCES

S. Agrawal, S. Chaudhuri and V. R. Narasayya,
“Automated Selection of Materialized Views and
Indexes in SQL Databases”, 26th Int. Conference on
Very Large Data Bases (VLDB), 2000.

S. Agrawal, V. Narasayya and B. Yang, “Integrating
Vertical and Horizontal Partitioning into Automated
Physical Database Design”, ACM SIGMOD
Conference, 2004.

L. Bellatreche and K. Boukhalfa, “An Evolutionary
Approach to Schema Partitioning Selection in a Data
Warehouse Environment”, Intern. Conf. on Data
Warehousing and Knowledge Discovery (DAWAK),
2005.

L. Bellatreche, M. Schneider, H. Lorinquer and M.
Mohania, “Bringing Together Partitioning,
Materialized Views and Indexes to Optimize
Performance of Relational Data Warehouses”,
DAWAK, 2004.

L. Bellatreche, M. Schneider, M. Mohania and B.
Bhargava, “PartJoin: An Efficient Storage and Query
Execution Design Strategy for Data Warehousing”,
DAWAK, 2002.

J. Bernardino, P. Furtado and H. Madeira, “Approximate
Query Answering Using Data Warehouse Stripping”,
DAWAK, 2001.

P. Bizarro and H. Madeira, “Adding a Performance-
Oriented Perspective to Data Warehouse Design”,
DAWAK, 2002.

S. Chaudhuri and V. Narasa11a, “An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL
Server”, 23rd VLDB, 1997.

C. Chee-Yong, “Indexing Techniques in Decision Support
Systems”, PhD Thesis, Univ. of Wisconsin, 1999.

P. Furtado and J. P. Costa, “Time-Interval Sampling for
Improved Estimations in Data Warehouses”,
DAWAK, 2002.

H. Gupta et al., “Index Selection for OLAP”, Int.
Conference on Data Engineering (ICDE), 1997.

H. Gupta and I. S. Mumick, “Selection of Views to
Materialize under a Maintenance Cost Constraint”,
8th Int. Conf. on Database Theory (ICDT), 1999.

X. Hu, T. Y. Lin and E. Louie, “Bitmap Techniques for
Optimizing Decision Support Queries and Association
Rule Algorithms”, Int. Database Eng. and Applications
Symposium (IDEAS), 2003.

P. O’Neil and G. Graefe, “Multi-Table Joins Through
Bitmapped Join Indices”, SIGMOD Record, Vol. 24,
No. 3, September 1995.

T. B. Pedersen, “How is BI Used in Industry?”, DAWAK,
2004.

R. J. Santos and J. Bernardino, “PIN: A Partitioning &
Indexing Optimization Method for OLAP”, Int. Conf.
on Enterprise Information Systems (ICEIS), 2007.

TPC-H Decision Support Benchmark, Transaction
Processing Council, www.tpc.org.

P. Vassiliadis and T. Sellis, “A Survey of Logical Models
for OLAP Databases”, ACM SIGMOD Int.
Conference on Management of Data (ICMD), 1999.

M. C. Wu and A. P. Buchmann, “Encoded Bitmap
Indexing for Data Warehouses”, 14th ICDE, 1998.

R. Kimball and M. Ross, The Data Warehouse Toolkit:
The Complete Guide to Dimensional Modeling, 2nd
Edition, Wiley & Sons, 2002.

A BIT-SELECTOR TECHNIQUE FOR PERFORMANCE OPTIMIZATION OF DECISION-SUPPORT QUERIES

157

