
AN EVENT STRUCTURE BASED COORDINATION
MODEL FOR COLLABORATIVE SESSIONS

Kamel Barkaoui1, Chafia Bouanaka2 and José Martín Molina Espinosa3
1CEDRIC Research Laboratory, CNAM, Paris, France

2LIRE Laboratory, Mentouri University, Constantine, Algeria
3Tecnológico de Monterrey, Campus Ciudad de México, Mexico

Keywords: Session Management, Collaboration, Event Structures, Computer Supported Collaborative Work.

Abstract: Distributed collaborative applications are characterized by supporting groups’ collaborative activities. This
kind of applications is branded by physically distributed user groups, who cooperate by interactions and are
gathered in work sessions. The effective result of collaboration in a session is the production of
simultaneous and concurrent actions. Interactions are fundamental actions of a collaborative session and
require being coordinated (synchronized) to avoid inconsistencies. We propose in the present work an event
structure based model for coordination in a collaborative session, making possible interactions between
participants and applications in a consistent way. The proposed model describes interdependencies, in the
form of coordination rules, between different actions of the collaborative session actors.

1 INTRODUCTION

Distributed collaborative applications are
characterized by supporting activities of physically
or virtually distributed groups which cooperate by
interactions. These activities are performed by user
groups and are gathered in work sessions. These
sessions constitute the basic units of collaboration.
The effective result of collaboration in a session is
the production of concurrent actions carried out
during definition and execution phases of the
session. These actions require being coordinated in
order to avoid inconsistencies.
Collaborative sessions represent a space in which
various entities, such as participants, applications
and data interact. Collaboration goal is to aid
participants in the achievement of their tasks by
giving them the possibility to exchange knowledge
and information. These interactions imply that
various actions of session actors tend to achieve a
common goal. That is why actions might be
complementary and assigned to actors with respect
to their skills and /or functionalities. Interaction
result, carried out during a collaborative session,
strongly depends on the order in which they are
executed. Indeed, interactions can be destructive if
they are not coordinated.

Clearly, collaboration is the reachability of common
goals of the underlying session. Reaching such goals
depends on the respect of partial ordering between
actions executed by all actors. Such order is depends
on certain dependencies between actions. Using
event concept, event occurrences obey to some
coordination rules. Hence, we need formalism able
to capture coordination between events. Ultimately,
we require a formalism offering tools to express
event occurrences with respect to causality, conflict
or concurrency. Event structures (Winskel, 1987),
(Winskel, 1992) are an adequate formalism to
express mathematically these relations on sets of
events. In this work, we present a model for
collaborative sessions, based on the specification of
interactions between actors during a session. The
proposed model allows formal specification of
different causal dependencies between events:
precedence, inhibition, and release. This paper is
organized as follows. We begin by a brief
presentation of functional description of services
implied in collaborative session management. In
section 3, we recall essential aspects of event
structures. In section 4, we introduce a new
coordination model for collaborative session
management, where basic coordination rules are
well defined. In section 5, we present a mapping
from event structures to Petri nets in order to exploit

137Barkaoui K., Bouanaka C. and Martín Molina Espinosa J. (2009).
AN EVENT STRUCTURE BASED COORDINATION MODEL FOR COLLABORATIVE SESSIONS.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
137-143
DOI: 10.5220/0001987101370143
Copyright c© SciTePress

Petri nets rich panel of tools for system verification.
In section 6, we compare the proposed approach to
other Models of collaborative sessions. We conclude
by presenting directives for future work.

2 AN OVERVIEW OF CSCW

Computer Supported Cooperative Work (CSCW)
refers to the study field concerned with design,
adoption, and use of groupware (Ellis, 1994).
Despite its name, this study field is not restricted to
issues of cooperation or work but also examines
competition, socialization and play. Computer
Supported Cooperative Work is considered as a new
research field involved in exploring a wide range of
issues concerning cooperative work arrangements
and support via information technology.

2.1 Actors of a Collaborative Session

The term session management refers to the process
of starting, stopping, joining, leaving, and browsing
collaborative situations across a network (Molina
Espinosa, 2003b). Generally, we distinguish three
types of users:
• A session participant: is a user taking part in a

collaborative session and using applications
assigned to session in progress.

• The session chair: is a participant who moreover
controls session running (right to speak, tools
access), invites participants, initializes, opens,
and finishes the session.

• Session administrator: is responsible of defining
and planning the session. He establishes
participants list including session chair. These
participants are selected according to their roles,
their competencies, and their skills.

2.2 Functionalities of a Collaborative
Session

We can identify two essential phases in a
collaborative session: The first stage concerns
session preparation. It consists of defining and
updating participants list of the collaborative session
and corresponds to Responsibility and Management
Service (RMS). The second stage concerns session
management and takes care of actions coordination
during collaborative activities accomplishment. It is
realised by Session Management Service (SMS).

2.2.1 Responsibility and User Management
Service

RMS provides necessary functions to define
participants profile, groups, and sessions (Molina-
Espinosa, 2003a). It also provides information to
SMS service and actually used applications.
RMS is composed of three main activities:
Participants list definition, i.e., users intervening in
the collaborative session. Session group’s definition,
each group represents a set of participants, and
finally, establishment of active session list.

2.2.2 Session Management Service

SMS offers a set of mechanisms by which users can
initialize, find, open, close, join, leave and finish a
collaborative session. Basic functions of session
management are:
• Session Initialization: corresponds to necessary

objects creation by session chair. These objects
are used to perform coordination actions during
session evolution.

• Session Announcement: consists of inviting
potential participants to a session. It also
includes participants reply (Acceptance or
Refusal).

• Session open and join: A session is opened by
the session chair allowing participants to join it
through their work stations.

• Session leave: allows participants to disconnect
from a session.

• Session closure: allows session chair to
terminate the collaborative work.

• Session termination: includes destruction of
session objects, created during session
initialization. This task is performed by session
chair.

3 EVENT STRUCTURES

Generally, it is immaterial to analyze the precise
places and times of event occurrences in a
distributed computation (Winskel, 1992). Significant
events and how their occurrence depends on the
previous occurrence of other events are more
important. Hence, distributed computations are
considered as a set of event occurrences doted with a
causal dependency relation between them. Defining
a partial order between event occurrences is then
reasonable. To model non-determinism and express
how some event occurrences rule out the occurrence
of others, a conflict relation between events is

ICEIS 2009 - International Conference on Enterprise Information Systems

138

defined. The set of events with causal dependencies
and conflict relations are called event structures.
Event structures are abstract descriptions of a
computation focusing on significant events of the
computation and describing the possible ways that
computation could follow.

Definition 1 (Winskel, 1987). A labelled event
structure is a quadruple

),#,,,(ALEES ≤= where:
 E is a finite set of events;
 EE ×⊆≤ is a partial order relation called

causal dependency relation which satisfies
}{ edEdEe ≤∈∈∀ / is finite;

 EE×⊆# is an irreflexive and symmetric and
relation, called conflict relation, which
satisfies ∀ e, e’, e” ∈ E : e ≤ e’ and e # e” ⇒
e’ #e”;

 A is a set of actions;
 AEL →: is a labelling function on events,

associating to each event e the corresponding
action L(e).

Concurrency or causal independency between

events is a derived notion. Two events e, e’ are
concurrent and noted e co e’ if and only if:

))'#()'()'((eeeeee ∨≤∨≤¬ (1)

A notion of computation state of an event structure
can be defined (Winskel, 1992). Taking a process
computation state as a set X of previously occurred
events in the computation. We expect that:
• If an event has occurred this implies that all

events on which it causally depends have
occurred too.

• No two conflicting events can occur together in
the same computation.

Definition 2 (Winskel, 1992). Let
),#,,,(ALEES ≤= be an event structure.

Defining its configurations ()LED ,#,,≤ consists
of those subsets X ⊆ E which are:

 Conflict free:

)'#(,', eeXee ¬∈∀ (2)

 Left Closure:

XeXeandeeEee ∈⇒∈≤∈∀ ')()'(,', (3)

These two conditions allow us to construct
consistent configurations (executions).

4 A FORMAL MODEL FOR
COLLABORATIVE SESSIONS

Collaboration aim is the attainability of common
goals pursued by a session. Reaching such goals
depends on respecting partial orders defined
between actor’s actions and induced by
dependencies between actions. Using event concept,
event occurrence might obey to some coordination
rules. So, we need formalism able to capture
coordination between events and offers necessary
tools to express event occurrences with respect to
causality, conflict or concurrency. To model the
collaborative session by an event structure, we begin
by identifying the set of inherent events and their
relationships. During a session, actors perform some
actions corresponding to some event occurrences.
Hence, we define first the actors set; actions set, and
define the concept of event thereafter.

4.1 Actors Set

We use TBasic to denote the set of collaborative
applications,

{ }ENSTMSGCTSMTT Basic ,,,= (4)

• SMT is Session Management Tool. It allows
session configuration, participants invitation,
and session control;

• GCT, for Group Conferencing Tool, allows
direct discussion between a group of
participants;

• TMS is Tool Management Service;
• ENS, Event Notification Service, informs

participants about actions made by other ones.
PBasic denotes the list of session participants.
Actor set is defined by NBasic = PBasic ∪ TBasic. One
participant in a session has the role of session chair.

{ } { }nipiirSessionChaP Basic ≤≤∪= 1/ (5)

4.2 Actions Set

Actions set ABasic contains all actions performed
during a session. Ap, AChair, AT denote respectively
actions performed by all participants, session chair
and application tools. We have:

TChairpBasic AAAA ∪∪= (6)

where:

{ }messageacceptleavejoinA P ,,,= (7)

AN EVENT STRUCTURE BASED COORDINATION MODEL FOR COLLABORATIVE SESSIONS

139

A participant connects himself to the collaborative
session by executing a join action. He leaves the
session by a leave action and receives or sends a
message to another participant via message action.
Finally, a participant can accept the session Chair
role by performing an accept action,

{ }C h a ir pA A g ra n t= ∪ (8)

grant action consists of passing the session Chair
role to another participant,

ENSTMSGCTSMTT AAAAA ∪∪∪= (9)

AT includes a variety of actions made available by
services and applications used during a collaborative
session. Actions ensured by Session Management
Service are create, delete, open, close and invite.
A videoconference application, noted GCT, allows
enabling or disabling a videoconference associated
to a collaborative session by performing the
enable/disable actions respectively. Management
Groupware Service, TMS, allows starting and
stopping groupware applications by carrying out
start and stop actions. Event Notification Service,
ENS, allows sending and receiving events through
push and pull actions execution.

4.3 Event Definition

An event e = (n, a), where (n, a) is a pair belonging
to N × A, is said to be occurred if action a is
performed by actor n. We need the two following
functions: Act and Mgt.

NEAct →: , determines an event actor. It is
defined by:

),()(/)(aneLAaneAct =∈∃⇔= (10)

AEMgt →: , determines an event occurrence
associated action. It is defined as:

),()(/)(aneLNnaeMgt =∈∃⇔= (11)

4.4 Main Relationships

Dependencies between events can be categorized in
three classes: precedence, inhibition and trigger
relations. They are significant for coordination rules,
between collaborative session actors, definition.

4.4.1 Precedence Relation

Precedence relation expresses the fact that executing
some action a’ (event e’) might be preceded by
eventual execution (occurrence) of another action a
(event e).

CeCCDCCeeed e ∈⇒⎯→⎯∈∀≡ ':',)',(Pr ' (12)

4.4.2 Inhibition Relation

Inhibition relation forbids the execution (occurrence)
of an action a’ (the associated event e’) if action a
(event e) is already executed (occurred).

CeCCDCCeeInhib e ∉⇒⎯→⎯∈∀≡ '':',)',((13)

4.4.3 Trigger Relation

To express immediate causality between events, we
define trigger relation. That is, an event occurrence e
follows immediately the occurrence of event e’.
Formally, we write:

'/"';')',(' CCDCCCDCeeTrig ee ⎯→⎯∈∃⇒⎯→⎯∈∀≡ (14)

Finally, we define a session state concept. It can be
viewed as a configuration in the corresponding event
structure.

Definition 3. Let),,#,,(ALE ≤ be an event
structure modelling the collaborative session. If D
denotes the set of its finite configurations, then:

CeCeDCee ∈⇒∈∈∀⇔≤ ':' (15)

CeCeDCee ∉⇒∈∈∀⇔ ':'# (16)

'ecoe andCeDCC ∈∈∃⇔ :',
DCCandCe ∈∪∈ '' (17)

Mapping from a session state to another is due to an
action execution by an actor. It can be considered as
a transition from configuration C to configuration C’
when event e occurs. We write:

}{'' eCCandCeCC e ∪=∉⇔⎯→⎯ (18)

4.5 Modelling Session Actors

The dynamic behaviour of a collaborative session
requires expressing all constraints to respect during a
session evolution. These constraints are called
coordination rules and are expressed as follows:
Let e1, …,en be events, p a participant, and t be an
application; then we have:

4.5.1 Event Structure Associated to a
Participant

Event structure associated to a participant i is
defined by ESPi = (EP, ≤P, #P, LP) where:
• EP is the set of events occurring due to actions

performed by a participant, and equals to {eP1,
eP2, eP3, eP4}. These events are labelled

ICEIS 2009 - International Conference on Enterprise Information Systems

140

respectively (p, join), (p, leave), (p, accept), (p,
message).

• Causal dependency expresses the fact that :
Any participant can receive or send a message
only if he was already connected, i.e. (p, join) ≤
(p, message). Any participant can disconnect
from a session only if he was already connected,
i.e. (p, join) ≤ (p, leave). Any participant can
accept Session Chair only if he is a member of
the group (connected to the session), i.e. (p,
join) ≤ (p, accept). So, we have:

≤P = {(eP1, eP4), (eP1, eP2), (eP1, eP3)} (19)

• Conflict relation expresses inconsistencies that
might be forbidden : Any participant cannot
receive or send messages as soon as he
disconnects from a session, i.e. (p, leave) # (p,
message)

#P = {((p, leave), (p, message))} (20)

A Session Chair is a particular participant. He has
the ability to grant this role to another participant.
Thus, ESchair = (Echair, ≤chair, #chair, Lchair) where:
• Echair = EP ∪ {echair} / L(echair) = (Chair, grant)
• ≤chair = ≤P ∪ {(echair ,ep2)} / L(ep2) = (p, leave)
A Session Chair cannot leave the session before
granting his role to another participant. : #chair = #P

4.5.2 Event Structure Associated to Session
Management Tool

SMT associated event structure is defined by ESSMT
= (ESMT, ≤SMT, #SMT, LSMT) where: #SMT = ∅
• ESMT is composed of five events eSMT1, eSMT2,

eSMT3, eSMT4, eSMT5, labelled respectively (SMT,
create), (SMT, invite), (SMT, open), (SMT,
close), (SMT, delete).

• ≤SMT = {(eSMT1, eSMT2), (eSMT2, eSMT3),
(eSMT3, eSMT4), (eSMT4, eSMT5)}

4.5.3 Event Structure Associated to an
Application

Event structure associated to an application is
defined by ESTMS = (ETMS, ≤TMS, #TMS, LTMS) where:

ETMS = {eTMS1, eTMS2}, labelled (TMS, start) and
(TMS, stop) respectively, ≤TMS = {(eTMS1 ,eTMS2)}
and #SMT = ∅

4.6 Coordination Rules

Collaborative session global behaviour corresponds
to a parallel composition of individual behaviours

(expressed by event structures defined bellow) of all
actors coordinated by the following global rules to
avoid inconsistencies: Coordination rules for
participant admission and leave defines the
coordinated behaviour of all participants of a session
plus session management tool:
• Rule 1: Any participant admission to a session

is allowed only if he was invited to that session:
∃ e1∈ESMT, e2∈EP, L(e1) = (SMT, invite) ∧
L(e2) = (p,join) ⇒ Pred (e1,e2)

• Rule 2: Any participant admission to a session
is forbidden as soon as this session is closed :

 ∃e1∈ESMT, e2∈EP, L(e1)= (SMT,close) ∧
L(e2) = (p, join) ⇒ Inhib(e1,e2)

• Rule 3 : Any participant is automatically
disconnected from a session as soon as it is
closed: ∃ e1∈ESMT, e2∈EP, L(e1) = (SMT, close)
∧ L(e2) = (p,leave) ⇒ Trig(e1,e2)

Coordination rule for session chair delegation is:
• Rule 4 : Any participant who accept the role of

Session Chair becomes so only if he is invited
to this role by the current chair: ∃ e1∈Echair,
e2∈EP, L(e1)=(Chair, grant) ∧ L(e2)=(p, accept)
⇒ Pred(e1,e2)

Coordination rule for application integration to the
session is:
• Rule 5 : Any application is stopped as soon as

the session is deleted, i.e. ∃ e1∈ESMT, e2∈ETMS,
L(e1)=(SMT, close) ∧ L(e2)=(p,stop) ⇒
Trig(e1,e2)

5 SYSTEM VERIFICATION

Model verification is a crucial phase in system
specification. It allows detecting eventual
inconsistencies in the proposed model. Since Petri
nets offer a variety of tools for analyzing system
properties, we propose to exploit the mapping
(Nielsen, 1981) between event structures and a sub-
class of Petri nets, condition/event nets, to verify
some properties of the event structure based model
for collaborative sessions. The mapping is
constructed at a categorical level through a
coreflection composed of two functors. First funtor
shows how to embed the category of event structures
into that of Petri Nets. The other funtor abstracts
away system implementation details, i.e. Petri Net
places, to bring it back to an event structure. In this
work, we are interested of the first functor, where an
event structure is identifiable to an occurrence net
ensuring causal and conflict relations defined in the

AN EVENT STRUCTURE BASED COORDINATION MODEL FOR COLLABORATIVE SESSIONS

141

event structure and obtained from execution of the
condition/event net defined as follows:

Definition 4 (Nielsen, 1981). A condition/event net
is a quadruplet (B,E,F,M0) where:
• B is a set of non null conditions,
• E is a disjoint set of events,
• F is set of (B×E)∪(E×B) called causal

dependency relation,
• M0 is a non empty set of conditions, called

initial marking.
The Petri net satisfies the following restrictions:
• ∀e∈E, ∃b∈B / Fb,e>0 and ∀e∈E, ∃b∈B / Fe,b>0;

no isolated events
• ∀b∈B, [M0b≠0 or (∃e∈E, Fe,b ≠0) or (∃e∈E,

Fb,e≠0)]; no isolated conditions

Definition 5 (Nielsen, 1981). Let E=(E,≤,#) be an
event structure, the corresponding occurrence net is
defined by N(E)=(B,E,F,M) such that :
• M={(Φ,A) / A⊆ E and (∀a,a’∈A, a(#∪1E)a′)}
• B=M∪{(e,A) / A⊑E and e∈E and (∀a,a′∈A,

a(#∪1E)a′)and (∀a∈A, e<a)}
• F={(e,(c,A)) / (e,A) ∈B}∪{((c,A),e) / (c,A)∈B

and e∈A}

6 RELATED WORK

Several models have been established for session
management, such as CONCHA, GMS, Mediaspace
and Intermezzo. CONCHA model (CONference
system based on java and Corba event CHAnnels
service) presented in (Orvalho, 1999) is a
supervising authority of conferences based on
CORBA events service. Services are implemented in
Java and support reliable multicast communications
for data transfer and information control. CONCHA
includes two essential services: supervising
conference authority and a multipoint
communication service. In (Wilde, 1996), Group
Management System for Distributed Multimedia
Applications (GSM) model is presented. GSM is
constitued of user agents and system agents. User
agents are components being integrated in the group
communication platform. System agents function is
to manage distributed directories providing
distributed databases to all user agents. In (Roussel,
1997), there is an inefficiency to collaborate in
traditional media space systems because
possibilities, to express coordination and actions,
have been pointed out. Roussel proposed a new
model, called Mediaspace, to handle collaboration.
This model is rooted in a multi agents approach.

Roussel characterized an agent by four fundamental
properties: persistence, ability to/for communication,
autonomy, and reactivity. In (Edward, 1994), a
session management model based on sharing users
and activities information is presented. Activities
information include current tasks details, active tasks
details (e.g., connected users), location of
applications or tasks, and objects associated with
these tasks. While CONCHA, GMS and Mediaspace
models are centered on distributed entities (agents or
components) integration, Edward’s model is based
on shared objects. All these models do not consider
interdependencies management between participants
and applications. Current session managers offer few
possibilities for coordination rules definition. In the
literature, there exist several works centered on the
definition of relations among participants,
applications and information (Rodriguez, 2002),
(Tata, 2002). Rodriguez et al. (Rodriguez, 2002)
describe application architecture to determine data
flows between producer-consumer components. Tata
(Tata, 2002) defines coordination policies based on
data access and synchronization contracts
established between members of a virtual team. This
model is centered on role management and activity
synchronization. It also supports inference of access
rules across a set of basic data. We have centered
our model on the use of participants and application
events without depending on data aspect. Our
approach consists in specifying a variety of
dependency relationships during cooperative session
execution. The proposed model is based on event
structures, giving more clarity and formality to
application specification. There are many
similarities between the proposed model and
Espinosa et al. (Molina-Espinosa, 2003b) one in
defining dependency relationships. However, the
major difference is the formal model used to specify
cooperative sessions and coordination rules. While,
Espinosa et al. used the Labeled Partial Orders
(LPO) for collaborative session definition and First
Order Formulas (FOL) to specify properties
corresponding to coordination rules. We have used
Event structures to specify both collaborative
session and coordination rules. This allows us to
discard ambiguity that appears in (Molina-Espinosa,
2003b) model.

7 CONCLUSIONS

In this paper, we have formally modelled
collaborative sessions using event structures. The
major benefit of such a model is the clarity of

ICEIS 2009 - International Conference on Enterprise Information Systems

142

various aspects in session management. In fact,
event structures give a theoretical foundation to our
model, allowing formal verification of some
properties. The work may be extended by proposing
an automatic mapping to other models and
formalisms such as Petri nets. Our current research
is to specify coordination rules by an extension of
event structures to domain event structures in order
to manage multiple instances of the same tool.
Mapping the specification expressed within event
structures to operational framework is an other
direction of future work.

REFERENCES

Edward W. K., 1994. "session Management for
Collaborative Applications". Proceedings of the ACM
Conference on Computer Supported Cooperative
Work (CSCW'94), Chapel Hill, NC.

Ellis C. A., Wainer J., 1994. "A Conceptual Model of
Groupware". CSCW'94 Conference on Computer
Supported Cooperative Work, pp. 79-88, ACM,
Chapel-Hill, North Carolina, USA, .

Molina-Espinosa J. M., Fanchon J., Drira K., 2003a. "A
logical Model for Coordination Rule Classes in
Collaborative sessions", Rapport LAAS N03132,
IEEE International Workshops on Enabling
Technologies: infrastructure for collaborative
entreprises, p.5, Linz, Australia).

Molina Espinosa J. M, 2003b. "Modèles et services pour
la coordination des sessions coopératives multi
applications: application à l'ingénierie systèmes
distribués". Thèse de doctorat en Informatique et
télécommunications, LAAS of CNRS, Toulouse.

Nielsen M., Plotkin G.D, Winskel G., 1981. "Petri Nets,
Event structures and Domains". Part I of Theoretical
Computer Science, Volume 13, N 1, pp. 85-108.

Orvalho J., Andrade T., Boavida F., 1999. "A conference
Service Based on the CORBA Event Service".
Proceedings of the 2nd Conference on
Telecommunications, Telecommunications Institute de
Portugal, Sesimbra, Portugal.

Rodriguez Perlta L.M., Villemur T., Drira K., Molina-
Espinosa J.M., 2002. "Managing dependencies in
dynamic collaborations using coordination diagrams".
Rapport LAAS N 02527, 6th International Conference
on Principles of Distributed systems, pp. 29-42,
Reims, France.

Roussel N., 1997. "Au dela du Madiaspace: Un Modèle
pour la collaboration médiatisée", In Actes des
neuvieme Journee francophones sur l'Interaction
Homme Machine (IHM'97), pp. 159-166, Futuroscope.

Tata S., 2002. "Policies for Cooperative Virtual Teams".
Proceedings of the 5th International Conference,
COORDINATION 2002, York, UK, LNCS 2315, pp.
340-347.

Wilde E., Freiburghaus P, Koller D., Platter B., 1996. "A
Group and session Management System for
Distributed Multimedia Applications, Multimedia
Telecommunications and Applications". Third
International COST 237 Workshop, Barcelona, Spain,
LNCS 1185, pp. 1-22.

Winskel G., 1987. "Event Structures". In Advances in
Petri nets, LNCS N. 255, pp. 325-392, Springer-
Verlag.

Winskel G, Nielsen M., 1992. "Models for concurrency".
The Handbook of Logic in Computer Science,
Technical Report DAIMI PB-429, Computer Science
Department, Aarhus University.

AN EVENT STRUCTURE BASED COORDINATION MODEL FOR COLLABORATIVE SESSIONS

143

