
A PROJECTION-BASED HYBRID SEQUENTIAL PATTERNS
MINING ALGORITHM

Chichang Jou
Department of Information Mangement, Tamkang University, 151 Ying-Chuan Road, Tamsui, Taipei, Taiwan

Keywords: Hybrid sequential pattern, Pattern growth, Projected position array, Projected support array, Projected
database.

Abstract: Sequential pattern mining finds frequently occurring patterns of item sequences from serial orders of items
in the transaction database. The set of frequent hybrid sequential patterns obtained by previous researches
either is incomplete or does not scale with growing database sizes. We design and implement a Projection-
based Hybrid Sequential PAttern Mining algorithm, PHSPAM, to remedy these problems. PHSPAM first
builds Supplemented Frequent One Sequence itemset to collect items that may appear in frequent hybrid
sequential patterns. The mining procedure is then performed recursively in the pattern growth manner to
calculate the support of patterns through projected position arrays, projected support arrays, and projected
databases. We compare the results and performances of PHSPAM with those of other hybrid sequential
pattern mining algorithms, GFP2 and CHSPAM.

1 INTRODUCTION

Data mining aims to extract implicit information
inside voluminous electronic data, and has become
more and more important for science, engineering,
business, etc. Frequent sequential pattern mining
obtains item sequence patterns satisfying the
condition that the number of their occurrences in the
database, called support, is greater than or equal to a
given minimum threshold. It has been applied to
applications like stock trend, genome sequencing,
web page traversal, customer behavior analysis, etc.

Based on requirement of items’ adjacency in a
pattern, sequential patterns could be classified into
three categories (Chen et al., 2002): (1) Continuous
patterns, where the adjacent items in a pattern must
be matched by consecutive items in the transactions.
(2) Discontinuous patterns, where adjacent items in
a pattern are matched by items separated by zero or
more items. (3) Hybrid patterns, where discontinuity
is represented by a special symbol ‘*’ so that
continuous and discontinuous adjacency
requirements could be specified together. For
example, for a transaction T to match the hybrid
pattern <AB*C>, its matching items for A and B
must be adjacent, and its matching items for B and C
are not necessarily consecutive.

As far as we know, the most efficient hybrid
sequential pattern mining algorithm is GFP2 (Chen
et al., 2002). Its basic concept is the Apriori
principle--candidate frequent patterns of length n
could be generated by joining frequent patterns of
length n-1. However, with repetitive items in a
transaction, some frequent patterns might be missed
by this technique. For example, suppose the database
has only one transaction T=<ABCBD>, and the
minimum threshold is 2. The only frequent pattern
of length 1 is . By joining frequent patterns of
length 1, the candidate frequent patterns of length 2
are <B*B> and <BB>. Supports for patterns
<A*B> and <B*D> are 2, but they are not
obtainable by filtering <B*B> and <BB>.

Jou (2006) proposed an algorithm, CHSPAM, to
obtain the complete hybrid sequential patterns.
However, CHSPAM’s performance is no better than
GFP2. We utilize the pattern growth methodology
and propose Projection-Based Hybrid Sequential
PAttern Mining algorithm, PHSPAM, to tackle this
performance problem.

The rest of the paper is organized as follows:
Section 2 surveys related work. Problem definition
and PHSPAM are illustrated in Section 3.
Experimentations and their results are discussed in
Section 4. Section 5 concludes the paper and points
out future work directions.

152 Jou C. (2009).
A PROJECTION-BASED HYBRID SEQUENTIAL PATTERNS MINING ALGORITHM.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
152-157
DOI: 10.5220/0001986001520157
Copyright c© SciTePress

2 RELATED WORK

Agrawal and Srikant (1995) extended the frequent
itemset mining algorithm (Agrawal and Srikant,
1994; Agrawal et al., 1993) for non-serial
transactions to discontinuous sequential pattern
mining for serial transactions using the Apriori
principle for sequential patterns. Pei et al. (2000)
obtained discontinuous sequential web traversal
patterns by constructing the access pattern tree from
web access logs. Chen et al. (1998) extended the
Apriori principle to obtain frequent continuous
sequential web path traversal patterns.

Based on the approach to attack the sequential
pattern mining problem, its solutions could be
classified into two categories: 1. Candidate pattern
generation and filtering; 2. Pattern growth.

The methods in the candidate pattern generation
and filtering category extend the Apriori principle.
The whole database needs to be scanned in each
candidate pattern generation step. For large
databases, this approach needs huge memory space
to store the candidate patterns. GSP (Agrawal and
Srikant, 1996), GFP2 (Chen et al., 2002), and
SPADE (Zaki, 2001) all belong to this category.
GSP added time constraints between adjacent items
in a pattern, relaxed the restriction that elements of a
pattern must be from the same transaction, and
allowed items to cross taxonomy levels. GFP2 was
the first to obtain hybrid sequential patterns. It
utilized the containment relationship of supports
between the patterns with ‘*’ and those without ‘*’
to reduce the number of database scans. SPADE
utilized subset relationship of patterns in calculating
the support of candidate patterns by checking the
positions of each item in the transactions.

In the pattern growth methodology, to skip the
time-consuming candidate patterns generation step,
a candidate pattern is built by concatenating a
pattern p with patterns obtained from its projected
databases, which are collections of after-p sub-
transactions. Supports of patterns with prefix p are
counted by summing supports of patterns supported
by sub-transactions in p’s projected database.
FreeSpan (Han et al., 2000a; Pei et al., 2004) first
utilized the pattern growth concept from FP-Growth
(Han et al., 2000b). PrefixSpan (Pei et al., 2001; Pei
et al., 2004) used bi-level projection to reduce the
number of projected databases. It also recorded the
transaction id and the position of sequential patterns,
instead of the real data, to reduce the memory
requirement. Jou (2006) discovered that some
frequent patterns could not be obtained by the
Apriori principle. He proposed the first complete

hybrid sequential pattern mining algorithm,
CHSPAM. Its mining procedure is performed
recursively in the pattern-growth manner by the
backward support counting method.

3 THE PHSPAM ALGORITHM

Our definition of hybrid sequential pattern follows
that of GFP2 (Chen et al., 2002): Let I = {i1, i2, …, im}
denotes the set of items in a database. A transaction
T=<t1 t2 … tk> is an item sequence, where for all i
between 1 and k, ti ∈ I. A database consists of a set
of transactions. A special symbol ‘*’ not in I is used
in the pattern specification to denote the occurrence
of 0 or more items. A sequence <x1 x2 … xn> is
called a hybrid sequential pattern if:

(1) xi ∈ I ∪ { * } for all 1 ≤ i ≤ n
(2) x1 ∈ I and xn ∈ I; and
(3) for all 1 < i < n, if xi =’*’ then xi-1 ∈ I and

xi+1 ∈ I.
Condition (2) requires a pattern to start and end with
an item. Condition (3) exclude consecutive *’s in a
pattern. Hybrid sequential pattern will be
abbreviated as pattern henceforth when no confusion
arises. Thus, <ABC>, <A*BC> and <A*B*C> are
legitimate patterns, while <*AB> and <AB**C> are
not.

A pattern p is said to be contained in a
transaction T, denoted as p ⊂ T, if:

(1) for all items x ∈ p, there is a matching item x
∈ T;

(2) for all items x, y ∈ p, if x precedes y in p, then
x’s matching item in T also precedes y’s; and

(3) for all items x, y ∈ p, if x is adjacent to y in
p, then x’s matching item in T is also
adjacent to y’s.

The above conditions require that a matching
instantiation of p in T must respect the serial order of
items in p.

For each pattern p and transaction T, the number
of different matching instantiations for p ⊂ T is
called the support of p in T, denoted by suppp,T. For
example, suppose p=<A*BC> and T=<BACABC>.
Then suppp,T = 2, where the first instantiation
matches A, B, C to positions 2, 5, 6 of T, and the
second matches them to positions 4, 5, 6. For a given
minimum support threshold minSupp, we call pattern
p a frequent pattern if p satisfies the condition:

minSuppsupp
T

Tp ≥∑
∀

, .

From short to long patterns, PHSPAM generates
for each pattern p a projected position array, which

A PROJECTION-BASED HYBRID SEQUENTIAL PATTERNS MINING ALGORITHM

153

keeps for all matching transactions the positions of
the items matching p’s last item. Corresponding to
each position in the position array, their contribution
to the support for p is stored in p’s projected support
array. The mining procedure is recursively applied
to the projected databases by summing supports
from their projected support arrays.

PHSPAM has four steps: Step 1 scans the
database and constructs the Supplemented Frequent
One Sequence itemset, denoted as SFOS, to collect
items that may appear in frequent patterns. Step 2
transforms items not in SFOS into ‘+’ to generate the
reduced database, which helps decrease the number
of comparisons in step 4. Step 3 generates the
projected position arrays, projected support arrays,
and projected databases for each SFOS item. Step 4
performs recursive support counting in the projected
databases, and finally checks whether SFOS items
are frequent patterns. We discuss each step in the
following subsections.

3.1 Generating the SFOS Itemset

The length of a pattern p is defined as the number of
items occurring in p. In hybrid sequential pattern
mining, frequent patterns of length 1 are the same as
the set of items with support greater than or equal to
minSupp. As illustrated in Section 1, items with
support less than minSupp could appear in frequent
patterns of length longer than 1. PHSPAM remedies
the problem by constructing SFOS in the first step as
follows:

(1) All items with their total number of
occurrence greater than or equal to minSupp.
These are the traditional frequent one
sequence items;

(2) All repetitive items, which are items
occurring more than once in a single
transaction; and

(3) All items before and after any pair of
repetitive items in a transaction.

For the example in Section 1, Items A and D are
added into SFOS since A occurs before the first B,
and D after the second B. According to the definition
of SFOS, if an item occurs more than two times in a
transaction, then all items in that transaction will be
added into SFOS.

3.2 Database Reduction

The second step transforms each series of
consecutive non-SFOS items in the original database
DB into a special symbol ‘+’, to obtain DB’, the
reduced database. Since the first and last items of a

pattern are in SFOS, ‘+’s appearing in the prefix or
suffix of a reduced transaction are deleted in this
reduction. For example, suppose the sample
database DB contains the 3 transactions in Table 1,
and minSupp is 4. By scanning DB once, its SFOS
could be constructed as {A, B, D} with supports 4, 5,
3 respectively. Note that the support of item D is less
than minSupp. D’s inclusion in SFOS is because D is
after the repetitive items B in transactions 2 and 3.
By scanning DB once more, the reduced database
DB’ in Table 2 could be constructed.

Table 1: The sample
database.

Table 2: Reduced
sample database.

trans. id serial items trans.id serial items
1 ABCED 1 AB+D
2 BACBAD 2 BA+BAD
3 BCABD 3 B+ABD

3.3 Generating Projected Databases for
Each SFOS Item

 For pattern p and transaction T, projected position
array PPAp,T contains the positions of T’s item
matching p’s last item, and projected support array
PSAp,T contains the supports for p at these positions.
The collections of PPAp,T (similarly, PSAp,T) over all
transactions T is denoted as PPAp (PSAp). The third
step constructs for each item i in SFOS PPAi, PSAi,
and the projected database PDBi from DB’ as
follows: if i occurs in transaction T, then push all
pairs of T’s transaction id with i’s positions in T into
PPAi. Additionally, set the support for T as 1 for
each pair in PSAi. The projected database of pattern
<i>, PDBi, is the set of all after-i sub-transactions.
For repetitive items in a transaction, we will have a
sub-transaction for each occurrence of the item.

Table 3: Projected position array, projected support array,
projected database of pattern .

subtr. id trans. id PPAB PSAB PDBB
1 1 2 1 +D
2 2 1 1 A+BAD
3 2 4 1 AD
4 3 1 1 +ABD
5 3 4 1 D

To simplify the explanation, a tabular form of PPAp,
PSAp, PDBp will be indexed by the same sub-
transaction id. Table 3 illustrates the tabular form of
PPAB, PSAB, and PDBB for the reduced sample
database. These projected data structures for SFOS
items are stored in the hard disk. Since the support
counting procedure uses one projected database for

ICEIS 2009 - International Conference on Enterprise Information Systems

154

an SFOS item at a time, at any time PHSPAM loads
only one set of these projected data structures into
memory.

3.4 Recursive Traverse and Count

Figure 1 demonstrates the fourth step,
TraverseAndCount, for a pattern p. Let Ip denote the
set of items in the projected database PDBp. This
step first calls GetSupport(p) to obtain the support
count mapping, Mp, which maps, for all items i in Ip,
patterns <p*i> and <pi> to the their supports.
Details of GetSupport will be explained in the next
paragraph. The supports Mp (<p*i>) and Mp (<pi>)
are compared to minSupp to decide whether <p*i>
and <pi> are frequent patterns. Then, it calls
BuildProjectedArrays(p,i) to build projected position
arrays (PPAp*i and PPApi), and projected support
arrays (PSAp*i and PSApi). Suppose the first item of p
is x. The projected database PDBp*i (similarly, PDBpi)
could be obtained on the fly from PDBx and PPAp*i
(similarly, PDBx and PPApi). TraverseAndCount will
then be recursively applied to <p*i> and <pi>.

Figure 1: Pseudo code of TraverseAndCount.

For a pattern p, Figure 2 shows the construction of
the support count mapping Mp in GetSupport(p) by
scanning the sub-transactions in PDBp as follows:
Suppose the index of sub-transaction Ts in PDBp is j.
Out of all matching instantiations of <p> in Ts’s
original transaction T, PSAp,T[j] matching
instantiations satisfy the condition that the last
element of p is in position PPAp,T[j]. Thus, for all
items i in Ts, T would contribute PSAp,T[j] to the
support of <p*i>. That is, each occurrence of item i

in Ts would increase Mp’s final supports of <p*i> by
PSAp,T[j]. Similarly, if an item i in Ts satisfies the
condition that the last element of p in the matching
instantiation is adjacent to i, verified by checking
whether the position of i is equal to PPAp,T[j]+1,
each occurrence of i would increase the support
count mapping of <pi> by PSAp,T[j]. In Mp, the
support counts for <p*i> and <pi> are the
accumulated sum of supports of <p*i> and <pi>
over all sub-transactions in PDBp. It is clear that Mp
maps each pattern to their support count in the
original database.

From projected database PDBB of pattern
in Table 3, IB is {A, B, D}. Take item A as an
example. The detailed support counting of the
mapping of <B*A> in MB is demonstrated in Table 4.
Note that the support of <B*A> contributed from
transaction 2 position 5 is 2, where both sub-
transactions 2 and 3 in PDBB contribute one support.
Since sum of supports of <B*A> in PDBB*A is 4,
<B*A> is added into the set of frequent patterns.
However, since only 2 of the 4, both from
transaction 2, satisfy the condition that item A is
immediately after B, support of <BA> is 2, and
<BA> is not a frequent pattern. The function
BuildProjectedArrays(,A) then builds projected
position arrays (PPAB*A and PPABA), and projected
support arrays (PSAB*A and PSABA).
TraverseAndCount is then recursively performed on
<B*A> and <BA> separately.

For the projected database PDBB*A in Table 4,
item D occurs once in sub-transactions 1, 2 and 3.

Figure 2: Pseudo code of GetSupport.

/* PDBp : the Projected Database of pattern <p> */
/* PPAp,T : the Projected Position Array for sub-transaction

T in PDBp */
/* PSAp,T: the Projected Support Array for sub-transaction

T in PDBp */
Function GetSupport(p)
Begin

for each item i ∈Ip
 Mp(<p*i>)=0; Mp(<pi>)=0
endFor
for each T ∈ PDBp
 j = index of T in PDBp

for each item i ∈T
/* do not count ‘+’ as an item */

 if i != ‘+’ then
 Mp(<p*i>)=Mp(<p*i>)+ PSAp,T[j]
 if (PPAp,T[j]+1==position of i

in T) then
 Mp(<pi>)=Mp(<pi>)+

PSAp,T[j]
 endFor
endFor
return Mp

/* <p> denotes a pattern */
/* PDBp is the projected database of <p> */

/* FP is the set of frequent patterns */
Procedure TraverseAndCount(p)
Begin

 Mp = GetSupport(p)
/* Mp maps <p*i> and <pi>, i being one of the

items in PDBp, to their supports */
 for each item i ∈ Ip

if Mp (<p*i>) ≥ minSupp then
add <p*i> to FP

endIf
 if Mp (<pi>) ≥ minSupp then
 add <pi> to FP
 endIf

BuildProjectedArrays(p, i)
/* build projected position/support arrays, for

patterns <p*i> and <pi> */
 TraverseAndCount(<p*i>)
 TraverseAndCount(<pi>)
 endFor

End Procedure

A PROJECTION-BASED HYBRID SEQUENTIAL PATTERNS MINING ALGORITHM

155

Table 4: Projected position array, projected support array,
and projected database of pattern <B*A>.

subtr. id trans. id PPAB*A PSAB*A PDBB*A
1 2 2 1 +BAD
2 2 5 1+1 D
3 3 3 1 BD

The supports for <B*A*D> contributed by sub-
transaction 1, 2, and 3 are 1, 2, and 1, respectively.
Thus, MB*A(<B*A*D>)=4. Since only the case in
sub-transaction 2 satisfies the condition that D is
immediately after A, MB*A(<B*AD>)=2. The support
count accumulation details of <B*A*i> and <B*Ai>
for all items i in IB*A could be computed in the same
fashion. Thus, the sample database has the following
frequent patterns: <A>, , <A*D>, <B*A>,
<B*D>, and <B*A*D>.

4 EXPERIMENTS

We implement GFP2, CHSPAM and PHSPAM in
VB.NET 2005. The first experiment compares
numbers of obtained frequent patterns and execution
time with respect to database size and average length
of frequent patterns. The second experiment checks
the sensitivity of PHSPAM regarding the minimum
support. The experiments are performed in the
Windows Server operating system, Intel Xeon 3100
Dual-Core CPU, and 1024MB DDR memory. The
databases, generated by IBM Quest Synthetic Data
Generator, are stored in Microsoft SQL Server 2005.
The fixed parameters for generating the databases
are: the number of distinguished items is 10000; the
number of items in the frequent one sequence
itemset is 1500; the average transactions length is 15.
The varied parameters are: |D|: the number of
transactions in the database, and |I|: the average
length of frequent patterns.

The first experiment is with minSupp set as
0.015% of |D|. The parameters of |D| are 100K,
200K, 300K, 400K and 500K, and the parameters of
|I| are 2 and 4. Number of frequent patterns and
execution time results are displayed in Table 5. In all
10 settings, the numbers of frequent patterns
obtained by CHSPAM and PHSPAM are the same.
They are 0.08% to 14.67% more than those by GFP2,
but the percentage fluctuates with the database size.
This shows that the behavior of PHSPAM is
dependent on the probabilistic population of the
repetitive items. Figure 3 displays the execution time
in these 10 settings for GFP2 and PHSPAM only.
With the projected data structures to accumulate
support counts, PHSPAM runs faster than GFP2 and

Table 5: Results and performances for minSupp equal to
0.015% of |D|.

database
no. of freq patterns execution time (second)

GFP2 CHSPAM/
PHSPAM GFP2 CHSPAM PHSPAM

I2D100K 968 973 212 1958 102
I2D200K 1506 1509 564 2625 352
I2D300K 1059 1062 803 6164 467
I2D400K 1787 1814 1222 10389 829
I2D500K 1306 1335 1277 13027 893
I4D100K 1315 1326 205 3053 200
I4D200K 2108 2117 521 4089 502
I4D300K 1535 1760 771 9856 687
I4D400K 4495 4995 1498 20638 1268
I4D500K 6146 6151 1862 29741 1441

0

500

1000

1500

2000

100K 200K 300K 400K 500K
Number of Transactions (K)

Ex
ec

ut
io

n
tim

e
(s

ec
) GFP2-I2

PHSPAM-
I2

GFP-I4

PHSPAM-
I4

Figure 3: Execution time comparison of GFP2 and
PHSPAM.

0

2000

4000

6000

8000

0.0100 0.0125 0.0150 0.0175 0.0200
Minumum Support (%)

N
um

be
r o

f F
re

qu
en

t P
at

te
rn

s

I2D100K

I2D200K

I2D300K

I4D100K

I4D200K

I4D300K

Figure 4: Number of frequent patterns with respect to the
minimum support rate.

CHSPAM.
The second experiment runs PHSPAM with

minSupp set as 0.0100%, 0.0125%, 0.0150%,
0.0175% and 0.0200% of |D|. The parameters of |D|
are 100K, 200K, and 300K, and the parameters of |I|
are 2 and 4. Number of frequent patterns and
execution time results are displayed in Table 6. Both
consistently grow with the decrease of the minimum
support. Figure 4 shows the trend of number of
frequent patterns regarding to the minimum support.

ICEIS 2009 - International Conference on Enterprise Information Systems

156

Note that the growth rate is sharper for the number
of frequent patterns than that of the execution time.
Thus, by decreasing the minimum support, the extra
execution time is worthy of the insights gained from
the extra frequent patterns.

Table 6: Execution time for minSupp equal to 0.0100%
0.0125%, 0.0150%, 0.0175%, 0.0200% of |D|.

database
no. of freq patterns / execution time (second)

0.0100% 0.0125% 0.0150% 0.0175% 0.0200%

I2D100K 1633/125 1295/114 973/102 714/95 579/88
I2D200K 2920/394 2235/371 1509/352 1287/327 1133/304
I2D300K 1843/557 1340/511 1062/467 859/426 692/391
I4D100K 1902/237 1688/211 1326/200 1163/193 747/180
I4D200K 7460/794 3429/586 2117/502 1648/453 1381/425
I4D300K 7185/1206 3280/826 1760/687 937/452 589/415

5 CONCLUSIONS

We designed the PHSPAM algorithm to remedy the
problems that the set of frequent hybrid sequential
patterns obtained by previous researches is
incomplete and that the execution time does not
scale with growing database sizes. PHSPAM obtains
the complete set by first collecting items that might
appear in the frequent patterns. PHSPAM then uses
the pattern growth techniques to calculate the
support of patterns. PHSPAM was implemented and
compared with GFP2 and CHSPAM. The
experiments demonstrated that PHSPAM indeed
obtained more frequent patterns than GFP2. In
addition, achieving the same completeness result,
the execution time of PHSPAM is better than GFP2
and much better than CHSPAM, due to the
accumulated counts preserved in the projected data
structures.

Our future research regarding hybrid sequential
pattern mining includes:

(1) Apply PHSPAM in real world applications, like
web page traversal paths mining through web
logs.

(2) Examine the effect of replacing the support
definition such that a transaction could
contribute at most one in the support counting
of a pattern.

(3) Consider application specific constraint of the
patterns, like timing limitations.

ACKNOWLEDGEMENTS

This work was supported in part by Taiwan’s Natio-

nal Science Council under Grant NSC ：97-2221-E-
032-046.

REFERENCES

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining
association rules between sets of items in large
databases. In Proc. of the 1993 ACM SIGMOD
International Conference on Management of Data,
Washington D.C., U.S.A., pp. 207-216.

Agrawal, R., Srikant, R., 1994. Fast algorithm for mining
association rules. In Proc. of the 20th International
Conference on VLDB, Santiago, pp. 487-499.

Agrawal, R., Srikant, R., 1995. Mining sequential patterns.
In Proc. of the 11th International Conference on Data
Engineering, Taipei, Taiwan, pp. 3-14.

Agrawal, R., Srikant, R., 1996. Mining sequential patterns:
generalizations and performance improvements. In
Lecture Notes in Computer Science, Vol.1057, pp. 3-17.

Chen, M., Park, J.S., and Yu, P.S., 1998. Efficient data
mining for path traversal patterns. IEEE Trans.
Knowledge Data Engineering, Vol. 10(2), pp. 209-221.

Chen, Y.L., Chen, S.S., Hsu, P.Y., 2002. Mining hybrid
sequential patterns and sequential rules. Information
Systems, Vol. 27(5), pp. 345-362.

Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U.,
Hsu, M.C., 2000a. Freespan: frequent pattern-
projected sequential pattern mining. In Proc. of the 6th
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Boston,
U.S.A., pp. 355-359.

Han, J., Pei, J., Yin, Y.W., 2000b. Mining frequent
patterns without candidate generation. In Proc. of the
2000 ACM SIGMOD International Conference on
Management of Data, New York, U.S.A. pp. 1-12.

Jou, C., 2006. Mining Complete Hybrid Sequential
Patterns. In Proc. of the DMIN 2006 International
Conference on Data Mining, pp. 218-223, Las Vegas,
USA, June 26-29.

Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q.,
Dayal, U., Hsu, M.C., 2001. PrefixSpan: mining
sequential patterns efficiently by prefix projected
pattern growth. In Proc. of the 17th International
Conference on Data Engineering, Heidelberg,
Germany, pp. 106-115.

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H.,
Chen, Q., Dayal, U., Hsu, M.C., 2004. Mining
sequential patterns by pattern growth: the PrefixSpan
approach. IEEE Trans. on Knowledge and Data
Engineering, Vol. 16(10), pp. 1-17.

Pei, J., Han, J., Mortazavi-Asl, B., Zhu, H., 2000. Mining
access patterns efficiently from web logs. In Proc. of
the 4th Pacific-Asia Conference on Knowledge Disco-
very and Data Mining, Kyoto, Japan, pp. 396-407.

Zaki, M. J., 2001. SPADE: an efficient algorithm for
mining frequent sequences. Machine Learning,
Special Issue on Unsupervised Learning, Vol.42(1-2),
pp. 31-60.

A PROJECTION-BASED HYBRID SEQUENTIAL PATTERNS MINING ALGORITHM

157

