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Abstract: Sequential pattern mining finds frequently occurring patterns of item sequences from serial orders of items 
in the transaction database. The set of frequent hybrid sequential patterns obtained by previous researches 
either is incomplete or does not scale with growing database sizes. We design and implement a Projection-
based Hybrid Sequential PAttern Mining algorithm, PHSPAM, to remedy these problems. PHSPAM first 
builds Supplemented Frequent One Sequence itemset to collect items that may appear in frequent hybrid 
sequential patterns. The mining procedure is then performed recursively in the pattern growth manner to 
calculate the support of patterns through projected position arrays, projected support arrays, and projected 
databases. We compare the results and performances of PHSPAM with those of other hybrid sequential 
pattern mining algorithms, GFP2 and CHSPAM. 

1 INTRODUCTION 

Data mining aims to extract implicit information 
inside voluminous electronic data, and has become 
more and more important for science, engineering, 
business, etc. Frequent sequential pattern mining 
obtains item sequence patterns satisfying the 
condition that the number of their occurrences in the 
database, called support, is greater than or equal to a 
given minimum threshold. It has been applied to 
applications like stock trend, genome sequencing, 
web page traversal, customer behavior analysis, etc. 

Based on requirement of items’ adjacency in a 
pattern, sequential patterns could be classified into 
three categories (Chen et al., 2002):  (1) Continuous 
patterns, where the adjacent items in a pattern must 
be matched by consecutive items in the transactions. 
(2) Discontinuous patterns, where adjacent items in 
a pattern are matched by items separated by zero or 
more items. (3) Hybrid patterns, where discontinuity 
is represented by a special symbol ‘*’ so that 
continuous and discontinuous adjacency 
requirements could be specified together. For 
example, for a transaction T to match the hybrid 
pattern <AB*C>, its matching items for A and B 
must be adjacent, and its matching items for B and C 
are not necessarily consecutive.  

As far as we know, the most efficient hybrid 
sequential pattern mining algorithm is GFP2 (Chen 
et al., 2002). Its basic concept is the Apriori 
principle--candidate frequent patterns of length n 
could be generated by joining frequent patterns of 
length n-1. However, with repetitive items in a 
transaction, some frequent patterns might be missed 
by this technique. For example, suppose the database 
has only one transaction T=<ABCBD>, and the 
minimum threshold is 2. The only frequent pattern 
of length 1 is <B>. By joining frequent patterns of 
length 1, the candidate frequent patterns of length 2 
are <B*B> and <BB>. Supports for patterns 
<A*B> and <B*D> are 2, but they are not 
obtainable by filtering <B*B> and <BB>. 

Jou (2006) proposed an algorithm, CHSPAM, to 
obtain the complete hybrid sequential patterns. 
However, CHSPAM’s performance is no better than 
GFP2. We utilize the pattern growth methodology 
and propose Projection-Based Hybrid Sequential 
PAttern Mining algorithm, PHSPAM, to tackle this 
performance problem.  

The rest of the paper is organized as follows: 
Section 2 surveys related work. Problem definition 
and PHSPAM are illustrated in Section 3. 
Experimentations and their results are discussed in 
Section 4. Section 5 concludes the paper and points 
out future work directions. 
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2 RELATED WORK 

Agrawal and Srikant (1995) extended the frequent 
itemset mining algorithm (Agrawal and Srikant, 
1994; Agrawal et al., 1993) for non-serial 
transactions to discontinuous sequential pattern 
mining for serial transactions using the Apriori 
principle for sequential patterns. Pei et al. (2000) 
obtained discontinuous sequential web traversal 
patterns by constructing the access pattern tree from 
web access logs. Chen et al. (1998) extended the 
Apriori principle to obtain frequent continuous 
sequential web path traversal patterns. 

Based on the approach to attack the sequential 
pattern mining problem, its solutions could be 
classified into two categories: 1. Candidate pattern 
generation and filtering; 2. Pattern growth. 

The methods in the candidate pattern generation 
and filtering category extend the Apriori principle. 
The whole database needs to be scanned in each 
candidate pattern generation step. For large 
databases, this approach needs huge memory space 
to store the candidate patterns. GSP (Agrawal and 
Srikant, 1996), GFP2 (Chen et al., 2002), and 
SPADE (Zaki, 2001) all belong to this category. 
GSP added time constraints between adjacent items 
in a pattern, relaxed the restriction that elements of a 
pattern must be from the same transaction, and 
allowed items to cross taxonomy levels. GFP2 was 
the first to obtain hybrid sequential patterns. It 
utilized the containment relationship of supports 
between the patterns with ‘*’ and those without ‘*’ 
to reduce the number of database scans. SPADE 
utilized subset relationship of patterns in calculating 
the support of candidate patterns by checking the 
positions of each item in the transactions.  

In the pattern growth methodology, to skip the 
time-consuming candidate patterns generation step, 
a candidate pattern is built by concatenating a 
pattern p with patterns obtained from its projected 
databases, which are collections of after-p sub-
transactions. Supports of patterns with prefix p are 
counted by summing supports of patterns supported 
by sub-transactions in p’s projected database. 
FreeSpan (Han et al., 2000a; Pei et al., 2004) first 
utilized the pattern growth concept from FP-Growth 
(Han et al., 2000b). PrefixSpan (Pei et al., 2001; Pei 
et al., 2004) used bi-level projection to reduce the 
number of projected databases. It also recorded the 
transaction id and the position of sequential patterns, 
instead of the real data, to reduce the memory 
requirement. Jou (2006) discovered that some 
frequent patterns could not be obtained by the 
Apriori principle. He proposed the first complete 

hybrid sequential pattern mining algorithm, 
CHSPAM. Its mining procedure is performed 
recursively in the pattern-growth manner by the 
backward support counting method. 

3 THE PHSPAM ALGORITHM 

Our definition of hybrid sequential pattern follows 
that of GFP2 (Chen et al., 2002): Let I = {i1, i2, …, im} 
denotes the set of items in a database. A transaction 
T=<t1 t2 … tk> is an item sequence, where for all i 
between 1 and k, ti ∈ I. A database consists of a set 
of transactions. A special symbol ‘*’ not in I is used 
in the pattern specification to denote the occurrence 
of 0 or more items. A sequence <x1 x2 … xn> is 
called a hybrid sequential pattern if: 

(1) xi ∈  I ∪ { * } for all 1 ≤ i ≤ n 
(2) x1 ∈  I and xn ∈  I; and 
(3) for all 1 < i < n, if xi =’*’ then xi-1 ∈ I and 

xi+1 ∈   I. 
Condition (2) requires a pattern to start and end with 
an item. Condition (3) exclude consecutive *’s in a 
pattern. Hybrid sequential pattern will be 
abbreviated as pattern henceforth when no confusion 
arises. Thus, <ABC>, <A*BC> and <A*B*C> are 
legitimate patterns, while <*AB> and <AB**C> are 
not.  

A pattern p is said to be contained in a 
transaction T, denoted as p ⊂  T, if:  

(1) for all items x ∈  p, there is a matching item x  
∈ T;  

(2) for all items x, y ∈ p, if x precedes y in p, then 
x’s matching item in T also precedes y’s; and  

(3) for all items x, y ∈  p, if x is adjacent to y in 
p, then x’s matching item in T is also 
adjacent to y’s.  

The above conditions require that a matching 
instantiation of p in T must respect the serial order of 
items in p.  

For each pattern p and transaction T, the number 
of different matching instantiations for p ⊂  T is 
called the support of p in T, denoted by suppp,T. For 
example, suppose p=<A*BC> and T=<BACABC>. 
Then suppp,T = 2, where the first instantiation 
matches A, B, C to positions 2, 5, 6 of T, and the 
second matches them to positions 4, 5, 6. For a given 
minimum support threshold minSupp, we call pattern 
p a frequent pattern if p satisfies the condition:  

minSuppsupp
T

Tp ≥∑
∀

, . 

From short to long patterns, PHSPAM generates 
for each pattern p a projected position array, which 
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keeps for all matching transactions the positions of 
the items matching p’s last item. Corresponding to 
each position in the position array, their contribution 
to the support for p is stored in p’s projected support 
array. The mining procedure is recursively applied 
to the projected databases by summing supports 
from their projected support arrays. 

PHSPAM has four steps: Step 1 scans the 
database and constructs the Supplemented Frequent 
One Sequence itemset, denoted as SFOS, to collect 
items that may appear in frequent patterns. Step 2 
transforms items not in SFOS into ‘+’ to generate the 
reduced database, which helps decrease the number 
of comparisons in step 4. Step 3 generates the 
projected position arrays, projected support arrays, 
and projected databases for each SFOS item. Step 4 
performs recursive support counting in the projected 
databases, and finally checks whether SFOS items 
are frequent patterns. We discuss each step in the 
following subsections. 

3.1 Generating the SFOS Itemset 

The length of a pattern p is defined as the number of 
items occurring in p. In hybrid sequential pattern 
mining, frequent patterns of length 1 are the same as 
the set of items with support greater than or equal to 
minSupp. As illustrated in Section 1, items with 
support less than minSupp could appear in frequent 
patterns of length longer than 1. PHSPAM remedies 
the problem by constructing SFOS in the first step as 
follows:  

(1) All items with their total number of 
occurrence greater than or equal to minSupp. 
These are the traditional frequent one 
sequence items;  

(2) All repetitive items, which are items 
occurring more than once in a single 
transaction; and 

(3) All items before and after any pair of 
repetitive items in a transaction.  

For the example in Section 1, Items A and D are 
added into SFOS since A occurs before the first B, 
and D after the second B. According to the definition 
of SFOS, if an item occurs more than two times in a 
transaction, then all items in that transaction will be 
added into SFOS.  

3.2 Database Reduction 

The second step transforms each series of 
consecutive non-SFOS items in the original database 
DB into a special symbol ‘+’, to obtain DB’, the 
reduced database. Since the first and last items of a 

pattern are in SFOS, ‘+’s appearing in the prefix or 
suffix of a reduced transaction are deleted in this 
reduction. For example, suppose the sample 
database DB contains the 3 transactions in Table 1, 
and minSupp is 4. By scanning DB once, its SFOS 
could be constructed as {A, B, D} with supports 4, 5, 
3 respectively. Note that the support of item D is less 
than minSupp. D’s inclusion in SFOS is because D is 
after the repetitive items B in transactions 2 and 3. 
By scanning DB once more, the reduced database 
DB’ in Table 2 could be constructed. 

Table 1: The sample 
database. 

 
 

Table 2: Reduced 
sample database. 

trans. id serial items  trans.id serial items 
1 ABCED  1 AB+D 
2 BACBAD  2 BA+BAD 
3 BCABD  3 B+ABD 

3.3 Generating Projected Databases for 
Each SFOS Item 

 For pattern p and transaction T, projected position 
array PPAp,T contains the positions of T’s item 
matching p’s last item, and projected support array 
PSAp,T contains the supports for p at these positions. 
The collections of PPAp,T (similarly, PSAp,T) over all 
transactions T is denoted as PPAp (PSAp). The third 
step constructs for each item i in SFOS PPAi, PSAi, 
and the projected database PDBi from DB’ as 
follows: if i occurs in transaction T, then push all 
pairs of T’s transaction id  with i’s positions in T into 
PPAi. Additionally, set the support for T as 1 for 
each pair in PSAi. The projected database of pattern 
<i>, PDBi, is the set of all after-i sub-transactions. 
For repetitive items in a transaction, we will have a 
sub-transaction for each occurrence of the item.  

Table 3: Projected position array, projected support array, 
projected database of pattern <B>. 

subtr. id trans. id PPAB PSAB PDBB  
1 1 2 1 +D 
2 2 1 1 A+BAD 
3 2 4 1 AD 
4 3 1 1 +ABD 
5 3 4 1 D 

To simplify the explanation, a tabular form of PPAp, 
PSAp, PDBp will be indexed by the same sub-
transaction id. Table 3 illustrates the tabular form of 
PPAB, PSAB, and PDBB for the reduced sample 
database. These projected data structures for SFOS 
items are stored in the hard disk. Since the support 
counting procedure uses one projected database for 
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an SFOS item at a time, at any time PHSPAM loads 
only one set of these projected data structures into 
memory.  

3.4 Recursive Traverse and Count 

Figure 1 demonstrates the fourth step, 
TraverseAndCount, for a pattern p. Let Ip denote the 
set of items in the projected database PDBp.  This 
step first calls GetSupport(p) to obtain the support 
count mapping, Mp, which maps, for all items i in Ip, 
patterns <p*i> and <pi> to the their supports. 
Details of GetSupport will be explained in the next 
paragraph. The supports Mp (<p*i>) and Mp (<pi>) 
are compared to minSupp to decide whether <p*i> 
and <pi> are frequent patterns. Then, it calls 
BuildProjectedArrays(p,i) to build projected position 
arrays (PPAp*i and PPApi), and projected support 
arrays (PSAp*i and PSApi). Suppose the first item of p 
is x. The projected database PDBp*i (similarly, PDBpi) 
could be obtained on the fly from PDBx and PPAp*i 
(similarly, PDBx and PPApi). TraverseAndCount will 
then be recursively applied to <p*i> and <pi>. 

 

 
Figure 1: Pseudo code of TraverseAndCount. 

For a pattern p, Figure 2 shows the construction of 
the support count mapping Mp in GetSupport(p) by 
scanning the sub-transactions in PDBp as follows: 
Suppose the index of sub-transaction Ts in PDBp is j. 
Out of all matching instantiations of <p> in Ts’s 
original transaction T, PSAp,T[j] matching 
instantiations satisfy the condition that the last 
element of p is in position PPAp,T[j]. Thus, for all 
items i in Ts, T would contribute PSAp,T[j] to the 
support of <p*i>. That is, each occurrence of item i 

in Ts would increase Mp’s final supports of <p*i> by 
PSAp,T[j]. Similarly, if an item i in Ts satisfies the 
condition that the last element of p in the matching 
instantiation is adjacent to i, verified by checking 
whether the position of i is equal to PPAp,T[j]+1, 
each occurrence of i would increase the support 
count mapping of <pi> by PSAp,T[j]. In Mp, the 
support counts for <p*i> and <pi> are the 
accumulated sum of supports of <p*i> and <pi> 
over all sub-transactions in PDBp. It is clear that Mp 
maps each pattern to their support count in the 
original database.  

From projected database PDBB of pattern <B> 
in Table 3, IB is {A, B, D}. Take item A as an 
example. The detailed support counting of the 
mapping of <B*A> in MB is demonstrated in Table 4. 
Note that the support of <B*A> contributed from 
transaction 2 position 5 is 2, where both sub-
transactions 2 and 3 in PDBB contribute one support. 
Since sum of supports of <B*A> in PDBB*A is 4, 
<B*A> is added into the set of frequent patterns. 
However, since only 2 of the 4, both from 
transaction 2, satisfy the condition that item A is 
immediately after B, support of <BA> is 2, and 
<BA> is not a frequent pattern. The function 
BuildProjectedArrays(<B>,A) then builds projected 
position arrays (PPAB*A and PPABA), and projected 
support arrays (PSAB*A and PSABA). 
TraverseAndCount is then recursively performed on 
<B*A> and <BA> separately. 

For the projected database PDBB*A in Table 4, 
item  D  occurs  once  in  sub-transactions 1,  2 and 3. 

 

 
Figure 2: Pseudo code of GetSupport. 

/* PDBp  : the Projected Database of pattern <p> */ 
/* PPAp,T : the Projected Position Array  for sub-transaction  

T in PDBp */ 
/* PSAp,T: the Projected Support Array  for sub-transaction  

T in PDBp */ 
Function GetSupport(p)  
Begin 

for each item i ∈Ip 
  Mp(<p*i>)=0; Mp(<pi>)=0 
endFor 
for each T ∈ PDBp 
   j = index of T in PDBp 

for each item i ∈T 
/* do not count ‘+’ as an item */ 

      if i != ‘+’ then  
                          Mp(<p*i>)=Mp(<p*i>)+ PSAp,T[j] 
           if (PPAp,T[j]+1==position of i 

in T) then 
                 Mp(<pi>)=Mp(<pi>)+ 

PSAp,T[j] 
   endFor 
endFor 
return Mp 

/* <p>  denotes a pattern */ 
/* PDBp  is the projected database of <p> */ 

/* FP is the set of frequent patterns */ 
Procedure TraverseAndCount(p) 
Begin  

   Mp = GetSupport(p) 
/* Mp maps <p*i> and <pi>, i being one of the 

items in PDBp, to their supports */ 
   for each item i ∈  Ip 

if Mp (<p*i>) ≥  minSupp then 
add <p*i> to FP 

endIf 
     if Mp (<pi>) ≥  minSupp then 
         add <pi> to FP  
    endIf 

BuildProjectedArrays(p, i)  
/* build projected position/support arrays, for 

patterns <p*i> and <pi> */ 
            TraverseAndCount(<p*i>) 
    TraverseAndCount(<pi>) 
  endFor 

End Procedure 
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Table 4: Projected position array, projected support array,
and projected database of pattern <B*A>. 

subtr. id trans. id PPAB*A  PSAB*A PDBB*A  
1 2 2 1 +BAD 
2 2 5 1+1 D 
3 3 3 1 BD 

The supports for <B*A*D> contributed by sub-
transaction 1, 2, and 3 are 1, 2, and 1, respectively. 
Thus, MB*A(<B*A*D>)=4. Since only the case in 
sub-transaction 2 satisfies the condition that D is 
immediately after A, MB*A(<B*AD>)=2. The support 
count accumulation details of <B*A*i> and <B*Ai> 
for all items i in IB*A could be computed in the same 
fashion. Thus, the sample database has the following 
frequent patterns: <A>, <B>, <A*D>, <B*A>, 
<B*D>, and <B*A*D>. 

4 EXPERIMENTS 

We implement GFP2, CHSPAM and PHSPAM in 
VB.NET 2005. The first experiment compares 
numbers of obtained frequent patterns and execution 
time with respect to database size and average length 
of frequent patterns. The second experiment checks 
the sensitivity of PHSPAM regarding the minimum 
support. The experiments are performed in the 
Windows Server operating system, Intel Xeon 3100 
Dual-Core CPU, and 1024MB DDR memory. The 
databases, generated by IBM Quest Synthetic Data 
Generator, are stored in Microsoft SQL Server 2005. 
The fixed parameters for generating the databases 
are: the number of distinguished items is 10000; the 
number of items in the frequent one sequence 
itemset is 1500; the average transactions length is 15. 
The varied parameters are: |D|: the number of 
transactions in the database, and |I|: the average 
length of frequent patterns. 

The first experiment is with minSupp set as 
0.015% of |D|. The parameters of |D| are 100K, 
200K, 300K, 400K and 500K, and the parameters of 
|I| are 2 and 4. Number of frequent patterns and 
execution time results are displayed in Table 5. In all 
10 settings, the numbers of frequent patterns 
obtained by CHSPAM and PHSPAM are the same. 
They are 0.08% to 14.67% more than those by GFP2, 
but the percentage fluctuates with the database size. 
This shows that the behavior of PHSPAM is 
dependent on the probabilistic population of the 
repetitive items. Figure 3 displays the execution time 
in these 10 settings for GFP2 and PHSPAM only. 
With the projected data structures to accumulate 
support counts, PHSPAM runs faster than GFP2 and  

Table 5: Results and performances for minSupp equal to 
0.015% of |D|. 

database 
no. of freq patterns           execution time (second) 

GFP2  CHSPAM/
PHSPAM      GFP2 CHSPAM PHSPAM

I2D100K 968 973 212        1958 102 
I2D200K 1506 1509         564        2625   352 
I2D300K 1059 1062         803        6164     467 
I2D400K 1787 1814 1222      10389     829 
I2D500K 1306 1335      1277      13027     893 
I4D100K 1315 1326        205        3053     200 
I4D200K 2108 2117        521        4089     502 
I4D300K 1535 1760        771        9856     687 
I4D400K 4495 4995       1498      20638   1268 
I4D500K 6146 6151       1862      29741 1441 
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Figure 3: Execution time comparison of GFP2 and 
PHSPAM. 
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Figure 4: Number of frequent patterns with respect to the 
minimum support rate. 

CHSPAM.  
The second experiment runs PHSPAM with 

minSupp set as 0.0100%, 0.0125%, 0.0150%, 
0.0175% and 0.0200% of |D|. The parameters of |D| 
are 100K, 200K, and 300K, and the parameters of |I| 
are 2 and 4. Number of frequent patterns and 
execution time results are displayed in Table 6. Both 
consistently grow with the decrease of the minimum 
support. Figure 4 shows the trend of number of 
frequent patterns regarding to the minimum support. 
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Note that the growth rate is sharper for the number 
of frequent patterns than that of the execution time. 
Thus, by decreasing the minimum support, the extra 
execution time is worthy of the insights gained from 
the extra frequent patterns. 

Table 6: Execution time for minSupp equal to 0.0100%
0.0125%, 0.0150%, 0.0175%, 0.0200% of |D|. 

database 
no. of freq patterns / execution time (second) 

0.0100%  0.0125% 0.0150% 0.0175% 0.0200%

I2D100K 1633/125 1295/114 973/102    714/95 579/88 
I2D200K 2920/394 2235/371 1509/352 1287/327 1133/304
I2D300K 1843/557 1340/511 1062/467  859/426    692/391
I4D100K 1902/237 1688/211 1326/200 1163/193    747/180
I4D200K 7460/794 3429/586 2117/502 1648/453  1381/425
I4D300K 7185/1206 3280/826 1760/687 937/452  589/415

5 CONCLUSIONS 

We designed the PHSPAM algorithm to remedy the 
problems that the set of frequent hybrid sequential 
patterns obtained by previous researches is 
incomplete and that the execution time does not 
scale with growing database sizes. PHSPAM obtains 
the complete set by first collecting items that might 
appear in the frequent patterns. PHSPAM then uses 
the pattern growth techniques to calculate the 
support of patterns.  PHSPAM was implemented and 
compared with GFP2 and CHSPAM. The 
experiments demonstrated that PHSPAM indeed 
obtained more frequent patterns than GFP2. In 
addition, achieving the same completeness result, 
the execution time of PHSPAM is better than GFP2 
and much better than CHSPAM, due to the 
accumulated counts preserved in the projected data 
structures.   

Our future research regarding hybrid sequential 
pattern mining includes: 

(1) Apply PHSPAM in real world applications, like 
web page traversal paths mining through web 
logs.  

(2) Examine the effect of replacing the support 
definition such that a transaction could 
contribute at most one in the support counting 
of a pattern.  

(3) Consider application specific constraint of the 
patterns, like timing limitations.  
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