
OPTIMIZATION OF SPARQL BY USING CORESPARQL

Jinghua Groppe, Sven Groppe and Jan Kolbaum
IFIS, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany

Keywords: Semantic Web, RDF, SPARQL, coreSPARQL, Query Optimization, Query Rewriting.

Abstract: SPARQL is becoming an important query language for RDF data. Query optimization to speed up query
processing has been an important research topic for all query languages. In order to optimize SPARQL
queries, we suggest a core fragment of the SPARQL language, which we call the coreSPARQL language.
coreSPARQL has the same expressive power as SPARQL, but eliminates redundant language constructs of
SPARQL. SPARQL engines and optimization approaches will benefit from using coreSPARQL, because
fewer cases need to be considered when processing coreSPARQL queries and the coreSPARQL syntax is
machine-friendly. In this paper, we present an approach to automatically transforming SPARQL to
coreSPARQL, and develop a set of rewriting rules to optimize coreSPRQL queries. Our experimental
results show that our optimization of SPARQL speeds up RDF querying.

1 INTRODUCTION

The Semantic Web uses the Resource Description
Framework (RDF) (Beckett, 2004) as its data format
to describe information in the web. RDF provides a
model and syntax for describing data, but it does not
provide querying functionalities. A number of RDF
querying languages have been developed, e.g. RQL,
N3, Versa, SeRQL, Triple and RDQL. When (Haase
et al., 2004.) compares these six languages,
SPARQL (Prud’hommeaus and Seaborne, 2007) has
not emerged. SPARQL was first proposed on 12th
October 2004 and became an official W3C
Recommendation on 15th January 2008. Many RDF
stores support or plan to support SPARQL, e.g. Jena
(Wilkinson et al., 2003) and Sesame (Broekstra et
al., 2002). SPARQL becomes increasingly important
as an RDF query language.

The optimization of queries has been an active
research topic for improving the performance of
query processing. An important optimization
technique is rewriting of queries. While query
rewriting has been extensively studied in the
relational databases and XML areas, there is no
complete and thorough work on rewriting of
SPARQL queries. Therefore, we focus on the
rewriting and simplification of SPARQL queries. In
this paper we develop a core fragment of the
SPARQL language to simplify SPARQL, which we
name coreSPARQL, and a set of rules to optimize
coreSPARQL queries.

SPARQL supports a large number of different
language constructs, which brings flexibility of
expressiveness, but also redundancy of expressions.
For example, the three expressions of SPARQL in
Figure 1 have the same semantics. Redundant
expressive power increases the difficulties of query
processing. It is also obvious that the syntax for
Expression 1 is user-friendly, but Expression 3 is
more easily to be interpreted by a machine.

Expression 1 Expression 2 Expression 3

(1 [?x 3]). [] rdf:first 1;
 rdf:rest _:b.
_:b rdf:first [$x 3];
 rdf:rest rdf:nil.

_:b1 rdf:first 1.
_:b1 rdf:rest _:b2.
_:b2 rdf:first _:b3.
_:b3 ?x 3.
_:b2 rdf:rest rdf:nil.

Figure 1: Three SPARQL expressions with same
semantics.

In order to reduce the number of cases, which
must be considered when processing SPARQL
queries, and in order to make SPARQL queries more
machine-processable, we suggest the coreSPARQL
language, which is a core fragment of the SPARQL
language. coreSPARQL posses the same expressive
power as SPARQL, but does not contain redundant

This work is funded by the German Research Foundation
(DFG) project GR 3435/1-1 LUPOSDATE.

107Groppe J., Groppe S. and Kolbaum J. (2009).
OPTIMIZATION OF SPARQL BY USING CORESPARQL.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages
107-112
DOI: 10.5220/0001983501070112
Copyright c© SciTePress

language constructs of SPARQL and only allows
machine friendly syntax. We develop an approach,
which automatically transforms SPARQL queries to
coreSPARQL queries.

SPARQL queries written by users or generated
by applications are often un-optimized, and thus
sub-optimal. Sub-optimal queries impact query
processing performance. Based on coreSPARQL, we
develop a set of simplification rules to rewrite
coreSPARQL queries, and transform a sub-optimal
query into an optimal query by eliminating
redundant parts and optimizing sub-expressions. Our
performance study shows that after our optimization,
SPARQL can be processed more efficiently, and the
transformation of SPARQL to coreSPARQL has a
low overhead. Due to the limitation of space, we do
not present our experiment results in this paper.

Related Work. (Pérez et al., 2006) suggests several
rules for rewriting AND, UNION and OPTIONAL
expressions in SPARQL queries. The purpose of the
rewriting is constructing a critical fragment of
UNION-free graph pattern expressions for the study
of evaluation complexity.

(Bernstein et al., 2007), (Groppe et al., 2007a),
(Broekstra et al., 2002) and (Groppe et al., 2009)
reorder triple patterns in order to reduce the size of
intermediate results. (Groppe et al., 2007a) pushes a
filter expression upward if all the variables in the
filter expression has already been bound. (Bernstein
et al., 2007) reorders triple patterns according to
their selectivity, which is estimated based on
schemas. (Broekstra et al., 2002) and (Groppe et al.,
2009) both observe that the number of variables
might impact the sizes of the intermediate resultant
data. (Broekstra et al., 2002) reorders the triple
patterns according to the number of variables, while
(Groppe et al., 2009) considers the number of the
new variables, which have not been bound so far,
because the occurred variables are bound with the
result of previous triple patterns.

An amount of work contributes to the rewriting
of relational algebra, and develops a number of
equivalency rules (Arasu et al., 2006) (Chaudhuri,
1998) (Ioannidis, 1996) (Jarke and Koch, 1984).
Some of our and other equivalency rules for
rewriting SPARQL queries are adapted from the
equivalency rules for relational algebra, e.g. the
rules for comparison operators.

Several contributions are dedicated to the
transformation of SPARQL queries to SQL queries,
and the storage of RDF data in relational databases,
and thus use proven database technologies, e.g.
(Chong et al., 2005), (Chebotko et al., 2007) and
(Cyganiak, 2005).

(Groppe et al., 2007b), (Weiss et al., 2008) and
(Groppe et al., 2009) suggest different indices for
fast data access. (Groppe et al., 2009) develops a
new approach to compute join of triple patterns by
dynamically restricting triple patterns.

2 RDF AND SPARQL

Figure 2 presents an example of RDF data and of a
SPARQL query.

RDF data is a set of triples of the form Subject
Predicate Object, which are RDF terms, e.g. IRIs,
literals or blank nodes. Figure 2 provides an example
of RDF data with 3 triples. SPARQL selects RDF
data based on graph pattern matching, where the
core component of SPARQL graph patterns is a set
of triple patterns s p o. s p o corresponds to the
subject (s), predicate (p) and object (o) of a RDF
triple, but they can be variables as well as RDF
terms. A triple pattern matches a subset of the RDF
data, where the RDF terms in the triple pattern
correspond to the ones in the RDF data. The query
result of a triple pattern consists of pairs of variables
with their bound values, i.e. corresponding RDF
terms in the matched subset of the RDF data. The
result of a set of triple patterns is the join of the
result of each triple pattern.

Book.rdf Book.sparql

@prefix ex: <http://book/>

ex:book1 ex:title “XML”.
ex:book2 ex:title “Index”.
ex:book2 ex:pages 90.

prefix ex: <http://book/>

SELECT ?y, ?z
WHERE { ?x ex:title ?y.
 ?x ex:pages ?z.}

Figure 2: RDF data and SPARQL query.

The SPARQL query Book.sparql in Figure 2
consists of the SELECT clause and the WHERE
clause. The SELECT clause identifies the variables to
appear in the query results, and the WHERE clause
contains two triple patterns, which identify the
constraints on RDF data. The triple pattern ?x ex:title
?y matches the first two triples of Book.rdf, such that
its result is {<?x=ex:book1, ?y=“XML”>, <?x=ex:book2,
?y=“Index”>}. The triple pattern ?x ex:pages ?z
matches the last triple of Book.rdf, such that the result
is {<?x=ex:book2, ?z=90>}. The two triple patterns
impose a join over the common variable ?x, such
that the result of the two triple patterns is
{<?x=ex:book2, ?y=“Index”, ?z=90>}. The final query
result is {<?y=“Index”, ?z=90>}.

SPARQL provides rich capabilities to select and
filter data, and we refer the interested reader to

ICEIS 2009 - International Conference on Enterprise Information Systems

108

(Prud’hommeaus and Seaborne, 2007) for a
complete description of SPARQL.

3 CORESPARQL

SPARQL allows redundant language constructs and
supports abbreviated syntax. The redundancy brings
the flexibility of expressiveness and abbreviations
bring the simplification of expressions, but they do
not increase the expressive power of the language.
That a SPARQL query can be expressed in different
forms increases the number of cases to be processed;
the abbreviated syntaxes are not machine-friendly.
In order to make SPARQL queries more machine-
processable, and to reduce the number of cases,
which must be considered when processing
SPARQL queries, we abstract a subset from the
SPARQL language, and name the subset
coreSPARQL.

3.1 Defining coreSPARQL

In Definition 1, we describe coreSPARQL in terms
of the common and different properties with
SPARQL. Figure 3 demonstrates several SPARQL
and corresponding coreSPARQL components.

component SPARQL coreSPARQL

triple pattern

s1 p1 o1;
 p2 $x.

s1 p1 o1.
s1 p2 ?x.

blank node [] [p o]. _:b p o.

group graph pattern { {s1 p1 o1}
 s2 p2 o2. }

{ s1 p1 o1.
 s2 p2 o2. }

&& operator Filter(A && B). Filter(A).
Filter(B).

Figure 3: SPARQL and corresponding coreSPARQL
components.

Definition 1 (coreSPARQL). coreSPARQL is a
core fragment of SPARQL. A coreSPARQL query is
also a SPARQL query. coreSPARQL has the same
expressive power as SPARQL, but allows only
machine-friendly syntax, and eliminates many
redundant language constructs. Especially, in
coreSPARQL,
• all triple patterns are only in the form: s p o.;
• a group graph pattern cannot directly nest

another group graph pattern;
• variable names start only with ?;
• blank nodes [] are not allowed;
• RDF collections of the form (…) are not

allowed;

• neither prefixed IRIs nor IRIs, which are relative
to a BASE-declaration, are allowed.

• the keyword a is not allowed;
• the && operator is not allowed. �

3.2 Transforming SPARQL to
CORESPARQL

SPARQL provides user-friendly syntax to write
RDF queries, and coreSPARQL queries are easy to
program. Therefore, the next task for us is to find a
way to automatically transform SPARQL queries to
coreSPARQL queries. We develop a set of
transformation rules, such that a SPARQL query can
be transformed into a coreSPARQL query by
recursive application of these rules, i.e. if the
expression of a left-hand side of a rule occurs in a
SPARQL query, it is replaced with the right-hand
side of the rule.

We use the following notation to describe these
rules: we write s (s1, s2,…), p (p1, p2, …), o (o1, o2,…)
for the subject, predicate, and object of a triple
pattern, os (os1, os2, …) for a list of objects, e.g. os =
o1, o2, o3, …, om, where m≥1, and pos (pos1, pos2, …)
for predicate-object-lists, e.g., pos=p1 os1; p2 os2; …;
pm osm, where m≥1. A blank node [] is replaced by a
blank node label, e.g. _:b, where b must be not used
elsewhere in the query. Note that some patterns in
the following rules may be not supported by
SPARQL. Such patterns are intermediate results of
the transformation, and will be translated to standard
language constructs after the transformation.

• Rule 1: eliminating Object-Lists:
1.1 s1 p1 o1, os. => s1 p1 o1. s1 p1 os.

• Rule 2: eliminating Predicate-Object-Lists:
2.1 s1 p1 os1; pos. => s1 p1 os1. s1 pos.

• Rule 3: eliminating blank nodes [].
3.1 [] => _:b
3.2 [pos]. => _:b pos.
3.3 [pos] p1 os1. => _:b pos. _:b p1 os1.
3.4 s1 p1 [pos]. => s1 p1 _:b. _:b pos.

• Rule 4: eliminating RDF collections (), where e
(e1, e2,..) is an element of the collection, i.e. a
variable, a literal, a blank node, or a collection.
Here, we introduce a variant of the collection, e.g.
(e)s=_:b. to restrict that the blank node, which is
allocated for the collection (e), must be _:b.

4.1 (e) pos. => _:b rdf:first e.
 _:b rdf:rest rdf:nil.
 _:b pos.

4.2 (e). => _:b rdf:first e. _:b rdf:rest rdf:nil.
4.3 (e1 e2 e3…). => _:b rdf:first e1.

_:b rdf:rest (e2 e3…).

OPTIMIZATION OF SPARQL BY USING CORESPARQL

109

4.4 s p (e1 e2 ...). => s p _:b. (e1 e2 ...)s=_:b.
4.5 (e1 e2…)s=_:b. => _:b rdf:first e1.

_:b rdf:rest (e2…).
4.6 (e)s=_:b. => _:b rdf:first e. _:b rdf:rest rdf:nil.
4.6 () => rdf:nil

• Rule 5: eliminate the keywork a:
5.1 a => rdf:type

• Rule 6: eliminate directly nested group graph
patterns

6.1 { {A} …} => { A …},
where {A} is not a part of a OPTIONAL, or a
UNION, or a GRAPH graph pattern; A does not
consist of only Filter expressions either.

6.2 { {Filter(e).} … }
 { Filter(true) …}, if the result of the static
=> analysis of e is true.

 { Filter(false)…}, if the result of the static
 analysis of e is false or a
 type error.

For example, the expression 10>1 is statically
analyzed to true, and thus {Filter(10>1)).} = Filter(true)..
In the group graph pattern {Filter(bound(?x)).}, the
variable x will never be bound. Therefore, the static
analysis of bound(?x) detects a type error, and thus
{Filter(bound(?x)).} = Filter(false).. For the details on the
static analysis and type errors, see Section 11.2
Filter Evaluation in the SPARQL specification
(Prud’hommeaux and Seaborne, 2007).

• Rule 7: eliminating && operator, where A, B and
C are conditional expressions.

7.1 Filter(A && B). => Filter(A). Filter(B).
7.2 (A && B) || C => (A || C) && (A ||C).
7.3 !(A || B) => !A && !B
7.4 !(A && B) => !A || !B

• Rule 8: eliminating prefixes and BASE
declarations.

8.1 p:a => <prefix(p) a>,
where prefix(p) is a function to resolve the

prefixed IRI p:a according to defined PREFIX and
BASE declarations. The PREFIX and BASE
declarations are deleted in the coreSPARQL query.

Example 1. Using this example, we demonstrate
how to transform a SPARQL expression t1 = (1 [p
o1] (2)). into the corresponding coreSPARQL
expression by recursively applying the rules above.

1. Applying Rule 4.3 on t1: t1 => t2. t3.:
_:b1 rdf:first 1. (t2)
_:b1 rdf:rest ([p o1] (2)). (t3)

2. Applying Rule 4.4 on t3: t3 => t4. t5.
_:b1 rdf:rest _:b2. (t4)
([p o1] (2))s=_:b2. (t5)

3. Applying Rule 4.5 on t5: t5=> t6. t7.
_:b2 rdf:first [p o1]. (t6)
_:b2 rdf:rest ((2)). (t7)

4. Applying Rule 3.4 on t6: t6 => t8. t9.
_:b2 rdf:first _:b3. (t8)

 _:b3 p o1. (t9)

5. Applying Rule 4.4 on t7: t7 => t10. t11.
 _:b2 rdf:rest _:b4. (t10)
 ((2))s=_:b4. (t11)

6. Applying Rule 4.6 on t11: t11 => t12. t13.:
_:b4 rdf:first (2). (t12)
_:b4 rdf:rest rdf:nil. (t13)

7. Applying Rule 4.4 on t12: t12 => t14. t15.:
_:b4 rdf:first _:b5. (t14)
(2)s=_:b5. (t15)

8. Applying Rule 4.6 on t15: t5 => t16. t17.:
_:b5 rdf:first 2. (t16)
_:b5 rdf:rest rdf:nil. (t17)

The result of transformation consists of the triple
patterns t2, t4, t8, t9, t10, t13, t14, t16 and t17.

Note that there are further redundancies, which
we allow in coreSPARQL, as they can be processed
in a machine-friendly way. For example, the
wildcard * in SELECT [DISTINCT | REDUCED] * and
DESCRIBE *, can be replaced by the concrete
variables in triple patterns. REDUCED keyword can
be replaced by DISTINCT or can be deleted. Any
operations on constants can be replaced by the result
of their applications.

4 REWRITING CORESPARQL
QUERIES

While the coreSPARQL query does not contain
redundant language constructs, a coreSPARQL
query may not be optimal, e.g. containing redundant
constraints. For example, if we have two constraints
bound(?x). Filter(?x=1). in a SPARQL query, then the
constraint bound(?x) is redundant: bound(?x) requires
that the variable x is bound with a value, and
Filter(?x=1) implies that x is bound to the value 1. The
reason for sub-optimal SPARQL queries is that
queries written by users or generated in applications
are often non-optimized. The sub-optimal queries
impact significantly query processing performance.

As well as being sub-optimal, queries are also
possibly unsatisfiable. A query is unsatisfiable if the
query selects the empty result for any RDF data.
Therefore, if we can detect that a query is
unsatisfiable, we can avoid the submission and
evaluation of the unsatisfiable query, and thus save

ICEIS 2009 - International Conference on Enterprise Information Systems

110

processing time and query cost. A query is
unsatisfiable, if it contains conflicting constraints.
For example, two constraints IsIRI(?x) and Filter(?x =
“http:://example.com”) contradict each other: IsIRI(?x)
requires that ?x is an IRI, but Filter(?x =
“http:://example.com”) requires that ?x is a string.

In order to optimize queries and improve the
evaluation performance, we develop a set of
equivalency rules to detect conflicting and redundant
constraints. By recursive application of these rules, a
coreSPARQL query can be optimized to a more
simple expression, or even to an empty expression,
i.e. the query is unsatisfiable.
We use the rewriting rules in

Table 1 to simplify coreSPARQL queries, where
C (C1, C2, …) represents a literal, G a graph pattern or
the query pattern, i.e. the outer-most graph pattern,
and E (E1, E2,…) an expression. Additionally, we
introduce a new graph pattern: void graph pattern,
denoted by ⊥. Contrary to the empty group pattern {}
in SPARQL, which matches any RDF graph, a void
graph pattern ⊥ does not match any RDF graph. If a
SPARQL query is simplified to the void graph
pattern, the query is unsatisfiable. Note that ⊥ is an
intermediate result during simplification, and any
satisfiable SPARQL expressions will not contain ⊥
after optimization.

5 CONCLUSIONS

We suggest the coreSPARQL language, which is a
core fragment of SPARQL, but has the same
expressiveness as SPARQL. Optimization
approaches, SPARQL engines and all applications,
which process SPARQL queries, benefit from
coreSPARQL, because coreSPARQL posses
machine-friendly syntax and thus is easy to program,
contains less language constructs and thus reduces
the number of cases to be considered.

We develop a set of transformation rules to
translate SPARQL queries to coreSPARQL queries,
and a set of rewriting rules to further optimize
coreSPARQL queries. We develop a prototype of
our approach, which shows that our optimization
speeds up SPARQL query processing.

Table 1: Rewriting rules for optimizing coreSPARQL
queries.

Eliminating the same components:
• G G => G

Constant propagation:

• Filter(?x=C). Filter(…?x…). =>
 Filter(?x=C). Filter(…C…).,
 if ?x is not the parameter of a bound function.

E.g. Filter(?x=10). Filter(?x>5). =>
 Filter(?x=10). Filter(10>5).
E.g. Filter(?x=“work”). Filter(Lang(?x)=“EN”)). =>
 Filter(Lang(“work”) = “EN”).

Variable binding:
• Filter(bound(?x)). Filter(…?x…). => Filter(…?x…).,
 if ?x of Filter(…?x…) is neither a parameter of a
 bound function nor inside an operand of ||.

• Filter(!bound(?x)). Filter(…?x…). => ⊥,
 if ?x of Filter(…?x…) is neither a parameter of a
 bound function nor inside an operand of ||.

E.g. Filter(bound(?x)). Filter(?x>10). => Filter(?x>10).
E.g. Filter(!bound(?x)). Filter(?x=“red”). => ⊥

Functions IsIRI, IsBlank, IsLiteral:

• IsIRI(C) => true, if C is an IRI;
 false, if C is not aIRI.

E.g. IsIRI(<mailto:alice@work.example>) => true
E.g. IsIRI(“mailto:alice@work.example”) => false

The rules for the functions IsURI, IsBlank, IsLiteral are analogous to
this one.

Funtions LangMatches, Regex:
• LangMatches(C, L) =>

 true, if C matches L;
 false, if C does not match L

E.g. LangMatches(“work@EN”, “EN”) => true
E.g. LangMatches(“work”, “EN”) => false

The rules for the function Regex are analogous to this one

Function Lang:
• Lang(C1@C2) => C2

E.g. Lang(“work”@EN) => “EN”

Function Filter:
• Filter(false). => ⊥ • Filter(true). => {}

• C1 op C2 =>

 true, if C1 op C2 = true;
 false, if C1 op C2 = false;

E.g. Filter(1>10). => Filter(false). => ⊥

Elimination of ⊥ and {}
• G Optional ⊥ => G • G Optional { } => G

• G UNION { } => G • G UNION ⊥ => G

• G {} => G • G ⊥ => ⊥

• G Graph n { } => G, • Graph n ⊥ => ⊥
where n is a variable or an IRI
E.g. Graph ?g ⊥ => ⊥
E.g. {s p o} ⊥ => ⊥

OPTIMIZATION OF SPARQL BY USING CORESPARQL

111

Table 1: Rewriting rules for optimizing coreSPARQL queries (cont.).

Comparison operators:

• FILTER(?x op1 C1). FILTER(?x op2 C2). =>

 FILTER(?x op1 C1)., if ((op1=op2 ∧ (C1 op1 C2) ∧ op1∈{<, <=, >=, >}) ∨ ((C1 op1 C2) ∧ C1≠C2 ∧
 (op1, op2∈{<, <=} ∨ op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op1=‘<’ ∧ op2=‘<=’) ∨
 (op1= ‘>’ ∧ op2= ‘>=’))))

 FILTER(?x op2 C2)., if ((op1=op2 ∧ (C2 op1 C1) ∧ op1∈{<, <=, >=, >}) ∨ ((C2 op2 C1) ∧ C1≠C2 ∧
 (op1, op2∈{<, <=} ∨ op1, op2 ∈ {>=, >})) ∨ (C1=C2 ∧ ((op2=‘<’ ∧ op1=‘<=’) ∨
 (op2= ‘>’ ∧ op1= ‘>=’))))

 FILTER(false)., if ((C1>C2 ∧ op1∈{>, >=} ∧ op2∈{<, <=}) ∨ (C1<C2 ∧ op1∈{<, <=} ∧ op2∈{ >, >=}) ∨
 (C1=C2 ∧ op1≠op2 ∧ (op1, op2∈{=, !=} ∨ op1, op2∈{<,>})))

 FILTER(?x op1 C1). FILTER(?x op2 C2)., otherwise.

E.g. Filter(?x>10). Filter(?x>30). => Filter(?x>30).; Filter(?x>30). Filter(?x<10). => Filter(false).

Operators ||, ! and ¬

• E || true => true • false || false => false • E || E => E • !(A1 op A2) => A1 ¬(op) A2

• ?x op1 C1 || ?x op2 C2 =>

 ?x op1 c1, if ((op1=op2 ∧ (C2 op1 C1) ∧ op1∈ {<, <=, >, >=}) ∨ ((C2 op1 C1) ∧ C1≠C2 ∧ (op1, op2∈{<, <=} ∨
 op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op1=‘<=’ ∧ op2=‘<’) ∨ (op1=‘>=’ ∧ op2=‘>’)))

 ?x op2 C2, if ((op1=op2 ∧ (C1 op1 C2) ∧ op1∈{<, <=, >, >=}) ∨ ((C1 op2 C2) ∧ c1≠c2 ∧ (op1, op2∈{<, <=} ∨
 op1, op2∈{>=, >})) ∨ (C1=C2 ∧ ((op2=‘<=’ ∧ op1=‘<’) ∨ (op2= ‘>=’ ∧ op1=‘>’))))

 Bound(?x) , if (op1=¬(op2) ∧ C1=C2),

 ?x op1 C1 || ?x op2 C2, otherwise

• ¬(=) => != • ¬(!=) => = • ¬(<) => >= • ¬(<=) => > • ¬(>) => <= • ¬(>=) => <

REFERENCES

Arasu, A., Babu, S., Widom, J., 2006. The CQL
continuous query language: semantic foundations and
query execution. VLDB Journal, 15(2): 121-142.

Beckett, D. (editor), 2004. RDF/XML Syntax
Specification (Revised), W3C Recommendation, 10th
February 2004.

Bernstein, A., Stocker, M., Kiefer, C., 2007. SPARQL
Query Optimization Using Selectivity Estimation.
ISWC’07.

Broekstra, J., Kampman, A., van Harmelen., 2002.
Sesame: A Generic Architecture for Storing and
Querying RDF and RDF Schema. ISWC’02.

Chaudhuri, S., 1998. An Overview of Query Optimization
in Relational Systems, In ACM PODS’98.

Chebotko, A., Lu, S., Fotouhi, F., 2007. Semantics
Preserving SPARQL-to-SQL Translation. Technical
report TR-DB-112007-CLF.

Chong, E. I., Das S., Eadon G., Srinivasan J., 2005. An
Efficient SQL-based RDF Querying Scheme, VLDB’05.

Cyganiak, R., 2005. A relational algebra for SPARQL.
Technical report HPL-2005-170.

Groppe, S., Groppe, J., Kukulenz, D., Linnemann, V.,
2007a. A SPARQL Engine for Streaming RDF Data,

3rd International Conference on Signal-Image
Technology & Internet-Based Systems (SITIS’07).

Groppe, J., Groppe, S., Ebers, S., Linnemann, V., 2009.
Efficient Processing of SPARQL Joins in Memory by
Dynamically Restricting Triple Patterns. ACM SAC’09.

Groppe, S., Groppe, J., Linnemann, V., 2007b. Using an
Index of Precomputed Joins in order to Speed Up
SPARQL Processing, ICEIS’07.

Haase, P., Broekstra, J., Eberhart, A., Volz, R., 2004. A
Comparison of RDF Query Languages. in ISWC'04.

Ioannidis, Y. E., 1996. Query optimization, In ACM
Computing Surveys, Vol. 28, No. 1.

Jarke, M., Koch, J., 1984. Query Optimization in Database
Systems, In ACM Computing Surveys, Vol. 16, No. 2.

Pérez, J. Arenas, M., Gutierrez C., 2006. Semantics and
Complexity of SPARQL. ISWC’06.

Prud’hommeaux E., Seaborne A., 2007. SPARQL Query
Language for RDF, W3C Recommendation, 15 Jan.
2007.

Weiss, C., Karras, P., Bernstein, A., 2008. Hexastore:
Sextuple Indexing for Semantic Web Data
Management, VLDB’08.

Wilkinson, K., Sayers, C., Kuno, H. A., Reynolds, D.
2003. Efficient RDF Storage and Retrieval in Jena2.
In SWDB’03 co-located with VLDB’03.

ICEIS 2009 - International Conference on Enterprise Information Systems

112

