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Abstract: This paper describes a method to automatically generate test cases with oracle in software product lines, 
where the management of variability and traceability are two indispensable requirements. These character-
istics may be quite useful for the processing and automatic addition of the oracle to test cases, which is one 
of the main problems found, not only in the context of software product lines, but also in general testing lit-
erature. The paper describes a simple, but effective, way to deal with this problem, based on annotations to 
precode artifacts, metamodelling and transformation algorithms. 

1 INTRODUCTION 

In the context of Software Engineering, a Software 
Product Line (SPL) represents “a set of software-
intensive systems sharing a common, managed set of 
features that satisfy the specific needs of a particular 
market segment or mission and that are developed 
from a common set of core assets in a prescribed 
way” (Clements and Northrop, 2002). According to 
(McGregor et al., 2002), products in a line are char-
acterized, on the one hand, by their similitude with 
respect to common characteristics and, on the other 
hand, by the diversity that each product introduces 
with respect to the line.  

Two development processes are distinguished in 
the construction of a line: Domain Engineering, 
related to the development of the core assets, and 
Product Engineering, related to the implementation 
of concrete products. The requirements of the line 
are described at the domain level, and will be used at 
the product level. Each product is distinguished 
from the line in a series of variability points. The 
elements proceeding from the line and the particular 
characteristics of the product are integrated for 
implementing the final products. 

This paper presents a method for the automatic 
generation of “oracled” test cases in SPL. The idea 
starts from the reusing capabilities at the domain 
engineering level, whose test cases can be used to 
derive test cases for the different products. For this, 
maintaining coherence and traceability among the 
different artifacts is essential. Several proposals ex-
ist to automate the generation of test cases in prod-
uct line contexts; however, in all of them the prob-
lem of dealing with the oracle is unresolved. Ac-
cording to (Bertolino, 2007), the automatic manipu-
lation and generation of oracles is a central research 
line in the testing area, and this work introduces a 
meaningful contribution in this respect.  

The paper is organized as follows: section 2 de-
scribes some pending challenges with respect to the 
oracle and includes a brief revision of some works 
related to testing and testing in software product 
lines. Section 3 shows and illustrates the product 
line construction method. Section 4 describes the 
metamodelling aspects of the work. Finally, Section 
5 includes some conclusions, lessons learned and 
future work. 
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2 RELATED WORK 

One the main difficulties in software testing research 
and which, according to (Bertolino, 2007), consti-
tutes an important obstacle to any advance in its 
automation, is the description of the oracle, which is 
the mechanism provided to each test case to deter-
mine, after its execution, whether the system under 
test passes or fails the test.  

(Baresi and Young, 2001) present a wide state of 
the art with respect to the oracle problem. Most of 
the proposals they analyze consist of the insertion of 
instructions in programs which perform any kind of 
checking or use formal descriptions of the programs. 
However, their writing and maintenance may be so 
complex as the writing and maintenance of the self 
program. 

In her roadmap about testing research, (Harrold, 
2000) suggests the use of “precode artefacts”, such 
as design or requirements documents, architectural 
specifications, state machines etc., a quite stimulat-
ing approach in the context of SPL. In this respect, 
several authors have proposed strategies to obtain 
test cases from different types of diagrams as 
(Basanieri et al., 2002, Offutt et al., 2003) 

In (Bertolino et al., 2004) the use cases are 
adapted to SPL and the test cases are derived manu-
ally from these. In (Olimpiew and Gomaa, 2006) 
test models are created from use cases using activity 
diagrams, decision tables and test templates. Related 
to test case derivation from sequence diagrams in 
SPL, in (Nebut et al., 2003) is proposed a method in 
which behavioural test patterns (behTP) are obtained 
from high-level sequences which are used to auto-
matically generate test cases specific to each prod-
uct.  

In general, the goal of deriving test scenarios and 
test cases from state machines, interaction diagrams, 
etc. has been significantly researched over the last 
years, and important results have been obtained. 
However there is a lack of advances in the treatment 
of the oracle. 

As with some of the reviewed works, our pro-
posal makes it possible to obtain test cases from 
interaction diagrams, both at domain and product 
engineering. A significant contribution of this work 
is the possibility of generating concrete oracles (for 
specific products of the line) from some annotations 
introduced in the sequence diagrams. 

3 DESIGN OF THE PRODUCT 
LINE 

Following some ideas of the authors mentioned in 
the previous section, the product line design starts 
with use cases (to represent and describe the re-
quirements) and sequence diagrams (to represent the 
scenarios of the use cases). Additionally, sequence 
diagrams are annotated with a description of the 
states that the instances involved in the diagram 
must reach during execution. State descriptions 
(which may or may not come from state machines) 
will be used later to deal with oracles. 

A single example will be used to illustrate the 
product line building method and the test case gen-
eration strategy. Later, in Section 0, the metamodels 
used to represent the artefacts and the algorithms 
applied to execute the transformations will be pre-
sented.  

3.1 Use Case Design in a SPL 

Let us suppose we need to build a product line to 
play different Board games (Trivial, Chess, Ludo, 
etc.) with a computer. There will be a games server 
which will receive client connections, each one op-
erated by a human player, which takes the game 
decisions he/she considers. According to the de-
scription, there exist two systems in this product 
line: the client applications (which are communi-
cated with the human player) and the server system 
(which interacts with the clients). 

For each use case, the classes involved in its 
execution are identified and categorized (bounda-
ries, controllers and entities). In this example, one of 
the server use cases is Piece movement, which is 
executed when the client sends a piece movement to 
the server. In order to keep the example simplified, 
we assume that two classes are sufficient to manage 
this use case: “Game” (an entity class) and “Con-
trol” (an use case controller). As with other devel-
opment methodologies, a textual description of use 
cases is given in a template. 

Although use cases are not directly used to gen-
erate test cases, work in product lines imposes the 
joint and rigorous management of traceability and 
variability.  

In this respect, several proposals exist to deal 
with variability during development, such as (Berto-
lino et al., 2004), who describe the PLUCs (Product 
Line Use Cases) that hold the traditional information 
of use cases plus the variability to be supported by 
the described functionality. They use the labels Al-
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ternative (different execution alternatives depending 
on the product), Optional (optional executions de-
pending on the product) and Parametric (different 
executions depending on the values of other labels). 
Thus, two new sections are added to the use case 
description template: Scope, to know what products 
will include the use case; and Variability, which 
defines the variation points and the labels. Event-
flows may be annotated with the labels which will 
be defined in this section. 

For our work, the labels Alternative and Op-
tional have been redefined, and the Scope label has 
been created. The main difference with Bertolino is 
that labels are always parameterized with the label 
defining the use case scope; in this way, all variation 
points depend on the products supported by the use 
case. Figure 1 shows the textual description of the 
Piece movement use case (for singleness, it only 
includes the normal flow of events).  

In the example, the Scope section says that the 
use case is applicable to any product (as a counter-
example, the use case Dice throwing is not applica-
ble to the Chess product), and the Variability section 
define the labels: MP0 denotes the use case scope; 
MP1 denotes an alternative piece of functionality 
and MP2 and MP3 represent an optional piece of 
functionality. Note that labels MP1 to MP3 are ref-
erenced in the description of the normal flow of 
events. 

3.2 Sequence Diagrams Design in a 
SPL 

Once the use case has been described in the tem-
plate, the corresponding sequence diagrams are 
built, drawing one for each event-flow in the use 
case. 

In this case, variability may be present both in 
messages and objects. Messages may be labelled as 
Optional (they appear in some products, but not in 
others), Mandatory (they are present in all the prod-
ucts, but their implementation depends on the prod-
uct) and Fixed (they appear in all the products with 
the same implementation). If an instance sends or 
receives variable messages, the corresponding object 
may be also annotated with the Variable label. 

3.2.1 State Descriptions for the Oracle 

Since sequence diagrams will be the main artefact to 
generate test cases, and these will not be complete if 
they lack the oracle, some means to represent and 
manipulate the oracle is required. For this issue, 

when sequence diagrams are constructed, the ex-
pected and relevant states of the objects involved in 
the diagram must have been described, and will be 
used to annotate the diagram: states are described in 
terms of the values of the class attributes and com-
plement the description of the scenarios in the se-
quence diagram: when an object receives a message, 
the expected state of the instance is annotated. Thus, 
the sequence diagram holds all the information re-
quired to obtain the testing scenarios and the ora-
cles. 

The fact of adding this kind of annotation to the 
scenario is a very simple idea, but has shown to be 
powerful for the further addition of the oracle to test 
cases, both at Domain and Product Engineering lev-
els. 

State descriptions may also require variability 
annotations, since some class fields may appear only 
in some products (for example, there are no dice in 
the Chess product). 
 

USE CASE Piece movement 
OBJECTIVE Moving  a piece  
SCOPE Any product [MP0] 
PRECONDITIONS The client has the turn 
SUCCESS FINAL CONDITION A piece has been moved 
FAILURE FINAL CONDITION There is no movement 
ACTORS Client 
TRIGGER The client executes the 

movement 
NORMAL FLOW OF EVENTS 
1. The client sends the movement order to control  
2. Control passes the movement to game. 
3. {[MP1] Game checks the legality of the movement. Cross-
Reference. Legality checking} 
4. {[MP2] Control orders game to take a piece (if necessary). 
Cross-Reference. Piece taking} 
5. Control notifies the movement to the opponents. Cross-
Reference.  Update clients. 
6. {[MP3] Control asks game if the turn must be passed} 
7. {[MP2] Control passes the turn. Cross-Reference.  Pass 
turn} 
VARIABILITY 
MP0: [1 of n]. Scope 
    0 - Chess, 1 – Checkers, 2 – Ludo, 3 – Trivial  
MP1:[1 of n]. Choice  
    If MP0=0 
        Check the movement is correct according to the moved 
piece 
    If MP0=1 
        Check the movement is correct in diagonal 
    If MP0= 3 || MP0=2 
        Check the final position is coherent with the result of the 
dice obtained before the movement 
MP2: [0..1 of 1]. Optional 
    When MP0= 0 || MP0=1 || MP0=2 
MP3:  [0..1 of 1]. Optional 
    When MP0= 2 

Figure 1: Textual description of Piece movement. 
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Table 1  shows the  possible states for the Game  

class: each state is defined as a function of the class 
attributes. For the sake of space, neither the structure 
of the class nor the class diagram appear in this pa-
per; however, expecting that field names are repre-
sentative enough to understand the approach and the 
example. Thus: 

• Initialized has no variability annotations, 
since its description (existence of a board, sufficient 
number of clients/players and no assignment of the 
turn) is common to all the games. 

• Two of the six fields of Playing have vari-
ability annotations (<<optional>> stereotypes and 
the names of the products/games affected), since the 
game state depends on its possibility of taking 
pieces. 

• In processing Dices, its two fields have vari-
ability annotations, since they are only applicable to 
some products of the line (Ludo and Trivial, which 
are the two games using dice). 

Table 1: Description of the states for the Game class. 

Initia-
lized 

this.board != null 
this.clients.size() < nPlayers 
this.pWithTurn == null 

Playing this. clients.size() == nPlayers 
this.pWithTurn != null 
this.movement == null 
this.pieceToMove ==nul 
this.positionsToTake==-1 <<optional>> {Chess, 
Checkers, Ludo} 
this.takenPieces==-1<<optional>> {Chess, Check-
ers, Ludo} 

Processin
g Dices  

this.followeddSix != -1 <<optional>> {Ludo, 
Trivial} 
this.pointsInDices !=0 <<optional>> {Ludo, Triv-
ial} 

3.2.2 Sequence Diagram Drawing 

Annotated sequence diagrams can be drawn once 
the states have been described. 

Figure 2 shows the sequence diagram for the 
normal flow of events of the Piece movement use 
case. Besides the stereotypes (which indicate the 
variable messages and objects) and the variability 
labels (with brackets), the significant messages con-
tain the name of the state that the instance should 
reach after executing that message: for example, 
after the message executeMovement, the 
ct:Controller instance should be in the SendGame 
state (note that SendGame does not appear in  

Table 1, since it belongs to Controller, not to 
Game). In the same way, the expected state of Game 

after executing the move message is Playing, which 
is described in the previous table. 

As it can be seen with this example, it is not dif- 
ficult to generate the test scenarios from the dia-
gram, neither adding them the suitable annotations 
to include the oracle, which proceed from the ex-
pected states. 

 
Figure 2: Sequence diagram for the normal flow, with 
variability and state annotations (highlighted). 

4 TRANSFORMATION 
ALGORITHMS  

The only required products for generating the test 
cases are the sequence diagrams, conveniently anno-
tated with the state names (which must have been 
previously described, such as in  
Table 1). The generation of the test scenarios from 
the sequence diagrams is made by means of a set of 
transformation algorithms which operate over a set 
of metamodels. Thus, a specific metamodel exists 
for representing sequence diagrams and another one 
for representing states.  

4.1 Algebraic Descriptions 

Metamodels have been designed to be practical and 
formal in the sense given by (Broy, 2001), for whom 
Software Engineering needs mathematical descrip-
tions for its modelling aspects, description tech-
niques and development methods, which should not 
be too complex. In this context, the OMG standard 
metamodels for UML are so complete that its com-
plexity makes hard its processing. Thus, we have 
defined a set of metamodels with no incidental de-
tails, and with a solid mathematical basis. The fol-
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lowing epigraphs describe an overview of the alge-
braic structure of the metamodels  

A Sequence  Diagram is  composed of life lines  
and messages: 

SD = (LifeLines, Messages), where: 
• l ∈ LifeLines = (Name, Class, In-

puts⊆Messages, Outputs ⊆ Messages, Variation-
Points). VariationsPoints is the set of variation 
points in the message, which is explained later . 

• m ∈ Messages = (Name, Parameters, Return, 
Source⊆LifeLines, Target⊆LifeLines, Variation-
Point, State). This definition contains the description 
of one message. As it is seen, it also has a Varia-
tionPoint element (which represents the variability 
of the instance) and a State. This one is required for 
the further addition of the oracle to test cases. 

• v ∈ VariationPoints takes one of the values 
in {Optional, Alternative}, if v is Optional, it has a 
pair (Label, Conditions), which respectively deter-
mine the VP identifier and the set of applicable con-
ditions; if v is Alternative, the pair (Label, Alterna-
tives) represent the VP identifier and the se of alter-
native functionalities. 

A State is composed of a set of conditional sen-
tences, which are written in terms of the class attrib-
utes. Thus: 

• State = {ConditionalSentence}.  
• c ∈ ConditionalSentence = (Expression, Op-

tionalVariationPoint). Expression is the boolean 
expression to be evaluated; Optional represents a 
removable condition. 

According to (Polo et al., 2007), “a Test Tem-
plate is a sequence of operations of the class under 
test with no values that must be later combined with 
actual test values to generate test cases”. Sequence 
diagrams produce test templates, which can be later 
processed to obtain actual test cases. Thus: 

• TestTemplate = (Builder, TestValues, Calls, 
ObjectUnderTest). Builder represents the instruction 
that builds the instance and Calls is the set of in-
structions that execute the operations of the Objec-
tUnder Test, which has a name and a class , with the 
TestValues. 

• Builder = (BuildOperation, InitValues, Ob-
jectUnderTest).. 

• tv ∈ TestValues = (Operation, Argument, 
Value). A test value has information about the op-
eration, the argument of the operation where it is 
applicable. 

• c ∈ Calls = (ObjectUnderTest, Operation, 
Oracle, OperationValues, VariationPoint). This 
definition contains the description of a call. 

• Oracle = (ConditionalSentences, ObjectUn-
derTest). Since the oracle is derived directly from 
the States, this definition represents a set of condi- 

tional sentences related to an object under test. 

4.2 Transformation Algorithms 

This section describes how to obtain test cases both 
for the line as well as for concrete products. The 
section is divided into two parts: the first one shows 
how to obtain test templates for the line; the second 
shows how to obtain test templates for the products 
from the test templates of the line. 

4.2.1 Test Templates for the Product Line 

The algorithm of Figure 3 takes three arguments: the 
sequence diagrams of the line (s), the set of test val-
ues (tvs), and the life line (l) corresponding to the 
instance under test. The function returns the test 
template for the class under test with the corres-
ponding variability.  

The algorithm in Figure 3 uses two auxiliary 
functions: getBuilderOperation returns the instance 
of Operation corresponding to the construction of 
the object under test (objectUnderTest in Figure 3); 
getOperation, which is called several times in Figure 
3, returns one instance of the Operation correspond-
ing to a message in the source sequence diagram. 

 
getTestTemplate(s:SD, tvs:TestValues, l:LifeLine): Test-
Template {  
   objectUnderTest = (“obtained”, l.Class) 
   buildOperation= getBuilderOperation(tvs, l.Class)  
   initValues = ∅ 
   ∀ tv ∈ tvs { 
      If tv.Operation = buildOperation { 
         initValues = initValues ∪ {tv} }  } 
   builder = (buildOperation, initValues, objectUnderTest) 
   result : TestTemplate = (builder, tvs, ∅, objectUnderTest) 
   ∀ m ∈  l.Inputs { 
      If m ∉ l.Outputs  { 
         operation = getOperation(m, l.Class) 
         oracle = (m.State.ConditionalSentences, objectUnder-
Test) 
         operationValues = ∅ 
         ∀ tv ∈ tvs { 
            If tv.operation = operation { 
               operationalValues = operationalValues ∪ {tv} } } 
         call = (objectUnderTest, operation, oracle, operationVa-
lues, m.VariationPoint) 
         result.Calls = result.Calls ∪ { call }  }   } 
   getTestCase = result }

Figure 3: Getting test templates from a sequence diagram. 

Note that both additional functions suppose the 
possibility of accessing the set of constructors and 

ICEIS 2009 - International Conference on Enterprise Information Systems

128



methods of the class. In practice, this is feasible us-
ing reflective programming and has been used in 
other tools we have developed, such as testooj (Polo  
et al., 2007, Polo et al., 2008). 

4.2.2 Test Templates for Products 

The algorithm shown in Figure 4 returns a test tem-
plate for a specific product from a test template for a 
line and the product identifier defined as Value. This 
uses the auxiliary function getOracleForProduct 
that removes the variability of the general oracle of 
the line obtained in the algorithm of the Figure 3. 

When we have an instance of our metamodel 
(representing an actual sequence diagram), we can 
apply the different functions to obtain the test cases 
for the line and for the products. If we have the se-
quence diagram of Figure 2 and a set of test values, 
we will be able to apply the algorithm in Figure 3 to 
obtain general test cases for the line. Then the algo-
rithm in Figure 4 produces the concrete test templates 
for the games (Table 2).  

 
getProductTestTemplate(t:TestTemplate, p:Value) : 
   TestTemplate { 
   result:TestTemplate = (t.Builder, t.TestValues, ∅, 
t.ObjectUnderTest) 
   //The set of messages is ordered.  
   //We obtain the first message, after the second  
   //and finally the last message of the sequence diagram 
   ∀ call ∈ t.Calls { 
      oracle = getOracleForProduct(call.Oracle, PV)  
      if  call.VariationPoint = λ { 
         productCall = (call.ObjectUnderTest, call.Operation, 
oracle, call.OperationValues, λ) 
         result.Calls = result.Calls ∪ {productCall} 
      } else if m.VariationPoint = OptionalVariationPoint{ 
         if ∃ c ∈ OptionalVariationPoint.Conditions 
  | c.Value = p { 
            productCall = (call.ObjectUnderTest, call.Operation, 
oracle, call.OperationValues, λ) 
            result.Calls = result.Calls ∪ {productCall} 
         } 
      }else if m.VariationPoint = AlternativeVariationPoint {  
         //Since the alternative variation point implies  
         //modifications in the implementation of the operation,  
         //simply we have to add the call without variability. 
         productCall = (call.ObjectUnderTest, call.Operation, 
oracle, call.OperationValues, λ) 
         result.Calls = result.Calls ∪ {productCall} 
      }   } 
   getTestCaseProduct = result}

Figure 4: Algorithm for transforming a test template of a 
product line into a test template for a product. 

In these concrete cases, the variability (which 
was included in the test templates of the line), has 
disappeared since it has been applied to the case of 
two concrete products. Note that they have some 

differences, including the oracle descriptions (com-
partment at the bottom) which proceed from the 
adequate selection of the variability labels. Thus, 
Trivial does not include any control of the taken 
pieces. The last step is transforming the formal 
specification of the test cases in executable source 
code (Table 2), which is carried out by a single algo-
rithm. 

Table 2: Source code of two product test cases. 
public void test1(){ 
  Pos pos1 = new Pos(“1”, “1”);   
  Pos pos2 = new Pos(“2”, “2”); 
  Vector<int> arg1 = new Vector(); 
  arg1.add(pos1); 
  arg1.add(pos2); 
  Game obtained = new Game(); 
  o.move(arg1); 
  assertTrue( 
  o.clients.size() == nPlayers && 
  o.pWithTurn != null && 
  o.movement == null && 
  o.pieceToMove ==null);} 
public void test1(){ 
 Pos pos1 = new Pos(“1”, “1”);   
  Pos pos2 = new Pos(“2”, “2”); 
  Vector<int> arg1 = new Vector(); 
  arg1.add(pos1); 
  arg1.add(pos2); 
 Game o = new Game(); 
 o.move(arg1); 
 assertTrue( 
  o.clients.size() == nPlayers &&  
  o.pWithTurn != null && 
  o.movement == null && o.pieceToMove ==null 
&& 
  o.positionsToTake == -1 &&  
  o.takenPieces == -1); 
 o.takePiece(arg1); 
 assertTrue(o.clients.size() == nPlayers &&  
  o.pWithTurn != null && 
  o.movement == null && o.pieceToMove ==null 
&& 
  o.positionsToTake == -1 &&  
  o.takenPieces == -1);} 

5 CONCLUSIONS 

This article has presented an approach to generate 
test cases in SPL, based on metamodels and trans-
formation algorithms. The main novelty is the pro-
cedure to include oracle instructions in the final test 
cases. The approach requires sequence diagrams 
which must be annotated with state descriptions. In 
this context, the clear and formal specification of the 
system is a stronger requirement than in traditional 
development. Due to this, the analysis and design 
costs are necessarily higher, but they are almost cer-
tainly compensated for during further steps in the 
life cycle. 
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