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Abstract. We present a system for image classification based on an adaptive

committee of five classifiers, each specialized on classifying images based on a
single MPEG-7 feature. We test four different ways to set up such a committee,

and obtain important accuracy improvements with respect to a baseline in which

a single classifier, working an all five features at the same time, is employed.

1 Introduction

An automated classification system is normally specified by specifying two essential
components. The first is a scheme for internally representing the data items that are the
objects of classification; this representation scheme, that is usually vectorial in nature,
must be such that a suitable notion of similarity (or closeness) between the representa-
tions of two data items can be defined. Here, “suitable” means that similar representa-
tions must be attributed to data items that are perceived to be similar. If so, a classifier
may identify, within the space of all the representations of the data items, a limited re-
gion of space where the objects belonging to a given class lie; here, the assumption of
course is that data items that belong to the same class are “similar”. The second com-
ponentis a learning device that takes as input the representations of training data items
and generates a classifier from them.

In this work we addressingle-label image classificatione., the problem of setting
up an automated system that classifies an image into exactly one from a predefined set
of classes. Image classification has a long history (see e.g., [1]), most of which has
produced systems that conform to the pattern described at the beginning of this section.

In this paper we take a detour from this tradition, and describe an image classifi-
cation system that makes use not of a single representation, but of five different ones
for the same data item; these representations are based on five different descriptors, or
“features”, from the MPEG-7 standard, each analyzing an image under a different point
of view. As a learning device we use a “committee” of five feature-specific classifiers,
i.e., an appropriately combined set of classifiers each based on the representation of the
image specific to a single MPEG-7 feature. The committees that we use are adaptive,
in the sense that, for each image to be classified, they dynamically decide which among
the five classifiers should be entrusted with the classification decision, or decide whose
decisions should be trusted more. We study experimentally four different techniques of
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combining the decisions of the five individual classifiersing a dataset consisting of
photographs of stone slabs classified into different typasome.

As a technique for generating the individual members of {aesifier committee
we usedistance-weighted nearest neighboursaa well-known example-based learn-
ing technique. Technically, this method does not require@orial representation of
data items to be defined, since it simply requires that, giwendata items, a distance
between them is defined. In the discussion that follows thilsalow us to abstract
away from the details of the representation specified by tREM-7 standard, and sim-
ply specify our methods in terms of distance functions betwaata items. This is not
problematic, since distance functions both for the indiraldMPEG-7 features and for
the image as a whole have already been studied and definedllitetiature.

Since distance computation is so fundamental to our methwelbave also studied
how to compute distances between data items efficiently,heave implemented an
efficient system that makes use of metric data structurdicékpdevised for “nearest
neighbour search”.

The rest of the paper is organized as follows. Section 2 descin detail the learn-
ing algorithm, while Section 3 discusses how we have imptaeeefficiently these
learning algorithms by recurring to metric data structutasSection 4 we move to
describing our experiments, and to discuss conclusiotis#mbe drawn from them.

2 Automatic Image Classification by means of Adaptive,
Feature-specific Committees

Given a set of documenf® and a predefined set afasseqalso known adabels or
categorie3C = {cy,...,cm }, Single-label(akal-of-m, or multiclasg document clas-
sification(SLC) is the task of automatically building a single-labetdment classifier,
i.e., a functiond that predicts, for anyl; € D, the correct class; € C to whichd;
belongs. More formally, the task is that of approximatingestimating, an unknown
target functiond : D — C, that describes how documents ought to be classified, by
means of a functio : D — C, called theclassifier such thatd and® “coincide as
much as possiblé’

The solutions we will give to this task will be based on auttioadly generating
the classifiersh by supervised learningThis will require a set? of documents as
input which are manually labelled according to the clagSege., such that for each
documentd; € (2 the value of the functio®(d;) is known. In the experiments we
present in Section 4 the s@twill be partitioned into two subsetBr (thetraining se)
andTe (thetest sel, with Tr U Te = (2; T'r will be used in order to generate the
classifiersh by means of supervised learning methods, whitewill be used in order
to test the effectiveness (i.e., accuracy) of the genedssgifiers.

! Consistently with most mathematical literature we use #retcsymbol () to indicate estima-
tion.
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2.1 Image Classifiers as Committees of Single-feature Clafsrs

The image classifiep : D — C that we will generate will actually consist ofcéassi-
fier committedakaclassifier ensembei.e., of a tupled = (&?,...,9") of classifiers,
where each classifieb* is specialized in analyzing the image from the point of view
of a single featuref, € F', whereF' is a set of image features. For instance, a classi-
fier oeolour will be set up that classifies the image only according toisgithution of
colours, and a further classifiéf“*»" will be set up that classifies the image accord-
ing to texture considerations. As image features we willfivevisual “descriptors” as
defined in the MPEG-7 standa&raach of them characterizing a particular visual aspect
of the image. These five descriptors @@our Layout(CL — information about the spa-
tial layout of colour images)Colour Structurg[CS — information about colour content
and its spatial arrangemeri)dge HistogranfEH — information about the spatial distri-
bution of five types of edgedlomogeneous Textu(elT — texture-related properties of
the image), an®@calable Colou(SC — a colour histogram in the HSV colour spéce)

The “aggregate” classifiep takes its classification decision by combining the de-
cisions returned by the feature-specific classif@rdy means of amdaptivecombi-
nation rule, i.e., a combination rule that pays particutéergion to thos@*’s that are
expected to perform more accurately on the particular intlageneeds to be classified.
This is advantageous, since different features could benttst revealing for classify-
ing different types of images; e.g., for correctly recogmigthat an image belongs to
classc’ theHomogeneous Textufeature might be more important th@wolour Layout
while the contrary might happen for class In the techniques that we have used in this
work, whether and how much a given feature is effective fassifying a given docu-
ment is automatically detected, and automatically brotglisear in the classification
decision.

For implementing the classifier committee, i.e., for conmmnappropriately the
outputs of theb*’s, we will experiment with four different techniques. InGiens 2.1
to 2.1 we will describe these technigues, while in Secti@w2 will describe how to
generate the individual members of these committees.

Dynamic Classifier Selection. The first technique we test @dynamic classifier selec-
tion (DCS) [2—4]. This technique consists in

1. identifying the set

w ) — w i 1
X" (d;) = arg i 6(ds, dyp) (1)
of the w training examples closest to the test documéntwhered(d’,d”) is a
(global) measure of distance to be discussed more in detdgction 3);
2. attributing to each feature-specific classi#ém scorg)(®*, x*(d;)) that measures
how well it classifies the examples it (d;); see below for details;

2 International Organization for Standardizatibnformation technology - Multimedia content
description interfacesStandard ISO/IEC 15938, 2002.

3 For definitions of these MPEG-7 visual descriptors seerfaigonal Organization for Stan-
dardization,Information technology - Multimedia content descriptioerfaces - Part 3: Vi-
sual Standard ISO/IEC 15938-3, 2002.
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3. adopting the decision of the classifier with the highestesci.e.&(d;) = &*(d;)
whered! = arg max g(?°, x"(d;)).
PsecP

This technique is based on the intuition that similar docot®@re handled best by
similar technigues, and that we should thus trust the diassihich has proven to
behave best on documents similar to the one we need to glassif

We compute the score from Step (2) as

9@ di) = D (1—=0(didp)) - [9°(dp) = B(dy)] )
dpex®(dy)

where[a] is an indicator function, i.e.,

o] = +1if a = True
=Y ~1if a = False
Equation 2 thus encodes the intuition that the more exaniplg$'(d;) are correctly
classified by?* (i.e., are such thak®(d,) = ®(d,)), and the closer they are t (i.e,

the lowerd(d;, d,) is), the bettetb* may be expected to behave in classifyihg

Weighted Majority Vote. The second technique we testvigighted majority vote

(WMV), a technique similar in spirit to the “adaptive cla#si combination” technique

of [3]. WMV is different from DCS in that, while DCS eventuglrusts a single feature-
specific classifier (namely, the one that has proven to babesteon documents similar
to the test document), thus completely disregarding thésibers of all the other clas-
sifiers, WMV uses a weighted majority vote of the decisionalbthe feature-specific
classifiersb® € &, with weights proportional to how well eaah* has proven to be-

have on documents similar to the test document. This tedergthus identical to DCS
except that Step 3 is replaced by the following two steps:

3. foreach class; < C, all evidence in favour of the fact that is the correct class of
d; is gathered by summing th;e(éis, x"(d;)) scores of the classifiers that believe
this fact to be true; i.e.,

z(di, ¢j) = > g(@°, X" (ds)) 3

fs€F : &3(di)=c;

4. the class that obtains the maximu(@;, c;) score is chosen, i.e.,

B(d;) = argma =(d;, ;) @

[F3S]

Confidence-rated Dynamic Classifier SelectionThe third technique we test confi-
dence-rated dynamic classifier selecti@RDCS), a variant of DCS in which tleenfi-
dencewith which a given classifier has classified a document istallsen into account.
From now on we will indeed assume that, given a test documigra given feature-
specific classifie®* returns both a class € C to which it believesi; to belonganda
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numerical value/($°, d;) that represents the confidence thahas in its decision (high
values ofv correspond to high confidence). In Section 2.2 we will seg tihibe true

of the feature-specific classifiers we generate in our expari. Note also that, with
respect to the “standard” version of DCS described in Sedid, this “confidence-
aware” variant is more in line with the developments in cotagianal learning theory
of the last 10 years, since confidence is closely relatecetadition of “margin”, which

plays a key role in learning frameworks based on structisklminimization, such as
kernel machines and boosting [5].

The intuition behind the use of these confidence values tsatletassifier that has
made a correct decision with high confidence should be pegfdo one which has
made the same correct decision but with a lower degree ofdende; and a classifier
that has taken a wrong decision with high confidence shoutdiséed even less than a
classifier that has taken the same wrong decision but wittvarloonfidence.

CRDCS is thus the same as DCS in Section 2.1, except for th@uwation of
the g(¥*,d;) score in Step 2, which now becomes confidence-sensitive RS
Equation (2) thus becomes

9@ di) = Y (1-0(di,dp)) - [°(dy) = D(dy)] - v(9°, d) (5)

dp€x® (ds)

Therefore, a classifi@* may be expected to perform accurately on an exaaiphéen
many examples iy (d;) are correctly classified bi*, when these are close g, and
when these correct classifications have been reached withcbinfidence.

Steps 1 and 3 from Section 2.1 remain unchanged.

Confidence-rated Weighted Majority Vote. The fourth technique we testonfidence-
rated weighted majority voteCRWMYV), stands to WMV as CRDCS stands to DCS;
that s, it consists of a version of WMV in which confidence sidierations, as from the
previous section, are taken into account. CRWMV has thusahee form of WMV, the
only difference is that thg(és, d;) score as from Step 2 is obtained through Equation
(5), which takes into account the confidence with which#helassifiers have classified
the training examples iR™ (d;), instead of Equation (2), which does not. Steps 1, 3 and
4 from Section 2.1 remain unchanged.

2.2 Generating the Individual Classifiers

Each individual classifiep* (i.e., each member of the various committees described in
Section 2.1) is generated by means of the well-kn¢simgle-label, distance-weighted)

k nearest neighbour@-NN) technique. This technique consists in the followirepss;

for a test document;

1. (similarly to Equation 1) identify the set
k
k(g — S (d
X" (d;) = arg dirlel;lrés(dudp) (6)

of the k training examples closest to the test docum&nthered, (d’, d”) is a
distance measure between documents in which only aspest#fispio featuref,
are taken into consideration, ahds an integer parameter;
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2. foreach class; € C, gather the evidencgd;, c¢;) in favour ofc; by summing the
complements of the distances betwegrnd the documents ig* (d;) that belong
toc;; i.e.,

q(di, c;) = > (1 - 0.(di, dyp)) (7)
dp€x*(ds) : (dp)=c;

3. pick the class that maximizes this evidence, i.e.,

*(d;) = arg max q(d;, ¢;) (8)

cj€

Standard forms of distance-weightedNN do not usually output a value of confidence
in their decision. We naturally make up for this by adding @Her step to the process,
ie.,

4. set the value of confidence in this decision to

o Caso 7ch¢<§5(di)q(di’0j)
m—1

That is, the confidence in the decision taken is defined astteegth of evidence in
favour of the chosen class minus the average strength oérewédin favour of all the
remaining classes.

Distance-weighted@-NN classifiers have several advantages over classifieergen
ated by means of other learning methods:

— Very good effectiveness, as shown in several text clasSditaxperiments [6—
9]; this effectiveness is often due to their natural abildydeal with non-linearly
separable classes;

— The fact that they scale extremely well (better than SVMsydry high numbers
of classes [9]. In fact, computing th&r| distance scores and sorting them in de-
scending order (as from Step 1) needs to be performed only, nespectively of
the numbern of classes involved; this means that distance-weightBtiN scales
(wildly) sublinearly with the number of classes involvediile learning methods
that generate linear classifiers scale linearly, since wbitee computation needed
for generating a single classifiér can be reused for the generation of another
classifierd”, even if the same training sét- is involved.

— The fact that they are parametric in the distance functiew tise. This allows the
use of distance measures customized to the specific typet@firdelved, which
turns out to be extremely useful in our case.

3 Efficient Implementation of Nearest Neighbour Search by
Metric Data Structures

In order to speed up the computations of our classifiers we faaused on imple-
menting efficientlynearest neighbour searctvhich can be defined as the operation of
finding, within a set of objects, the objects closest to a given target object, given a
suitable notion of distance. The reason we have focusedeedapy up this operation
is that
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1. it accounts for most of the computation involved in clfgsg objects through the
k-NN method of Section 2.2; Step 1 of this method requires estareighbour
search;

2. it also accounts for most of the computation involved imbming base classi-
fiers through each of the four methods of Section 2.1; Stepehofi of these four
methods also requires nearest neighbour search.

Efficient implementation of nearest neighbour search reguilata structures in sec-
ondary storage that are explicitly devised for this task-{ll%]. As such a data structure
we have used aNl-tree[13]*, a data structure explicitly devised for speeding up near-
est neighbour search metric spacesi.e., sets in which a distance function is defined
between their members that is a metritve have been able to use M-trees exactly
because

— as the five feature-specific distance functionsf Equation 6, we have chosen the
distance measures recommended by the MPEG group (see [Idgtils), which
are indeed metrics;

— asthe global distance functiérof Equation 1 we have chosen a linear combination
of the previously mentioned fiv@& functions, which is by definition also a metric.
As the linear combination weights, we have simply adopted the weights derived
from the study presented in [15], i.ev(CL) = .007, w(CS) = .261, w(EH) =
348, w(HT) = .043, w(SC) = .174.

Note that, in reality, thé, functions from [14] that we have adopted dotrange
on [0, 1], but on five different interval§, «;]; in order to have them all range on
[0, 1] we have multiplied all distances by the normalization weghiC L) = .174,
2(CS) =.075,z(EH) = .059, z(HT') = .020, z(SC') = .001.

4 Experiments

The dataset that we have used for our experiments (hereldhkeStone dataset) is
a set of 2,597 photographs of stone slabs, subdivided urtiefa3ses representing
different types of storfe The dataset was randomly split into a training set, coirigin
approximately 30% of the entire dataset, and a test set,stmgsof the remaining
70%. For each photograph an internal representation irstefiIPEG-7 features was
generated and stored into an M-tree.

4 We have used the publicly available Java implementation dféds developed at Masaryk
University, Brno; seéattp: //1sd.fi.muni.cz/trac/ntree/.

5 A metricis a distance functios on a set of objectX such that, for any1, z2, z3 € X, itis
true that (@) (z1, z2) > 0 (non-negativity; (b) (z1,z2) = 0 if and only if z; = x» (iden-
tity of indiscernible¥ (c) 6(xz1,z2) = 0(x2,z1) (Symmetry, (d) 6(z1,23) < 6(x1,22) +
0(x2,x3) (triangle inequality.

® The dataset was provided by thiletro S.p.A. Marmi e Graniti company (see
http://wwv. metromarm . it/),and was generated during their routine production pro-
cess, according to which slabs are first cut from stone bja@gidthen photographed in order to
be listed in online catalogues that group together stors gleoduced by different companies.
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As a measure of effectiveness we have wexear rate (notedF), i.e., the percentage
of test documents that have been misplaced in a wrong class.

As a baseline, we have use a “multi-feature” version of tretadice-weighted-
NN technique of Section 2.2, i.e., one in which the distanoefionj mentioned at
the end of Section 3, and resulting from a linear combinaticthe five feature-specific
ds functions, is used in place of in Equation 6. For completeness we also report five
other baselines, obtained in a way similar to the one abovading in each a feature-
specific distance functiodi,. In these baselines and in the experiments involving our
adaptive classifiers thie parameter has been fixed to 30, since this value has proved
the best choice in previous experiments involving the sagchlrtique [7, 8]. Theav
parameter of the four adaptive committees has been set thibhus the value that
had performed best on previous experiments we had run ofeaedif dataset. In future
experiments we plan to optimize these parameters moreutigrey cross-validation.

The results of our experiments are reported in Table 1. Flustable we may
notice that all four committees (2nd row, 2nd to 5th cellshgrabout a noteworthy
reduction of error rate with respect to the baseline (2nd teicell). The best performer
proves the confidence-rated dynamic classifier selectiathadeof Section 2.1, with
a reduction in error rate of 39.7% with respect to the baselirhis is noteworthy,
since both this method and the baseline use the same informand only combine
it in different ways. The results also show that confiderated methods (CRDCS and
CRWMV) are not uniformly superior to methods (DCS and WMV)igrhdo not make
use of confidence values. They also show that dynamic ckssiflection methods
(DCS and CRDCS) are definitely superior to weighted majwatyng methods (WMV
and CRWMV).

This latter result might be explained by the fact that, outw features, three (CS,
CL, SC) are based on colour, and are thus not completely erddgmt from each other;
if, for a given test image, colour considerations are navaht for picking the correct
class, it may be different to ignore them anyway, since threybaought to bear three
times in the linear combination. In this case, DCS and CRD&Snzore capable of
ignoring colour considerations, since they will likely ardt either the EH- or the HT-
based classifier with taking the final classification decisio

The same result also seems to suggest that, for any image (¢mels to be a single
feature that alone is able to determine the correct cladseoftage, but this feature is
not always the same, and sharply differs across categéoesstance, the SC feature
is the best performer, among the single-feature classiffessrow), on test images
belonging to class GIALLOVENEZIANO (E = .11), where it largely outperforms the
EH feature £ = .55), but the contrary happens for class ANTIQUEBROWN, where
EH (F = .01) largely outperforms SC.42). That no single feature alone is a solution
for all situations is also witnessed by the fact that all Erfgature classifiers (1st row)
are, across the entire dataset, largely outperformed bythetbaseline classifier and
all the adaptive committees. This fact confirms that splittihe image representation
into independent feature-specific representations onwlaature-specific classifiers
operate is a good idea.
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Table 1. Error rates of the techniques as tested onStmne dataset; percentages indicate de-
crease in error rate with respect to the baseline. The firetrigults are relative to the five
feature-specific baselineBoldfaceindicates the best performer.

CL cs EH HT sC
0.479 0.318 0.479 0.410 0.419
Baselind  DCS CRDCS WMV CRWMV
0.297 [|0.183 (-38.4%4)0.179(-39.7%)|0.225 (-24.2%)0.227 (-23.6%4
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