
A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR
COMPUTER AIDED ASSESSMENTS AND AUTOMATED MARKING

Michael Striewe, Moritz Balz and Michael Goedicke
Specification of Software Systems, University of Duisburg-Essen, Essen, Germany

Keywords: Computer-aided assessment, Self-training, Assessment framework, Automated grading.

Abstract: In this paper we describe and discuss a flexible and modular software architecture for computer aided
assessments and automated marking of exercise solutions. General requirements and problems are outlined
with respect to assessment and self-training scenarios. As the main research result based on these
requirements, an appropriate complete solution is presented by depicting a distributed, extendable, server-
based assessment environment. Both the requirements and the architecture are evaluated by means of an
actual system that is in use for assessments in Java programming for three years.

1 INTRODUCTION

Computer based exercises, e-learning, computer
aided assessments and automated marking of solu-
tions became important topics of research and dis-
cussion in recent years. Both increasing numbers of
students and steady progress in computer infrastruc-
tures made it desirable to offer computer based ex-
ercises and examinations. Main goals are increased
efficiency, reduced manpower needed for corrections
and possibilities to apply various media and modern
teaching techniques. Computer aided learning and
computer aided assessments can be treated as very
closely related in this context, because we are con-
vinced that a tool used for marking solutions should
be accurate enough to explain its marking decisions
in a way that improves the students’ learning pro-
cess. If tools can assure the necessary quality in aut-
mated grading, they are useful for both formative and
summative assessments. This applies to virtually any
learning scenario, independent from topics of an ac-
tual course or the methods typically used for assess-
ments on these topics.

Thus it is desirable to develop a software architec-
ture that is flexible enough to serve for self-training
and exercises as well as for assessments and exams
and that can be used for various types of tasks in dif-
ferent topics. We especially don’t want to limit our-
selves to restricted question types like multiple-choice
questionnaires, where the number of possible wrong
and right solutions is known beforehand. Thus we try
to cope with the problem that cognitive skills and ap-

plication of methods cannot be assessed via multiple-
choice tests (Chalmers and McAusland, 2002).

We are going to explain some general require-
ments for a flexible software architecture in section
2 and discuss an actual use case in section 3. A solu-
tion which is based on this use case and which fulfills
the requirements follows in section 4. This solution
is evaluated in section 5, before we give some biblio-
graphic remarks in section 1.1 and conclude the paper
with section 6.

1.1 Related Work

Most similar to the use case and our system we
are going to described below is the web based tool
PRAKTOMAT (Krinke et al., 2002), which offers
almost the same features. It is capable of checking
code in Java, C++ and Haskell with static checks
and dynamic checks from an external test driver.
The system is available as an open source project
and under continuous development since 2001, but
written in Python and thus limited to UNIX server
environments. In addition, its architecture is not
explicitly designed to be extendable by other marking
components or to be used with completely different
types of exercises.

Another almost similar project is DUESIE
(Hoffmann et al., 2008), which is capable of checking
Java and SML exercises as well as UML diagrams.
The user interface is more limited without plug-
ins for ECLIPSE and the core system is realized
in PHP5, using external compilers, interpreters and

54
Striewe M., Balz M. and Goedicke M. (2009).
A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR COMPUTER AIDED ASSESSMENTS AND AUTOMATED MARKING.
In Proceedings of the First International Conference on Computer Supported Education, pages 54-61
DOI: 10.5220/0001966900540061
Copyright c© SciTePress



build tools. The technological gap between the
scripting language PHP5 and external tools written in
other languages is obvious and might cause problems
regarding interoperability, security and comfort that
are solved in a much more convenient way in the
architecture proposed in this paper.

A platform for automated testing and assessment
without limitation to certain subjects is offered by
the web-based learning management system ILIAS

(ILIAS, 2008). Several tools for multiple-choice
questions in various forms are well discussed (e.g.
(Hendrich and von der Heide, 2005) and (Glowalla
et al., 2005)), but they are all not appropriate for
complex use cases like the one depicted in section 3.

A lot of more specialised tools for limited domains
exist as well. Different functional programming
languages can be checked with the LLSCHECKER

(Rösner et al., 2005) by comparing results from
students solutions with results from a sample
solution for given inputs. The tool EXORCISER

(Tscherter, 2004) can be used for self-training
without a server and offers exercises and automated
verification for various topics in theoretic computer
science, i.e. languages, grammars and Markov
algorithms. Also in weakly structured domains like
law, intelligent systems for detecting weaknesses in
answers from students are used (Pinkwart et al.,
2006). Nevertheless, these systems are not designed
to be used both for self-training and exams and thus
do not fulfill all of the requirements named in section
2.

2 REQUIREMENTS

A general assessment and training environment must
support the whole process of assessments, which
embraces the manual or automated management of
examinees, manual creation of tasks, automated
delivery of tasks, automated collection of solutions,
automated marking solutions and management of
manual reviews. Only slight variations of this process
are used in self-training scenarios, where in most
cases management of participants is less rigid and
manual reviews by teachers should be reduced to a
minimum in order to realize the expected increased
efficiency.

Since a general system should be used with
different kinds of tasks, we must expect users with
knowledge in different subjects, different complexity
of tasks and also different experiences regarding
computer aided assessment services. This leads
in every part of the overall process to advanced
requirements in terms of flexibility and usability.

Additionally, since assessment systems are used in
potentially distributed environments and manage data
of possible judicial relevance, security issues are of
concern during the whole requirement analysis.

2.1 Examinee Management

The security issues to expect require first an integrated
user management and strict permission policies. For
this purpose, examinees must be represented in the
system at all stages of the overall process. We expect
these user data to be specific: (1) Since the system
will be prepared for mass assessments, we must
handle large amounts of user accounts for each exam
which may stay in the system for just one exam; (2)
We cannot assume that we have an integrated access
to a user/student data base. So one of the requirements
for the system is that user/student data is easy to
import and afterwards easy to identify in the system to
allow a precise assignment of exercises. Additionally,
if user data remains in active use in the system for a
more than one exam, the personal data must be re-
usable and also changeable by administrators.

2.2 Task Creation

Tasks in the context of assessments can be defined
at different levels of abstraction. We define an
exerciseto be one task of a certain type, for example
a multiple-choice question, a programming task or
writing a short essay. An exercise consists of a task
description and – according to the type – attached
fragments. We distinguishinternal fragmentsand
external fragments: Internal fragments are created by
the teacher and cannot be changed by the examinees.
They may be visible to the examinees like questions
in a multiple-choice exam or invisible like sample
solutions the submitted solutions are compared with.
In contrary, external fragments are created or at least
modified by the examinees. They can be provided by
the teacher as a starting point for a solution that has
to be modified, for example source code fragments
for programming solutions. They may also be created
by the students themselves. We require the system to
be able to handle any kind of fragments by offering
uniform methods for attaching them to exercises.

A set of single exercises constitute anexam
representing an academic record. Hence the
definition of an exam must include an arrangement
of exercises including premises, dependencies and
possible repetitions. It should especially be possible
to use a single exercise in different exams.

An important requirement for mass assessments
is the definition of possible exercise or exam variants

A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR COMPUTER AIDED ASSESSMENTS AND
AUTOMATED MARKING

55



that computer aided assessment systems can manage
easily. Since examinees are expected to be managed
by the same system and be unambiguously identified
during exams, the assignment of variants to certain
examinees can take place before the actual exam
begins. Based on the students’ data and the available
exam variants different strategies to assign a student
to a specific exam variant can be applied. In contrary,
in self-training scenarios no fixed assignments are
required, so the system should also be able to offer
different exercises or exercise variants at once and
allow students to choose one of them.

2.3 Exercise Delivery and Solution
Submission

The requirement to cover different types of exercises
leads to another requirement: a high flexibility of
tools for submitting solutions. The simplest case
of solutions types is multiple-choice, which requires
at least a web site that can run on the assessment
system’s server. However, restricted input methods
of web applications may not satisfy the needs of
complex input types such as programming texts,
graphics or the text of an essay. In such cases we need
rich clients that connect to the assessment system
in a secure way. Since special input methods like
programming tasks may be integrated into other tools
like integrated development environments (IDEs), we
also expect a wide range of task-specific tools and
thus need a flexible interface at the server side.

This stage of the process is most likely the target
of fraudulent attempts by examinees and thus has high
security requirements. To provide consistent security
for exam situations, we identified the following issues
so far:

• We cannot expect to be able to use existing login
data as mentioned in subsection 2.1. Hence
it must be possible to generate login data for
imported user data.

• Login data must be easy to understand for
students, even if they are nervous in an exam
situation. Hence, we must define a minimum
input required to identify students and their
assigned exams.

• The login data usage must be restricted to avoid
fraud. This restriction should be made based on
time frames or locations by e.g. using one time
passwords.

• Each commit of solutions must be logged and
comprehensible afterwards to detect possible
defrauds. Since data loss is not acceptable,
solutions must be stored immediately and together

with meta-information about account, time and
location from where the solution was submitted.

• Traceability of student’s activities during the
exam can be an important issue, both for judicial
reasons and to enable recovery in the case of
a failed client. Data related to the students’
activities has to be collected and stored with the
related solution(s).

In terms of usability, each possible client is required
to provide a simple user interface to ask for login data
in a simple way, provide input for single exercises,
allow the creation or modification of solutions and
commit (submit) the solutions to the assessment
system. When an exam is composed of more than
one exercise or one exercise contains more than
one external fragment, the client must ensure that a
student is given notice of all of them. In addition, the
client should inform the student if external fragments
are missing or have not been modified yet.

2.4 Marking Solutions

Different types of exercises need appropriate manual
or (semi) automated marking mechanisms. Addition-
ally, we require the system to be able to analyze one
exercise regarding multiple aspects. For example, if
students are asked to solve a task by submitting a di-
agram, one mechanism can check for the presence
or absence of required elements inside the diagram,
while another mechanism checks for conformance to
styling guidelines that were taught in the according
course.

Technically, our requirement is that the needed
type-specific marking components are easy to de-
velop, integrate and manage at run time. They also
must be able to run outside the actual assessment sys-
tem to allow load balancing: since the students’ ac-
cess to the assessment system must be as robust as
possible and the system resources needed for marking
are type-specific and not predictable, it is necessary to
loosely couple these tasks. Thus we also need a run
time system that executes arbitrary marking compo-
nents and connects to the assessment system for this
purpose. The assessment system is responsible for
delivering solutions on request of the marking pro-
cess until every single exam has been assessed and
marked.

Running marking components in a separate run
time system that connects to the assessment system
raises additional security issues. To prevent fraudu-
lent attempts, the assessment system has to make sure
that only valid marking run time systems may access
stored solution data and may deliver results for them.

CSEDU 2009 - International Conference on Computer Supported Education

56



2.5 Review Management

Teachers must be able to manage examinations
by manual marking of single exercises as well as
by review of automated results. Since automated
marking may not be trusted in all cases, teachers may
be required to validate automated results and override
them if necessary. To avoid fraudulent attempts,
all result changes have to be logged and be easily
(re)viewable afterwards and may not be undone.

In exam scenarios it should also be possible to let
examinees review their own solutions afterwards and
see a justification of the results, both for educational
and judicial purposes. At last, the result data must
be exportable in different formats to be used as
public notices, certificates and input data for other
assessment management systems, for example those
of examination authorities.

In self-training scenarios result reviews by
students are even more important. If automated
marking systems are used to reduce the need for
manpower, students have to learn just by studying
the results from the marking components. Thus we
require each result to be visible for review and to
be clear enough to be understandable without further
explanation.

3 A SPECIAL USE CASE:
PROGRAMMING EXERCISES

The requirements depicted above exceed by far those
of average existing assessment systems. The reason
is that with the advancing use of assessment systems,
the need increases to cover more types of tasks than
just multiple-choice tasks. For example, in basic
lectures on computer science there is a strong need
for systems able to provide and check programming
exercises. We are using a system for automated
marking of programming exercises since three years
(Striewe et al., 2008). More than 8.500 exams
and an equivalent number of self-training sessions
have been conducted that shaped the profile of an
existing programming course and clearly decreased
failed final examinations according to our statistics.
We will describe this special use case in the following
to justify the requirements.

The user management is related to nearly
all requirements for user managements mentioned
above: The tool is used in a basic studies course
with about 600 students per year conducting each up
to 6 small exams during winter term. Before each
exam, login data is imported from another existing
tool managing registration and room assignment. The

assessment system is responsible to assure student
identity across several imports based on unique
attributes like the matriculation number. During
exams, no external network access is permitted to
protect the exam against network attacks, so that
all data must be completely contained inside the
system. We chose the approach to identify students
and their assigned exams by transaction numbers
(TANs) that are generated before the exams begin.
Since the user data import provides attributes from
the registration tool like time slot and room number,
we can assign exercise variants based on groups. In
self-training exercises, no variants are offered and
no assignments are made. The server used for self-
training has full network access, so students can
use their personal universal accounts. Without this
flexibility in user management, the use of the same
assessment environment both for exams and self-
training would not be possible.

The exercise creation requires three kinds of
resources for programming exercises: First, external
fragments of source code are delivered that must be
filled by the students. Second, graph transformation
rules identifying instances of patterns contained in
the solution are provided as internal fragments.
Third, internal fragments of source code have to be
provided for black-box testing to generate input to
the submitted solutions and compare the output to
the expected values. Thus our system has to handle
fragments of completely different type inside one
exercise. In addition, it is independent from these
types, whether they are used as internal or external
fragments, as there are external code fragments as
well as internal code fragments.

The exercise delivery can happen in two ways.
The simple way is a web interface that allows
to download external fragments as far as they are
provided and upload source files and compiled files
afterwards. This first approach is used without
problems in the self-training scenario, but has proven
to be inconvenient for exam situations. Hence we
built a plug-in for the ECLIPSE IDE (Eclipse, ) which
embraces the platform’s functionality regarding code
editors, project management and compilation in order
to display and upload all parts of the solution
automatically. Nevertheless, the web interface can be
used in exams as well, again stressing the benefits of
our flexibility requirements.

Independent from the interface being used, the
TAN is the only login data that must be supplied
by the student in exam situations. Since the TAN is
printed on a paper sheet handed out to each student,
all necessary data is available to the students without
requiring external knowledge about access data. This

A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR COMPUTER AIDED ASSESSMENTS AND
AUTOMATED MARKING

57



meets the requirements to make the login as fast
and as riskless as possible. Additionally, since time
and room information are available, we validate this
way that no access happens at invalid times. On the
contrary, in self-training students can use the web
interface and are hence not forced to use ECLIPSE.

The programming-specific automated marking
of solutions also relates to all the aforementioned
requirements. Each exercise is checked via dynamic
black-box tests as well as static source code analysis.
Since the black-box tests execute arbitrary code
defined by the students we must be especially careful
to avoid malicious software attacks. The resource-
demanding nature of static source code analysis
required us to run multiple marking component
instances in parallel while ensuring in the assessment
system that marking of a specific solution happens
only once. Details about the techniques used for
dynamic and static checks are far beyond the scope
of this paper.

The source code analysis is based on heuristics
and cannot detect any possible correct solution, so
that a review by the teacher is necessary if black-box
test and source code analysis deliver contradicting
results. We also offer students the possibility to
review their own code and ask exercise-specific
questions after the exam. Especially in this case it
is of great benefit if the same system is used for
exams and self-training, so students already know
how to interpret the results presented to them during
the review.

4 ARCHITECTURE

As specified in the requirements, the assessment
system is inherently distributed to separate concerns
and allow multiple access from a multitude of parallel
users. Because of this, one central component –
referred to ascore systemin the following – is
responsible for the coordination of the single parts
of the systems. To this core system we connect
different clients used by examinees, an administration
console for teachers and one or more marking
components, while the core system connects itself to
a database. Figure 1 gives an overview about this
general architecture. The shown ECLIPSE front end
for exams is only one sample rich client and in itself
extendable for different purposes.

In general, the whole assessment system is
designed and deployed as packages run on Java
Enterprise Edition application servers. The package
containing the core system is obligatory. Separate
packages exist for the server-side parts of web access

front ends used by examinees and teachers as well
as for web services communicating with rich clients.
Another package contains the marking run time
system. Each package can be deployed on the same
physical server or run distributed over the network.
The database server location is also independent and
can be connected via network access.

Our productive system is configured in a way we
consider the default design: All packages except the
marking run time system are hosted on the same
server as the database. The marking run time system
is separated for security reasons. Several security
requirements mentioned in section 2 are implemented
by using elaborated network and firewall settings
instead of developing additional software solutions.

4.1 Core System

The core system itself serves as a broker for all
information used in the assessment process, the main
tasks being: (1) Management of authentication; (2)
import and management of according student data;
(3) management of exercise definitions, creation of
exams and assignment to examinees; (4) delivery
of exams to students; (5) collection of results;
(6) delivery of solutions to marking components
depending on the type of the tasks and abilities of
available components; (7) management of reviews
and manual corrections if necessary. User activities
are recorded during the whole process using logging
mechanisms of the application server to make any
interaction with the system traceable.

All persistent data is stored in a single relational
database to avoid different storage locations like
separate files in the file system. By using a relational
database we can rely on database transaction
mechanisms to prevent critical data loss during
examinations. Additionally, it is easy to backup all
system data from this single storage location. Each
submitted solution to an exercise is stored with time
stamp, unique identification number of the submitting
account and network address of the computer used for
submitting the solution, making them traceable even
without using the server logs. The business logic itself
uses object-relational mappings to represent data and
thus facilitates a structured development approach
regarding the data model.

4.2 Web Access for Students

The web-based front end for students provides
two perspectives on the system. The default
perspective is theself-training modethat can be
accessed by students with a personal account.

CSEDU 2009 - International Conference on Computer Supported Education

58



Figure 1: Architectural overview with possible clients (left), core system (center) and marking components (right).

This perspective utilizes login data defined inside
the assessment system or connects to external
authentication services. Once logged in, students
can work with available self-training exercises and
are for this purpose free to submit multiple solutions
without any time restrictions. The personal account
also allows a review of existing results of self-training
exercises as well as exams. Since this user interface
is not appropriate for exam situations, we provide
a second, simplified perspective. Thisexam mode
uses the TANs to identify students and allows to
attend only one assigned exam. Students can thus
neither review results nor choose to attend different
exercises. Nevertheless they are allowed to submit
multiple solutions.

The general handling of exercises is similar in
both perspectives. Multiple-choice questions as a
simple type of exercises can be handled directly inside
the web browser, so students can directly tick their
answers and submit them to the server. More complex
types of exercises are handled by offering downloads
for external fragments. Students have to know how
to handle them properly, e.g. opening files in an
appropriate editor. Similarly, fragments have to be
uploaded again to the server in order to submit a
solution. Since all expected fragments of the solutions
are known beforehand, the system guides the user
through the upload process by specifying all expected
resources. This ensures that a solution can only be
submitted if all expected fragments are present.

The result review allows students to examine their
submitted data as well as all output from the marking
run time and possibly manual teacher comments. All
files attached to a solution are offered as downloads.
Solutions cannot be changed in any way in this view.

The tracking and tracing of student activities
is very limited when using web access since web
browsers submit data only if requested by the user.
If it is desirable to log mouse movements, clicks
or cancelled submission attempts it is currently
necessary to use a rich client with this capabilities.

In the future, we will also explore interactive web
sites with JavaScript to fulfill such requirements, but
do not expect the related tracking and tracing to be
reliably recorded since web browsers allow end users
to disable such interaction.

4.3 Rich Client Access for Students

Our solution of a plug-in for the widely used ECLIPSE

IDE is an example how arbitrary client software
for certain purposes can be integrated in the overall
system with lean communication layers. Rich clients
can be used to offer extended features to the students
that assist them in solving their task, to enable the use
of more complex exercises at all and to implement
additional tracing capabilities for student activities.
The communication between core system and rich
clients is realized with SOAP web services. The
according server-side communication layer allows to
deploy customized adapter components for different
types of clients that can be independently enabled and
disabled.

The client plug-in itself uses the provided
ECLIPSE platform, especially the Java Development
Tools (JDT, 2008), to accomplish programming
exercises. A dialog guides the student through the
login process by requesting a TAN, downloading
the external fragments and opening a Java project
as well as all resources the student is expected to
edit. Additionally, the user interface is simplified by
closing all elements except a navigational view and
a view for console output. To identify source code
files and the according compiled binaries our plug-in
relies on unambiguous information provided by the
platform and avoids asking the user for additional
information.

It is possible and planned for the future to develop
other plug-ins for ECLIPSE in order to cover other
types of exercises than Java programming. Virtually
any kind of exercise can be handled this way,
be it text input or even graphical tasks that need
specialised editors. For simple tasks like multiple-

A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR COMPUTER AIDED ASSESSMENTS AND
AUTOMATED MARKING

59



choice questions that do not make use of particular
ECLIPSE features we also plan to develop plug-ins
in order to enable tracking and tracing of student
activities in exam situations.

4.4 Web Access for Teachers

In contrast to the student user interfaces that are
as simple as possible, the administrative access for
teachers must provide comprehensive and flexible
tools to create, edit and analyze assessment data.
User accounts can be created by importing existing
user data via network services, spreadsheets or text
files with comma-separated values. Exams can be
assembled by using a repository of single exercises.
Exercises have for this purpose been defined
independently by specification of a description,
internal and external fragments and an assignment
to a marking component. Questions and answers
in multiple-choice exercises can directly be edited
in the web-browser, while source code fragments
for programming exercises have to be provided as
uploaded files.

The TAN creation process which joins login
and exam data relies on standard techniques for
generating random strings and explicit checks for
duplicates to produce unique values. TANs can be
grouped afterwards to allow manual or time-based
activation. Reviewing results includes the opportunity
to view or download the submitted solution fragments
and to override automated results from the marking
components. Detailed statistics for every exercise can
be exported for further processing in external tools.

4.5 Marking Components

Type-specific solution input tools lead to an architec-
ture enabling the integration of different, type-specific
marking tools that can be dynamically configured re-
garding activation for exams, order of activation and
testing criteria input. This modular architecture pre-
vents any predictions of the capabilities the marking
process might need. In addition to the security re-
quirement to persist submitted solutions immediately,
this is a reason to decouple the marking of solutions
from their submission. Hence the marking compo-
nents are executed in a run time system that can op-
erate independently from all other parts of the system
forming a master-worker architecture. In this way dif-
ferent marking components may be distributed over
multiple physical servers for security or performance
reasons and thus perform their work in parallel. Since
marking and result submission is subject to security
concerns, we set up strict network access rules us-

ing firewalls to ensure that access to the core server
is only possible from valid marking components.

The marking run time systems themselves are able
to execute multiple marking components on one phys-
ical server by providing only an environment and a
network connection to the core system which is dy-
namically configurable. The core system is contacted
regularly to access upcoming marking tasks which are
then passed to an appropriate component. The re-
sult of the marking is submitted to the core system
including all error messages and hints like the con-
sole output from black-box tests for programming ex-
ercises. This architecture is to some degree fault tol-
erant because the core system is not affected by the
marking process. Thus marking components or the
related servers may be disabled, disconnected or even
crash without any consequences for the exam situa-
tion. Hence it would also be possible to design mark-
ing components connecting to different core systems,
but running on one fixed physical machine, for ex-
ample because of specialized hardware resources not
available on all servers.

When checking programming exercises by exe-
cuting code submitted by examinees, this code is
started in a sandbox environment and not inside the
marking run time system. This allows to apply secu-
rity constraints to the sandbox, for example to prevent
file and network access, and to catch easily any kind
of runtime exception without affecting the marking
component itself.

5 EVALUATION

The general requirements listed in section 2 have
already been discussed and justified in section 3 by
mapping them to the actual requirements of our actual
assessment system. This system integrated well
into an existing environment regarding server and
client infrastructure, student registration systems and
examination authorities. During the three years of use
the chosen architecture has proven to be very robust.
For example, extending the system for using multiple-
choice exercises via web access in the second year
was possible without any complications. Updates of
the graph transformation component used for static
code checks could be deployed easily.

In the case that crashes or unhandled infinite
loops made marking components unusable in the first,
experimental year of use, a switchoff or restart of
the related faulty processes or physical servers was
possible without any affect on the exam. Hence, the
architecture fulfilled our requirements of undisturbed
operations even with the use of potential unstable

CSEDU 2009 - International Conference on Computer Supported Education

60



marking components.
Deployment and network setup was as easy as

expected and no serious crashes were reported. Two
virtual machines that were copies of our servers
have successfully been ported to another network
environment and have been used in other real-
world applications for university courses without
any problems. Only slight effort had to be
made for reconfiguration of firewall and network
settings. Hence the teachers could concentrate on
the development of tasks and marking setup for high
quality exams and self-training offers.

The general approach to offer an architecture
that can be used both for formative and summative
assessments could be evaluated as well. In a survey
among 62 students, 48 students named the system to
be “useful” or “largely useful” for self-training and
40 students stated the same for the exams. Hence
we can state that automated grading is not only useful
for teachers in summative assessments to reduce the
amount of time needed for corrections, but the same
system can also be useful for formative assessments
with feedback directly to the students.

6 CONCLUSIONS

In this paper we depicted and evaluated an
architecture for computer aided assessments and
automated marking of solutions in a server-based
environment. We discussed general requirements as
well as an actual assessment system. The presented
system is not only a domain-specific implementation
of the requirements limited to certain topics or
kinds of exercises, but an extendable and flexible
environment that can be used in various cases. The
shown use case and the evaluation pointed out that
the system is powerful enough to handle the complex
scenario of automated checks for Java programming
exercises both for exams and self-training scenarios.

More marking components for entirely different
types of exercises will be developed in the future.
Additionally, the concepts for access via web
browsers and rich clients will be reviewed in order
to make them even more flexible for different ways of
submitting solutions.

REFERENCES

Chalmers, D. and McAusland, W. D. M. (2002). Computer-
assisted assessment. Technical report, Glasgow
Caledonian University.

Eclipse. ECLIPSEwebsite.http://www.eclipse.org/.

Glowalla, U., Schneider, S., Siegert, M., Gotthardt, M., and
Koolman, J. (2005). Einsatz wissensdiagnostischer
Module in elektronischen Prüfungen. In (Haake et al.,
2005), pages 283–294.

Haake, J. M., Lucke, U., and Tavangarian, D., editors
(2005).DeLFI 2005: 3. Deutsche e-Learning Fachta-
gung Informatik, der Gesellschaft für Informatik e.V.
(GI) 13.-16. September 2005 in Rostock, volume 66 of
LNI. GI.

Hendrich, N. and von der Heide, K. (2005). Automatische
Überprüfung von Übungsaufgaben. In (Haake et al.,
2005), pages 295–305.

Hoffmann, A., Quast, A., and Wismüller, R. (2008). Online-
Übungssystem für die Programmierausbildung zur
Einführung in die Informatik. In Seehusen, S.,
Lucke, U., and Fischer, S., editors,DeLFI 2008, 6. e-
Learning Fachtagung Informatik, volume 132 ofLNI,
pages 173–184. GI.

ILIAS (2008). ILIAS website.http://www.ilias.de/.

JDT (2008). Eclipse java development tools.http://www.
eclipse.org/jdt/.

Krinke, J., Störzer, M., and Zeller, A. (2002). Web-basierte
Programmierpraktika mit Praktomat. InWorkshop
Neue Medien in der Informatik-Lehre, pages 48–56,
Dortmund, Germany.

Pinkwart, N., Aleven, V., Ashley, K. D., and Lynch,
C. (2006). Schwachstellenermittlung und Rückmel-
dungsprinzipen in einem intelligenten Tutorensystem
für juristische Argumentation. In Mühlhäuser, M.,
Rößling, G., and Steinmetz, R., editors,DeLFI 2006,
4. e-Learning Fachtagung Informatik, volume 87 of
LNI, pages 75–86. GI.

Rösner, D., Amelung, M., and Piotrowski, M. (2005).
LlsChecker, ein CAA-System für die Lehre im
Bereich Programmiersprachen. In (Haake et al.,
2005), pages 307–318.

Striewe, M., Goedicke, M., and Balz, M. (2008). Computer
Aided Assessments and Programming Exercises with
JACK. Technical Report 28, ICB, University of
Duisburg-Essen.

Tscherter, V. (2004). Exorciser: Automatic Generation
and Interactive Grading of Structured Excercises in
the Theory of Computation. PhD thesis, Swiss
Federal Institute of Technology Zurich, Switzerland.
Dissertation Nr. 15654.

A FLEXIBLE AND MODULAR SOFTWARE ARCHITECTURE FOR COMPUTER AIDED ASSESSMENTS AND
AUTOMATED MARKING

61


