
Evolving System’s Modeling and Simulation through
Reflective Petri Nets

Lorenzo Capra and Walter Cazzola

Department of Informatics and Communication
Università degli Studi di Milano, Italy

Abstract. The design of dynamic discrete-event systems calls for adequate mod-
eling formalisms and tools to manage possible changes occurring during system’s
lifecycle. A common approach is to pollute design with details that do not regard
the current system behavior rather its evolution. That hampers analysis, reuse
and maintenance in general. A reflective Petri net model (based on classical Petri
nets) was recently proposed to support dynamic discrete-event system’s design,
and was applied to dynamic workflow’s management. Behind there is the idea that
keeping functional aspects separated from evolutionary ones and applying them
to the (current) system only when necessary, results in a simple formal model on
which the ability of verifying properties typical of Petri nets is preserved. In this
paper we provide the reflective Petri nets with a (labeled) state-transition graph
semantics.

1 Introduction

Most existing discrete-event systems are subject to evolution during their lifecycle.
As an example consider of mobile ad-hoc networks, adaptable software, business pro-
cesses, and so on. Designing dynamic discrete-event systems calls for adequate model-
ing formalisms and tools. Unfortunately, well-established formalisms for discrete-event
systems, such as classical Petri nets [10], lack features for naturally expressing possible
run-time changes to system’s structure. An approach commonly followed consists of
polluting system’s functional aspects with details concerning evolution. This practice
hampers system analysis, reuse and maintenance.

Reflective Petri nets [3] were recently proposed as a formal model for dynamic
discrete-event systems. This approach is based on a reflective layout formed by two
logical levels. The achieved clean separation between functional and evolutionary con-
cerns results in a simple formal model for systems exhibiting a high dynamism in which
the analysis capabilities of classical Petri nets should be preserved. Reflective nets were
successfully applied to specify dynamic workflows [2, 4], in which the workflow’s tem-
plate can change according to business needs. On the line of [9], the approach imple-
ments a smart transfer mechanisms of running workflow instances on the modified pro-
cess template, which prevents already completed, bypassable tasks from being redone
from scratch. It relies on checking the preservation of structural Petri net properties that
permit an efficient characterization of workflow’s soundness [12] over the time.

Capra L. and Cazzola W. (2009).
Evolving System’s Modeling and Simulation through Reflective Petri Nets.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 59-70
DOI: 10.5220/0001955300590070
Copyright c© SciTePress

On the perspective of implementing an automatic solver and a discrete-event sim-
ulation engine, Reflective Petri nets are provided in this paper with a (labeled) state-
transition semantics. Any analysis/simulation techniques based on state-space inspec-
tion has to face a crucial question, that is how to recognize possible equivalent states
during base-level’s evolution. That major topic is managed by exploiting the symbolic
state (marking) definition that the particular flavor of Colored Petri nets [8] used for the
meta-level is provided with, and represents the paper’s main technical contribution.

The balance of the paper is as follows: background information are in sections 2,3,
where the focus is put there on those elements directly connected to the paper’s contri-
bution, which is presented in section 4 where the state-transition semantics for Reflec-
tive Petri nets is defined. An application to an instance of dynamic system is presented in
section 5. Finally section 6 is about work-in-progress. Assuming the readers have some
basic knowledge about Petri nets, a semi-formal presentation is adopted, and a simple
example is used. Unessential notions\notations are skipped, especially in introductory
parts.

2 WN Basics

The formalisms employed for the two layers (meta- and base-level) of the reflective lay-
out are Well-formed Nets (WN) [6], a flavor of Colored Petri nets (CPN) [8], and their
unfolding, an extension of ordinary Place/Transition nets [10] respectively. This choice
has revealed convenient for two main reasons: i) the behavior of reflective Petri nets can
be formally stated in terms of classical Petri nets; ii) the symbolic state representation
the WN formalism is provided with leads to an effective state-transition semantics for
Reflective Petri nets, in which the intriguing question related to recognition of equiv-
alent evolutions is efficiently handled.ding, an extension of ordinary Place/Transition
nets [10] respectively. This choice has revealed convenient for two main reasons: i) the
behavior of reflective Petri nets can be formally stated in terms of classical Petri nets; ii)
the symbolic state representation the WN formalism is provided with leads to an effec-
tive state-transition semantics for Reflective Petri nets, in which the intriguing question
related to recognition of equivalent evolutions is efficiently handled.

There is also a third reason, which is interesting in the perspective of doing perfor-
mance analysis: our feeling is that if we considered the stochastic extension of WNs
(SWN) [5], and their unfolding, that is Generalized Stochastic Petri nets (GSPN) [1],
for the meta- and base-level, we might set a timing semantics for Reflective Petri nets
inherited in large part from the GSPN (SWN) timing semantics (which is defined in
terms of a Markov process). In the sequel of this work only the untimed behavior of
Reflective Petri nets will be defined.

While retaining CPN’s expressive power, WNs are characterized by a structured
syntax which is used by efficient analysis algorithms, based on the symbolic marking
notion. This section does not present all the features of WNs, for which the reader is
suggested to look at the original work, but just introduces them informally, focusing on
the symbolic marking definition.

Unlike CPNs, WNs (and their unfolding as well) include transition priorities and in-
hibitor arcs. Both these features enhance the CPN formalism expressiveness. In partic-

60

ular, priorities are useful to represent the transactional execution of evolutionary strate-
gies, as well as the implicit synchronization between base- and meta-level.

Because of the structured syntax of WN color annotations, behavioral symmetries
can be automatically discovered and exploited to build an aggregate state space (called
symbolic reachability graph or SRG) and (in SWN) a corresponding lumped Continu-
ous Time Markov Chain (CTMC).

2.1 WN Color Annotations

In Colored Petri nets places, as well as transitions, are associated to color domains,
i.e., tokens in places have an identifier (color), similarly transitions are parameterized,
so that different color instances of a given transition can be considered. A marking
M maps each place p to a multiset on the corresponding color domain C(p). Any arc
connecting p to a transition t is labeled by a function mapping any element of C(t) (i.e.,
any color instance of t) to a multiset on C(p).

The peculiar and interesting feature of the WN formalism is the ability of captur-
ing system’s symmetries thanks to the structured syntax of color annotations. Efficient
analysis/simulation algorithms can be applied that exploit such symmetries. These al-
gorithms rely upon the notion of symbolic marking (SM).

SWN color domains are defined as Cartesian products of basic color classes Ci,
that may be in turn partitioned into static subclasses Ci,k. A SM provides a syntactical
equivalence relation on ordinary colored markings: two markings belong to the same
SM if and only if they can be obtained from each other by means of permutations on
color classes that preserve static subclasses. A SM is formally expressed in terms of
dynamic subclasses.

2.2 The Symbolic Marking (SM) Notion

The definition of a SM (denoted M̂) [6] comprises two parts specifying the so called
dynamic subclasses and the distribution of colored symbolic tokens (tuples built of
dynamic subclasses) over the net places, respectively.

Dynamic subclasses define a parametric partition of color classes preserving static
subclasses: let Di and si denote the set of dynamic subclass of Ci (in M̂), and the
number of static subclasses of Ci (if Ci is not split then si = 1). The j-th dynamic
subclass of Ci, Z i

j ∈ Di, refers to a static subclass, denoted d(Z i
j), 1 ≤ d(Z i

j) ≤ si,
and has an associated cardinality |Z i

j |, i.e., it represents a parametric set of colors (in
the sequel we shall consider cardinality one dynamic subclasses). It must hold, for each
k : 1...si,

∑
j:d(Zi

j)=k

∣∣Z i
j

∣∣= | Ci,k |.

The token distribution in M̂ is defined by a function (denoted itself M̂) mapping
each place p to a multiset on the symbolic color domain of p, obtained replacing each
Ci with Di in C(p).

Among several possible equivalent representations, the canonical representative [6]
provides SM with a univocal formal expression, based on a lexicographic ordering of
dynamic subclass distribution over the net places.

61

guards checking

begin strategies

strategies

Reflective Framework

Shift Up Action

Base Level Petri Net

Evolutionary Meta-Program

Evolutionary Interface

Base-Level Reification

newP
delP newT

ext_ev2 start up ext_ev1

true

shift-down

Fig. 1. Snapshot of the reflective PN model.

3 Reflective Petri Nets

The reflective Petri net approach permits developers to model a discrete-event system
and separately its possible evolutions, and to dynamically adapt system’s model when
evolution occurs.

The approach is based on a reflective architecture structured in two logical layers
(Fig. 1). The first one, called base-level, is an ordinary Petri net (a P/T net with priori-
ties and inhibitor arcs) representing the system prone to evolve (base-level PN); while
the second layer, called meta-level, consists of a high-level Petri net (a colored Petri
net) representing the evolutionary strategies (the meta-program, following the reflec-
tion parlance) that drive the evolution of the base-level when certain conditions/events
occur.

Meta-level computations in fact operate on a representative of the base-level, called
(base-level) reification. The reification is defined as a (high-level Petri net) marking,
whose a portion, encoding the base-level PN current state (marking), is updated ev-
ery time the base level Petri net enters a new state. The reification is used by the
meta-program to observe (introspection) and manipulate (intercession) the base-level
PN. Any change to the reification is reflected to the base-level at the end of a meta-
computation (shift-down action)

The meta-program is implicitly activated (shift-up action) and then a suitable strat-
egy is put into action, under two conditions: i) either when it is triggered by an external
event, or ii) when the base-level enters a given state.

The reflective framework, a high-level Petri net component as well, is responsible
for really carrying out the base-level evolution in a transparent way. It should be con-
sidered as a transparent (meta-)layer of the reflective model, therefore it is formed by
higher-priority transitions. Intercession on the base-level PN is carried out in terms of
a minimal but complete set of basic operations (called the evolutionary interface): ad-
dition/removal of places, transitions, arcs - change of transition priorities (base-level’s

62

NODE

reifM

base-level petri net

meta-level petri net

t1

<S
p 1

>+
2<

S
x 1

>

<S
p 2

>

2
x1

2

p1 p2

ShUp|shift-up

Fig. 2. Reification implemented at Petri nets level.

structure change), free moving tokens overall the base-level PN places (base-level’s
state change). If one such operation reveals inconsistent, the meta-program is restarted
and any change caused in the meanwhile to the base-level reification is discarded. In
other words, evolutionary strategies have a transactional semantics. After a strategy’s
succeeding execution, changes are reflected down to the base-level Petri net.

Developers have been provided with a tiny ad-hoc language, inspired to Hoare’s
CSP that allows anybody to specify his own strategy in a simple way, without any
skills in high-level Petri net modeling being required. An automatic translation to a
corresponding high-level Petri net is done. Several strategies could be candidate for
execution at a given instant: different policies might be adopted in that case to select
one, ranging from a deterministic choice to a static assignment of priorities.

According to the reflective paradigm, the base-level runs irrespective of the meta-
program, being even not aware of its existence. That raises consistency issues, that are
faced by determining, for any strategies, local influence areas on the base-level that are
temporarily locked by the meta-level while strategies are being executed.

The interaction between base- and meta- levels, and between meta-level entities, is
formalized in [3]. Let us only outline some essential points:
1. The structure of the reflective framework is fixed, while the evolutionary strategies

are coupled to the base-level PN, so they vary from time to time. More precisely, the
meta-program’s model is built according to a predefined pattern, whose strategies
represent the variable component.

2. The reflective framework and the meta-program are separated (high-level Petri
net) components, sharing two disjoint sets of boundary places denoted hereafter
reification-set and evolutionary interface, respectively. Their composition through
a simple place superposition rises to the meta-model, called hereafter meta-level
PN.

3. The reification-set is formed by the following colored places: reifN, reifA,
reifΠ, reifM. The corresponding color domains, which will be specified later,

63

are built of basic color classNode, a logically unbounded repository holding all po-
tential base-level nodes, considering any evolutions. A well-defined marking of the
set above, hereafter simply denoted reification, encodes the structure (i.e., nodes,
arc connections and transition priorities, respectively), and the current marking, of
the base-level PN. What is the most important, there is a one-to-one correspon-
dence, formalized by a bijection, between reifications and P/T nets.

4. The initial reification, from time to time, refers to the base-level Petri net modeling
the initial system configuration.

5. The shift-up action and the reification update after any base-level change of state,
are implemented in transparent way at net level, by suitably connecting any base-
level PN transition to place reifM , that holds the reification of base-level PN’s
current marking. The resulting model will be hereafter denoted base-meta PN. The
idea is illustrated in Fig. 2. Any changes of state at the base-level Petri net are
instantaneously reproduced on the reification, conceptually maintaining base-level
unawareness about the meta-program. As an example, the firing of transition t1
results in withdrawing one and two tokens from places p1 and x1, respectively, and
putting one in p2. While token consumption is emulated by (input) arc function
〈S p1〉 + 2 · 〈S x1〉, token production is emulated by (output) arc function 〈S p2〉.
A complete splitting of class Node is required to refer to any places added to the
base-level (e.g., x1), by means of WN constant functions.

6. The shift-down action, i.e., the reflection of changes performed by the meta-program,
is modeled by a homonym highest-priority transition of the meta-level PN; it is a
kind of meta-transition that adheres to the usual firing rule as concerns the meta-
level PN, further, it replaces the (current) base-level PN by the P/T net encoded by
the reification.

The fixed part of the reflective architecture (the reflective framework) is used to put
evolution into practice for any kind of system being modeled. It is responsible for the
reflective behavior of the architecture, hiding the work of the evolutionary component
to the base-level PN. This approach permits a clean separation between evolution and
evolving system, and prevents the base-level PN from being polluted by details related
to the evolution.

4 State-transition Semantics for Reflective PN

The adoption of WN formalism [6] for the meta-program permits an effective definition
of behavior, in terms of state-transitions. In particular, the WN symbolic marking notion
is exploited to identify equivalent states a Reflective Petri net model (possibly) reaches
during the evolution.

On the light of the causal connection established between base- and meta-level,
the behavior of a Reflective Petri net model between any meta-level activations is fully
described in terms of a WN model, the meta-level PN, which includes (better, is suitably
connected to) an uncolored part, the base-level PN. That model will be hereafter denoted
base-meta PN. Therefore, it comes to be natural providing Reflective Petri nets with the
notion of state below:

64

Definition 1 (State). A state of a Reflective Petri net is a marking Mi of the base-meta
PN obtained by composing the base-level PN and the meta-level PN.

Letting t (6= shiftdown) be any transition (color instance) enabled in Mi, ac-
cording to the classical Petri net’s firing rule, and Mj be the marking reached upon its
firing, we have the labeled state-transition

Mi
t−→Mj

There is nothing to do but consider the case where mf is a marking enabling the
pseudo-transition shiftdown: then,

Mf
shiftdown−→ M′

0,

M′
0 being the marking of the base-meta PN obtained by first replacing the (current)

base-level PN with that one which is isomorphic to the reification marking (once it has
been suitably connected to the meta-level PN), then firing shiftdown as it were an
ordinary transition.

4.1 Recognizing Equivalent Evolutions

The state-transition graph semantics just introduced precisely defines the (timed) be-
havior of a reflective Petri net model but suffers from two evident drawbacks. First, it
is highly inefficient: the state description is exceedingly redundant, comprising a large
part concerning the meta-level PN which is unnecessary to describe the evolving sys-
tem. The second concern is even more critical and indirectly affects efficiency: there
is no way of recognizing whether the modeled system, during its dynamics/evolution,
reaches equivalent states. The ability of deciding about a system’s state-transition graph
finiteness and strongly-connectedness (both issues being strictly related to the ability
of recognizing equivalent states) are in fact mandatory preconditions for performance
analysis: we know that a sufficient condition for a finite CTMC to have stationary so-
lution (steady-state) is to include one maximal strongly connected component. More
generally, any technique based on state-space inspection relies on the ability above.

Recognizing equivalent evolutions is tricky. It may happen that (apparently) differ-
ent strategies cause in truth equivalent transformations to the base-level Petri net (the
evolving system), that cannot be identified by Def. 1. Yet, the combined effect of dif-
ferent sequences of evolutionary strategies might produce the same effects. Even more
likely, the internal dynamics of the evolving system might lead to reach equivalent con-
figurations. The above question, that falls into a graph isomorphism sub-problem, as
well as the global efficiency of the approach, are tackled by resorting to the peculiar
characteristic of WN: the symbolic marking notion. The color domains of the meta-
level PN are built of color class Node, representing the base-level PN nodes (places
plus transitions) at the meta-level. As concerns the reification-set, they are:

C(reifN),C(reifM),C(reif) : Node
C(reifA) : Node×Node

65

Arcs are represented by 2-tuples belonging toNode×Node, since there are no inhibitor
arcs in the running example (Fig. 3). Class Node is logically partitioned as follows:

namedp︷ ︸︸ ︷
p1 ∪ . . . pk ∪Unnamedp︸ ︷︷ ︸

places

∪
namedt︷ ︸︸ ︷

t1 ∪ . . . tn ∪Unnamedt︸ ︷︷ ︸
transitions

.

Symbols {pi}, {tj} denote singleton static subclasses. Conversely, Unnamedp
and Unnamedt are static subclasses collecting all anonymous (i.e., indistinguishable)
places / transitions. The intuition behind is simple: while some (“named”) nodes, for
the particular role they play, preserve the identity during base-level evolution, and may
be explicitly referred to during base-level manipulation, others (“unnamed”) are indis-
tinguishable from each other. In other words any pair of “unnamed” places (transitions)
might be freely exchanged on the base-level PN, without altering the model’s semantics.

There are two extreme cases: namedp (namedt) = ∅ and, on the opposite, Unna−
medp (Unnamedt) = ∅. The former meaning that all places/transitions can be per-
muted, the latter instead that all nodes are distinct. Note that this static partition is dif-
ferent from that one actually used on the base-meta PN, where any places of base-level
PN must be explicitly referred to when connecting the base-level PN to the meta-level
PN (Fig. 2).

The technique we use to recognize equivalent base-level evolutions relies on the
base-level reification and the adoption of a symbolic state representation for the base-
meta PN that, we recall, results from composing in transparent way the base-level PN
and the meta-level PN.

We only have to set as initial state of the Reflective Petri net model a symbolic
marking (M̂0) of the base-meta PN, instead of an ordinary one: any dynamic subclass
of Unnamedp (Unnamedt) will represent an arbitrary “unnamed” place (transition)
of the base-level PN.

Because of the simultaneous update mechanism of the reification and the conse-
quent one-to-one correspondence along the time between the current base-level PN and
its reification at the meta-level, we can state the following:

Definition 2 (Equivalence Relation). let M̂i, M̂j be two symbolic states of the reflec-
tive Petri net model. M̂i ≡ M̂j if and only if their restrictions on the reification set of
places have the same canonical representative.

Lemma 1. let M̂i ≡ M̂j . Then the base-level PNs at states M̂i and M̂j are isomor-
phic.

The transition between symbolic states of the reflective Petri net model is defined
as follows.

Definition 3 (Symbolic State Transition). Let σ denote a (possibly empty) meta-level
PN’s transition firing sequence, shiftdown /∈ σ. Then

M̂i
t−→ M̂j ,

66

x1

y1 t2

x3

x4

x2

y3

x1

y1 t2

x3

x4

x2

y3

x1

y1 t2

x3 x4

x2

y3

Fig. 3. Equivalent base-level Petri Nets.

iff t is either shiftdown or a base-level PN’s transition, and there exists σ, M̂′
i

M̂i
σ−→ M̂′

i
t−→ M̂j

Of course M̂′
i ≡ M̂i, as well as any intermediate marking crossed by σ.

Consider the very simple example in Fig. 3, that depicts three base-level PN con-
figurations, at different time instants. The hypothesis is that while symbols t2 denote
a “named” transition, symbols xi and yj denote “unnamed” places and transitions, re-
spectively. We assume that all transitions have the same priority level, so we disregard
the reification of priorities.

We can observe that the Petri nets on the left and on the middle are the same, but for
their current marking: we can imagine that they represent a possible (internal) dynamics
of the base-level Petri net. Conversely, we might think of the right-most Petri net as an
(apparent) evolution of the base-level PN on the left, in which new connections and a
new marking are set.

Nevertheless, the three base-level configurations are equivalent, according to defini-
tion 2. It is sufficient to take a look at their respective reifications, encoded as symbolic
markings (multisets are expressed as formal sums): consider for instance the base-level
PN on the left and on the middle of Fig. 3, whose reification are:

M̂(reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4,

M̂(reifM) = x1 + x4,

M̂(reifA) = 〈x1, t2〉+ 〈t2, x3〉+ 〈x3, y1〉+ 〈y1, x1〉+ 〈x2, t2〉+ 〈t2, x4〉+ 〈x4, y3〉+ 〈y3, x2〉

and

M̂
′
(reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4,

M̂
′
(reifM) = x3 + x2,

M̂
′
(reifA) = 〈x1, t2〉+ 〈t2, x3〉+ 〈x3, y1〉+ 〈y1, x1〉+ 〈x2, t2〉+ 〈t2, x4〉+ 〈x4, y3〉+ 〈y3, x2〉

respectively.
They can be obtained from each other by the following permutation of “unnamed”

places and transitions (we denote by a↔ b the bidirectional mapping: a→ b, b→ a):

{x1 ↔ x2, x3 ↔ x4, y1 ↔ y3},

thus, they are equivalent. With similar arguments we might show that the base-level
PN on the left and on the right of Fig. 3 are equivalent too. The right-hand Petri net’s
reification is:

67

M̂
′′
(reifN) = y1 + y3 + t2 + x1 + x2 + x3 + x4

M̂
′′
(reifM) = x1 + x2

M̂
′′
(reifA) = 〈x1, t2〉+ 〈t2, x3〉+ 〈x3, y1〉+ 〈y1, x1〉+ 〈x2, y3〉+ 〈y3, x4〉+ 〈x4, t2〉+ 〈t2, x2〉

M̂ and M̂′′ can be obtained from each other by the following permutation:

{x2 ↔ x4}

The canonical representative of these equivalent states is M̂.

5 Applying the Semantics

The (symbolic) state-transition semantics of Reflective Petri nets has been tested on the
hurried philosophers problem [11], a variant of the well known dining philosophers
problem that introduces a high dynamism and mobility degree: philosophers can join
and leave the table upon invitation. The version here considered meets the following
requirements:

– (at least) two philosophers are initially sitting at the table;
– each philosopher can eat only when he contemporary gets both adjacent forks, ac-

cording to the classical problem’s formulation;
– those philosophers sitting at the table that are not eating have the following addi-

tional capabilities:
• they can invite another philosopher (arbitrarily chosen) to join the table and sit

down at his side, if the table capacity has not been exceeded yet;
• they can ask one of the adjacent philosophers to leave the table (if more than

two are currently sitting);
– each philosopher is going around with his own fork; when he joins the table he

keeps the fork, when he leaves he brings the fork with him.

Figure 4 shows the base-level Petri net modeling the initial configuration, where two
philosophers are sitting on the dining table. The invitation and chasing away capabili-
ties provoke the evolution of this simple model. Any arrivals/departures of philosophers
cause a local reconfiguration of the system’s topology, that consists of carefully chang-
ing adjacencies and fork sharing in a consistent way. All that is completely managed at
meta-program level, as specified in [3].

Table 1 reports some evidences of the effectiveness of the symbolic state repre-
sentation adopted for Reflective Petri nets, versus the ordinary one. The experiment
was conducted using the GreatSPN tool and an ad-hoc script procedure emulating the
shift-down action. The first column indicates the problem size, i.e., the table capacity.
All philosophers can be permuted with one another. We can appreciate a sensible re-
duction, even for small problem sizes, due to the very high symmetry degree exhibited
by the system during its evolution.

68

Ph2

fk2

take fks2

release fks2

eat2

think2invite2 chase away2

2

fk1

take fks2

Ph1

fk1

take fks1

release fks1

eat1

think1invite1 chase away1

2

Fig. 4. Base-level Petri net modeling the initial hurried philosopher’s table.

Table 1. Symbolic vs. ordinary state-space size; — data not available.

philosophers symbolic states ordinary states
3 423 2567
4 2843 374809
5 23560 1765836
6 147812 96905034
7 960345 —
8 4767385 —
9 12097086 —

6 Conclusions

We have semi-formally introduced a state-transition semantics for reflective Petri nets,
a formal layout based on classical Petri nets (Well formed Nets, and their unfolding)
well suited to model dynamic discrete-event systems. In particular, we have addressed
a major topic related to recognizing equivalent system’s evolutions, through the WN’s
symbolic state notion. We are planning to integrate the GreatSPN tool [7], that natively
supports WN (and their stochastic extension, SWN), with new modules (plug-in’s) for
the graphical editing and the analysis/simulation of reflective Petri net models. We are
studying the possibility of defining a timed semantics for Reflective Petri nets, which
should be in large part inspired by SWN (GSPN) timed semantics. Finally, we are con-
sidering possible applications of reflective Petri nets for the simulation of protocols for
mobile, ad-hoc networks.

References

1. Ajmone Marsan, M., Conte, G., Balbo, G., 1984. A Class of Generalized Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems, ACM Transaction on Com-
puter Systems, bf 2, (2): 93–122.

69

2. Capra, L., Cazzola, W., 2007a. A Reflective PN-based Approach to Dynamic Workflow
Change, Proceedings of the 9th International Symposium in Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC’07), IEEE, Timişoara, Romania, pp. 533–540.

3. Capra, L., Cazzola, W., 2007b. Self-Evolving Petri Nets, Journal of Universal Computer
Science, 13, (13): 2002–2034.

4. Capra, L., Cazzola, W., 2008. Evolutionary Design through Reflective Petri Nets: an Ap-
plication to Workflow, Proceedings of the IASTED International Conference on Software
Engineering (SE’08), Innsbruck, Aut.

5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1993. Stochastic Well-Formed
Coloured Nets for Symmetric Modelling Applications, IEEE Transactions on Computers,
42, (11): 1343–1360.

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1997. A Symbolic Reachability
Graph for Coloured Petri Nets, Theoretical Computer Science B (Logic, Semantics and The-
ory of Programming), 176, (1& 2): 39–65.

7. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M., 1995. GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation, 24, (1-
2): 47–68.

8. Jensen, K., Rozenberg, G. (eds), 1991. High-Level Petri Nets: Theory and Applications,
Springer-Verlag.

9. Qiu, Z.-M., Wong, Y. S., 2007˙ Dynamic Workflow Change in PDM Systems, Computers in
Industry, 58, (5): 453–463.

10. Reisig, W., 1985. Petri Nets: An Introduction, Vol. 4 of EATCS Monographs on Theoretical
Computer Science, Springer.

11. Sibertin-Blanc, C., 2001. The Hurried Philosophers, in G. Agha, F. De Cindio, G. Rozenberg
(eds), Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets,
LNCS 2001, Springer, pp. 536–538.

12. van der Aalst, W. M. P., Basten, T., 2002. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change, Theoretical Computer Science, 270,(1-2): 125–203.

70

