
Reuse and Adaptation of Software Process using
Similarity Measurement

Viviane Santos, Mariela Cortés and Márcia Brasil

Universidade Estadual do Ceará
Av. Paranjana, 1700 - Cep 60.740-000, Fortaleza, CE, Brazil

Abstract. Software process reuse involves different aspects of the knowledge
obtained from generic process models and previous successful projects. The
benefit of reuse is reached by the definition of an effective and systematic
process to specify, produce, classify, retrieve and adapt software artifacts for
utilization in another context. In this work we present a formal approach for
software process reuse to assist the definition and adaptation of the organiza-
tion’s standard process. The Case-Based Reasoning technology is used to man-
age the collective knowledge of the organization.

1 Introduction

Considering the forward dependency between the development process quality and
the product quality, the deep knowledge of the activities involved in the process and
their management are critical factors for the organizational success.

In high level, the software development process defines a formal sequence of ac-
tivities related to a set of artifacts, people, resources, organizational structures and
constraints for turning user requirements into software. This knowledge captures the
guidelines to drive software development in a specific domain and/or context.

The definition of a process for software development is a complex task since it re-
quires experience and combines the knowledge of diverse technological and social
aspects. The utilization of standards for the process definition [1][2][3][4][5] is rec-
ommended in norms, processes and maturity models. However, the process model
must be adapted to fit the organization characteristics.

Software process models describe the organization knowledge and, thus, models
that enhance successful experiences must be disseminated and recommended for
reutilization across the organization [2][6]. The process consolidation is achieved
through the systematic reuse and the incremental capture of feedback, looking for the
continue improving.

The purpose of the process reuse technology is to support the process definition
and improving on the basis of standard processes, according to norms and quality
models, and learned experiences [7]. Dynamic and context-depending aspects of the
knowledge in software development turn the Case-Based Reasoning approach (CBR)
[8] useful as it provides a broad support for the dynamic management of the organiza-

Santos V., Cortés M. and Brasil M. (2009).
Reuse and Adaptation of Software Process using Similarity Measurement.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 215-226
DOI: 10.5220/0001954102150226
Copyright c© SciTePress

tional knowledge and continuous incremental learning necessary for the definition
and improving of software development.

In this work we describe an approach for definition and reuse of the organizational
standard process, on the basis of models, standards, quality norms, and previous ex-
perience, in accordance with the organizational reality and characteristics. In addition,
on the basis of the reuse process results, an adaptation process is presented. The CBR
technology is used for the management of the repository and the retrieval of assets.

This work is organized as follows: in Section 2 the CBR technology is briefly ex-
plained. In Section 3 the process reuse using CBR is presented. In Section 4 a case
study is illustrated. Finally, final considerations are presented.

2 Case-based Reasoning

The CBR technology solves problems in a specific situation, through previous similar
situations [9]. A case comprises a pair problem that describes the context of an actual
case occurrence, and solution that presents the problem solution. Past cases are used
to hint strategies to solve new similar problems [10].

A CBR system is composed by 4 basic elements [8]: knowledge representation,
similarity measure, adaptation and learning.

The knowledge representation consists on the description of the relevant infor-
mation for the cases, in order to assess the reuse.

The similarity measure establishes the global similarity degree between a base case
and a new problem under consulting. This measure is based on a heuristic method [9].
The retrieval process results in a set of ranked cases that are based on the global simi-
larity measure.

The utility of base case to solve a problem is proportionally related to the effort re-
quired to adapt it to fit the specific context [10]. This process involves knowledge
reuse in problems solutions along the knowledge transference from the previous case
to the actual case.

The ability to learn from early experiences is inherent in a CBR system. The conti-
nuous learning contributes to increase the system capacity to improve their interpreta-
tions to solve new problems. In this sense, feedback about the soundness and effec-
tiveness about their interpretations is required.

3 Process Reuse Approach

The approach for process reuse is presented in Fig. 1 [11]. The main component is the
Processes Assets Repository which is designed to store assets models for reuse and
their attribute-value representations. This representation involves a set of relevant
properties to describe each case, and the values for these properties including numer-
ic, text, pre-defined terms, etc. The utility of a specific case from the repository in the
context of a new case under consulting is enabled using this representation.

Considering that process models are abstract, their inclusion in the repository re-
quires the existence of an instance in a specific case. The Search Engine uses CBR

216

technology to retrieve similar cases through the similarity measurement on the basis
of process and project features. Attribute-value representations must be defined for
the new case, and for the base cases in the repository.

Fig. 1. Approach for process reuse.

The reutilization involves the adaptation of a previous solution for a similar case,
using an appropriate method [10]. After its adaptation and execution in the new
project, the reused process instance is evaluated in order to examine their effective-
ness and capture reuse information. Then, the new instance of the model can be in-
cluded into the repository, increasing their attribute-value representation.

3.1 Representation of Organizational Assets in the Repository

The reutilization of cases is enabled whenever the cases will be indexed and stored
appropriately in the repository of process assets, in such a way to make possible its
efficient retrieval. The suitable representation of the process assets is a critical factor
for the success of the method, since the similarity degree for the correct retrieval of
the cases is measured on the basis of this representation. The similarity concept con-
sists of establishing an estimate of the utility of a previous case stored in the reposito-
ry, in the context of the current case on the basis of the observed similarity among the
representations of both cases [8].

The similarity types are restrictions applied to the representation features, to estab-
lish its correspondence or co-occurrence among cases [12]. The similarity types used
in this work are:

− Numeric (NUM). Positive integer or real numbers
− Qualitative for Fixed Items (QFI). Predefined Terms
− Qualitative for Variable Items (QVI). Registered terms with possibility of new

items
The similarity between cases is based on the comparison of the features in the re-

presentation and the corresponding values. In this sense, several studies related to the
classification of the process assets for reuse in other contexts can be cited

217

[7][12][13][14][15]. The representation of the assets in the repository proposed in this
work is presented in Table 1. The features had been organized in agreement to the
target in process and project features.

Table 1. Representation of the assets in the repository.

Scope j Feature Description
Similarity

Type
Cons-
traints

Pr
oj

ec
t

1 Life-Cycle
Model

Project life-cycle model, such as Cascade,
Iterative Incremental, Evolutionary, Spiral.

QVI

2 Complexity Project complexity: High (including critical
and advanced functionalities), Medium (in-
cluding feasible functionalities), Low (includ-
ing simple functionalities).

QFI

3 Size Project size regarding the functionalities
quantity: Large, Medium or Small.

QFI

4 Team Size Project integrant number. NUM
5 Time Project duration in months. NUM 3, 4
6 Software Engi-

neering Know-
ledge

Knowledge level in Software Engineering:
High (theory e practical), Medium (theory
only), Low (none knowledge).

QFI

7 Development
Paradigm

Project development paradigm, such as Struc-
tured, Object Oriented, etc.).

QVI

Pr
oc

es
s

8 Development
Model

Software development models, like RUP, XP,
SCRUM, etc.

QVI

9 Maturity Model Maturity model, for example, CMMI,
MPS.BR, etc.

QVI

10 Maturity Level Specific maturity level related to the maturity
model specified previously. It can be, for
example, 1 to 5 (CMMI and ISO/IEC 15504)
or G to A (MPS.BR).

QVI 9

11 Complexity Process complexity based on the maturity
levels: High (advanced levels), Medium (in-
termediary levels), Low (low levels).

QFI 8, 9, 10

12 Process Specific processes, such as Requirements
Management, Project Planning, Quality Assur-
ance, Configuration Management.

QVI

13 Experience on
Process Usage

Team’s experience on software process usage:
High (process used in more than 15 projects),
Medium (process used in a range of 5 to 14
projects), Low (0 to 4 projects).

QFI 6

14 Success Level This result (1 to 10) represents an indicator of
the degree of organizational satisfaction about
the adopted process.

NUM

3.2 Retrieval Process

The most appropriate solution for the current problem is retrieved from the repository
through similarity measurement. The greatest value in this measurement indicates
greater similarity between the cases.

In CBR, several techniques can be applied for data retrieval. In [9] the algorithm
to calculate the similarity is based on k-NN technique, where the global similarity

218

(SIM) between two cases (a and b) is defined by the weighted sum of the local simi-
larities (simj) for each feature (Aj).

∑
=

×=
n

j
jjjj bAaAsimwbaSIM

1

))(),((),((1)

The weight (wj) reflects the relevance of a feature (Aj) concerning the similarity of
cases. This factor is determined by the user and is measured by the values: High
(100), Medium (50) and Low (10). The features considered more important for the
problem resolution from the user’s viewpoint, possess higher weights.

The base cases with greater similarity measurements are considered as sufficiently
similar and proposed to the user as reuse candidates. Note that if the same weight is
assigned to all the attributes, the base case that attends the greater number of features
must be the suggested one.

The local similarity is calculated in accordance with the similarity type of each
feature (Table 2) and considers the computation of distance (dj) between each feature
values in the cases a and b:

),(1
1

bad
sim

j
j +
= (2)

This measurement must be normalized [16] to avoid over influence of a metric by
the great range of values of the attributes. The normalization process uses smallest
and greatest values in the repository to linearly produce values between 0 and 1.

The distance between two features of numeric similarity type (NUM) is calculated
on the basis of a proportionality relation between the values. Thus, the local similarity
in this case is expressed as:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
=

)min()max(
)min()(

)min()max(
)min()(

),(
jj

jj

jj

jj
j AA

AbA
AA

AaA
bad (3)

For the Qualitative for Fixed Items (QFI) the distance is calculated by establishing
a proportion between values through the fixed items: High/Large (9), Medium (6) and
Low/Small (3). The expression for the local similarity for QFI features is:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

39
3)(

39
3)(

),(
bAaA

bad jj
j

 (4)

Thus, the expression can be resumed to:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
=

6
3)(

6
3)(

),(
bAaA

bad jj
j

 (5)

Finally, to calculate the distance between features of Qualitative for Variable
Items (QVI) is used a taxonomy to hierarchically represent the relationships among
the terms (Fig. A1), where s is the distance (jumps) between Aj(a) and Aj(b) in the
taxonomy. The measurement for a new case may require the inclusion of new terms.

219

10
),(sbad j = (6)

The measurement for a new case may require the inclusion of new terms.

3.3 Adaptation Process

Adaptation involves the process to transform the retrieved results into an appropriated
solution for the currently problem. The adaptation process can be realized following
different approaches [9]. In this sense two approaches can be suggested: if the simi-
larity measurement of the retrieved process in the top of the ranking is satisfactory,1 a
minimal or null adaptation can be required. In other case, when none of the retrieved
processes fulfills the requirements for the new case in appropriate manner, a composi-
tional approach is proposed.

Fig. 2. Similarity values of Base-Cases relative to the attribute values of the current case.

In this approach [17], the solution is composed by elements from different
processes, on the basis of the most similar process models returned from the previous
step. In this sense, the maximization of the local similarities of each feature from
different models can be used to build a new case matching the greatest level of simi-
larity to meet the new process features, considering the dependencies and constraints
among the features. Fig. 2 presents, in general way, the returned cases with its fea-
tures and similarity values against the new case.

Thus, the maximized global similarity of the new case (called GlobalSIM) is cal-
culated through the maximization of the local similarity (LSim) of each feature from
the retrieved cases, as presented below:

() () () ()()∑
=

=
N

i

MAiLsimAiLsimAiLsimAiLsimGlobalSIM
1

321 ,...,,,max (7)

1 The satisfactory level is determined by the average of the base-case local similarities percent

to represent the adherence of a case-base against the current case. The user can restrict the
ranking result through specifying a minimum percent of satisfactory level, e.g. 60%.

220

Where N represents the quantity of features and M the quantity of retrieved cases.
In addition, already dependencies and restrictions between features from the same
process must be considered in the composition of the new process. Similarly, features
from different process can be incompatibles. These restrictions must be considered in
the composition process. In this case, the following dependencies and constraints
were identified:

• Development Model and Maturity Model;
• Maturity Model and Maturity Level;
For example, if the Maturity Model feature value required is SW-CMM or CMMI,

the Maturity Level feature must be values from 1 to 5. Similarly, if the required De-
velopment Model is XP, neither Maturity Model nor Level Maturity can be used. In
this sense, a recently published report of the Software Engineering Institute [18] con-
siders the possibility of joint the use of agile development methods and CMMI best
practices as a way to improve the performance.

Fig. 3. Algorithm to maximize the global similarity.

The selection of the features to compose the new process involves the maximiza-
tion of the global similarity (GlobalSIM), and the satisfaction of the dependencies and
restrictions between the features to avoid conflicting and incompatible values. In Fig.
3 is presented a preliminary and simplified algorithm to describe this approach. Final-
ly, the new process can be instantiated from assets corresponding to the selected fea-
tures.

3.4 Feedback

The learning process in the CBR system is done through the feedback about the per-
formance of the new process model instance, when the project is closed. At this mo-
ment, the effectiveness of the reused process is evaluated by the user before the sto-
rage in the repository.

221

In this sense, the assets representation in the repository includes the process fea-
ture Success Level to reflect this feedback. This information is useful to the posterior
adoption of the process model, and contributes in the search for the continuous im-
provement of the process.

4 Case Study

In this section, a case study is presented to illustrate the approach for process reuse. In
this sense, the description of a new project is detailed assigning values to the wished
attributes for process and project. Note that the process for the standard process defi-
nition and the instantiation for an already defined process is the same. In the table
below the definition of the desired features for the new case are presented. The Scope
and Feature columns represent the feature’s classification as presented in Table 1.
The Weight and Value columns refer to properties of the new project, about the re-
levance and value for the feature, respectively, from the user viewpoint.

Table 2. Feature definition for the case study.

Scope Feature Weight Value

Pr

oj
ec

t

Life-Cycle Model Medium Spiral
Complexity Low Medium
Size Medium Medium
Team Medium 5
Time Low 6
SE Knowledge Low Medium
Development Paradigm High O-O

Pr

oc
es

s

Development Model Low -
Maturity Model Low -
Maturity Level Low -
Complexity Medium Low
Process Medium Project Management
Experience on process usage Low Low

To illustrate the retrieval process, the RUP for Small Teams (RUP-ST) model [19]

and its respective representation are used. It is important to stand out that the reposi-
tory of process assets must be wide and diversified in order to take care of the most
diverse situations. Table 3 presents the values for each feature for a project based on
the RUP-ST [19].

The global similarity is calculated on the basis of their representation in order to
determine and retrieve from the repository the most adherent case to fit the new case
through minor efforts.

The local similarity for Feature is calculated in accordance with the similarity
type, as referred to Section 3.2, and is described in the Comparison column. The
product of this value times the Weight, presented in Table 2, determines the Local
Similarity (LS). Finally, the addition of all local similarities is presented in the column
Global Similarity, in the current case 345.

222

Table 3. Global Similarity about RUP-ST.

Scope Feature Base-Case Compa-
rison LS

Pr
oj

ec
t

Life-Cycle Model Iterative/ Incremental 0,8 40
Complexity Medium 1 10
Size Medium 1 50
Team 5 1 50
Time 5 0,5 5
SE Knowledge High 0,5 5
Development Paradigm O-O 1 100

Pr
oc

es
s

Development Model RUP 0 0
Maturity Model - 0 0
Maturity Level - 0 0
Complexity Medium 0,5 25
Process Project Management 1 50
Experience on process usage Low 1 10

Global Similarity 345

A further analysis about the local similarity results can be used to guide the user

during the adaptation process. In this sense, the desired features from the retrieved
cases can be composed in a new model in order to optimize (maximize) the global
similarity.

To illustrate this approach, the similarities measurements for ProGer [20] and D-
CMM [21] models are used in order to select the attributes with higher local similari-
ty value (Table 4). The global similarity result for each base-case indicates the ProG-
er model as the most similar to the current case, since it presents the greatest mea-
surement value (368,6).

In another side, using the compositional approach, a new model can be obtained
on the basis of the maximization algorithm (Fig. 3). The maximized global similarity
for the new model, detailed in Table 5, is 383.6. Thus, the model of process created
through this approach represents the most adherent (similar) model to the current
case, involving lower effort for their adaptation and reuse in the new situation.

Table 4. Global Similarity about ProGer and D-CMM.

Scope Feature LS
ProGer

LS
D-CMM

Pr
oj

ec
t

Life-Cycle Model 40 45
Complexity 10 10
Size 50 50
Team 40 25
Time 8,6 8,6
SE Knowledge 10 6,6
Development Paradigm 100 100

Pr
oc

es
s

Development Model 0 0
Maturity Model 0 0
Maturity Level 0 0
Complexity 50 25
Process 50 50
Experience on process usage 10 5

Global Similarity 368,6 325,2

223

The existence of attributes with the same local similarity value is resolved by the se-
lection of the attribute from the first case analyzed; however, is still a need for better
research to assess whether this is right. Similarly, the attributes that did not have values
for the current case were disregarded, avoiding their influence in the calculation of simi-
larity.

Table 5. Maximizing the Global Similarity.

Feature Value Process SL

Life-Cycle Model Iterative D-CMM 45
Complexity Medium ProGer 10
Size Medium ProGer 50
Team 5 RUP-ST 50
Time 7 ProGer 8,6
SE Knowledge Medium ProGer 10
Development Paradigm O-O ProGer 100
Complexity Low ProGer 50
Process Project Management ProGer 50
Experience on process usage Low ProGer 10

Global Similarity 383,6

The process evolution and improvement is realized along its adaptation, reuse,

performance evaluation and reincorporation into the repository. Reuse evaluations
along diverse projects can guide the adoption of the organization’s standard-process.

5 Final Considerations

The proposed approach promotes the reutilization of process assets as a start point for
the elaboration of a standard process to meet the organizational needs. It also can be
used to assist in the definition and instantiation of software processes. This approach
is based on Case-Based Reasoning. It supplies a mechanism for the representation of
cases in the assets repository. The cases are classified according to a set of relevant
features to allow an efficient retrieval. An example of similarity measurement was
presented. A management tool to support this approach is under development.

In addition, an optimization algorithm for the construction of a new model of
process is presented. This model is composed of attributes from different processes,
in order to maximize the global similarity, increasing the adherence of the composed
process about the new case, and decreasing the adaptation efforts.

This approach foresees the continuous improvement of the process through the
permanent feedback to the repository involving the incorporation of learned lessons
with the adopted process. The learning capability of CBR systems contribute to the
adoption of better and more efficient solutions.

224

Acknowledgements

This work is being supported in part by FUNCAP, Brazil.

References

1. The International Organization for Standardization and the International Electrotechnical
Commission, 1996. Standard for Information Technology—Software Life Cycle Processes.
Geneva, Switzerland.

2. The International Organization for Standardization and the International Electrotechnical
Commission, 2006. ISO/IEC 15504 Information Technology Process Assessment Part 5.

3. Chrissis, M. Konrad, M., and Shrum, S., 2003. CMMI guidelines for process integration
and product improvement. Addison-Wesley.

4. Paulk, M. et al, 1993. Capability Maturity Model for Software. Pittsburg: SEI, Carnegie
Mellon University, version 1.1. edition.

5. Softex, 2006. Guia Geral MR-MPS (Versão 1.1). Available in: http://www.softex.br/mpsbr/
guias/MPS.BR Guia_Geral_V1.1.pdf

6. PMI Project Management Institute, 2004. A Guide to the Project Management Body of
Knowledge: PMBOK Guide. PMI, 3rd edition.

7. Perry, D., 1996. Practical Issues in Process Reuse. In ISPW, International Software Process
Workshop. IEEE Computer Society Press. France. Baldonado, M., Chang, C.-C.K., Grava-
no, L., Paepcke, A.: The Stanford Digital Library Metadata Architecture. Int. J. Digit. Libr.
1 (1997) 108–121.

8. Kolodner, J., 1993. Case-Based Reasoning. Publisher Morgan Kaufmann.
9. Pal, S. and Shiu, S., 2004. Foundation of soft case based reasoning. Wiley series in intelli-

gent systems, 5th ed.
10. Mille, A., 2006. From case-based reasoning to traces-based reasoning. Annual Reviews in

Control 30(2):223-232. ELSEVIER. ISSN 1367-5788.
11. Santos V., Cortés M. 2008. Software Process Reuse Using Case-Based Reasoning Ac-

cepted for publication in the ICAART´2009. International Conference on Agents and Ar-
tificial Intelligence. Portugal.

12. Reis, R. Q., Reis, C.A.L., Nunes, D.J., 2001. Automated Support for Software Process
Reuse: Requirements and Early Experiences with the APSEE model. In 7th International
Workshop on Groupware. IEEE Computer Society Press. Darmstadt, Germany.

13. Oliveira, K., Gallota, C., Rocha, A. R. et al., 1999. Defining and Building Domain-
Oriented Software Development Environments. In ICSSEA'99, 12th International Confe-
rence Software & Systems Engineering and their Applications. Paris, France.

14. McManus, J., 1999. How does Software Quality Assurance Fit In. Handbook of Software
Quality Assurance, 3 ed. Prentice Hall.

15. Oliveira, S. R. B., Vasconcelos, A. M. L., 2006. A Continuous Improvement Model in
ImPProS. In 30th Annual International Computer Software and Applications Conference.
Proceedings on COMPSAC Fast Abstract Session. Chicago, EUA.

16. Ricci, F., Arslan, B., Mirzadeh, N., Venturini, A., 2002. Detailed Descriptions of CBR
Methodologies. Information Society Technologies. Available in: http://dietorecs.itc.it/
PubDeliverables/D4.1-V1.pdf

17. Brasil M., Cortés M. 2008. Definição de Processo de Software através da maximização da
similaridade de atributos de casos similares. 13º Simpósio de Informática da PUCRS,
Uruguaiana. Revista HÍFEN ISSN 1983-6511.

225

18. SEI, 2008. CMMI® or Agile: Why Not Embrace Both!. Available in:
http://www.sei.cmu.edu/pub/documents/08.reports/08tn003.pdf. Accessed in: 13/11/2008.

19. Pollice, G., Augustine, L., Lowe, C., and Madhur, J., 2004. Software development for
small teams - a rup centric approach. Addison-Wesley.

20. Rouiller, A. C. 2001 Gerenciamento de Projetos de Software para Empresas de Pequeno
Porte, PhD. Thesis, Universidade Federal de Pernambuco.

21. Orci, T. and Laryd, A. (2000). Dynamic CMM for small organizations. Proceedings of the
First Argentine Symposium on Software Engineering (ASSE). Pages 133 to 149. Argenti-
na, 2000.

22. Beck, K. (2004) Extreme Programming Explained: Embrace Change. Pearson.
23. Kruchten P. and Kroll P., 2003. The Rational Unified Process Made Easy. Addison-

Wesley.
24. Pressman, R., 2002. Software Engineering, 5th ed. McGraw-Hill.

Appendix

Fig. A1. Taxonomies for QVI features.

226

