
An Innovative Model Driven Formalization 
of the Class Diagrams 

Janis Osis and Uldis Donins 

Department of Applied Computer Science, Institute of Applied Computer Systems 
Riga Technical University, Meza iela 1/3, Riga, LV 1048, Latvia 

Abstract. In this paper a system static structure modeling formalization and 
formalization of static models based on topological functioning model (TFM) is 
proposed. TFM uses mathematical foundations that holistically represent com-
plete functionality of the problem and application domains. With the TFM we 
can do formal analysis of a business system and in a formal manner model the 
static structure of the system. After construction of the TFM of a system func-
tioning a domain object model is defined by performing TFM transformation. 
Making further transformations of TFM it is possible to introduce more formal-
ism in the unified modeling language (UML) diagrams and in their construc-
tion. In this paper we have introduced topology into the UML class diagrams. 

1 Introduction 

The Unified Modeling Language (UML) is a graphical language for visualizing, 
specifying, constructing, and documenting the artifacts of a software-intensive 
system. The UML offers a standard way to write a system's blueprints, including 
conceptual things such as business processes and system functions as well as concrete 
things such as programming language statements, database schemas, and reusable 
software components. [8] and [3] 

Since the publication of first UML specification researchers have been working 
and proposing approaches for the UML formalization. Researches on UML 
formalization are performed because the meaning of the language, which is mainly 
described in English, is too informal and unstructured to provide a foundation for 
developing formal analysis and development techniques, and because of the scope of 
the model, which is both complex and large [2]. Despite the fact that the latest UML 
specification [14] which is published by Object Management Group [4] is based on 
the metamodeling approach, the UML metamodel gives information about abstract 
syntax of UML but does not deal with semantics which is expressed in natural 
language. 

After the publication of the first UML specification precise UML (pUML) group 
[13] was found with main goal to bring together international researchers and 
practitioners who share the aim of developing the UML as a precise modeling 
language. The aim of pUML group is to work firmly in the context of the existing 

Osis J. and Donins U. (2009).
An Innovative Model Driven Formalization of the Class Diagrams.
In Proceedings of the 4th International Conference on Evaluation of Novel Approaches to Software Engineering - Evaluation of Novel Approaches to
Software Engineering, pages 134-145
DOI: 10.5220/0001951901340145
Copyright c© SciTePress



UML semantics. As a formalization instrument they use several formal notations, for 
example, Object Constraint Language [12] or the formal language Z [10]. 

There are also other researches on formalization of UML and class diagrams, for 
example, [11] in which mathematical expressions are used to describe semantics of 
the class diagrams. 

All described researches are provided to formalize only the UML syntax but these 
approaches does not: 

• provide a formal way how to develop system description models in formal 
manner, 

• improve system description possibilities (for example, does not define new 
associations or relations between classes), and 

• use topology as a formalization tool of functioning. 
The main idea of the given work is to introduce more formalism into the UML 

class diagrams and propose a formal approach for developing class diagrams. For this 
purpose formalism of a Topological Functioning Model (TFM) is used [6]. The TFM 
holistically represents a complete functionality of the system from the computation-
independent viewpoint. It considers problem domain information separate from the 
application domain information captured in requirements. The TFM is an expressive 
and powerful instrument for a clear presentation and formal analysis of system 
functioning and the environment the system works within. We consider that problem 
domain modeling and understanding should be the primary stage in the software 
development, especially in the case of embedded and complex business systems, 
where failure can lead to huge losses. This means that class diagrams must be applied 
as part of a technique, whose first activity is the construction of a well-defined 
problem domain model. 

This paper is organized as follows. Section 2 describes the suggested solution of 
formalizing class diagrams by using topology which is defined with the help of TFM. 
Section 3 discusses the use of TFM for problem domain modeling and creation of 
topological class diagrams. TFM makes it possible to use a formal model as a 
computation independent one without introducing complex mathematics. Besides 
that, it allows validation of functional requirements at the beginning of the analysis. 
By using TFM in the modeling process it is possible to introduce topology in the class 
diagrams. As a result we have constructed a new type of class diagrams – topological 
class diagrams. Description of the problem domain modeling is illustrated with an 
example which clearly shows the process of developing topological class diagrams. 
Section 4 gives conclusions of our work and discuss future work. 

2 Formalization of the Class Diagram 

Class diagrams reflect the static structure of the system, and with the help of class 
diagrams it is possible to model objects and their methods involved in the system. 
Regardless of the opportunities provided by the class diagrams, it is not possible to 
reflect the cause and effect relation within a system or to indicate which certain ac-
tivity accomplishment of an object triggers another object’s certain activity accom-

135



plishment. By using the idea published in [5] about topological UML diagrams (in-
cluding topological class diagrams) we have developed method for construction of 
topological class diagrams and developed the topological class diagram. 

Before topological class construction it is needed to construct the TFM of the sys-
tem functioning. After construction of TFM it is possible to transform topology de-
fined in TFM into class diagrams and in such a way introduce more formalism into 
class diagrams. It is possible to transform topology from TFM into class diagrams 
because TFM has strong mathematical basis. In this way the formalism of class dia-
grams means that between classes are precisely defined relations which are identified 
from the problem domain with help of TFM. In traditional software development 
scenario relations (mostly associations and generalizations) between classes are de-
fined by the modeler’s discretion. 

TFM has strong mathematical basis and is represented in a form of a topological 
space (X, Θ), where X is a finite set of functional features of the system under con-
sideration, and Θ is the topology that satisfies axioms of topological structures and is 
represented in a form of a directed graph. The necessary condition for constructing 
the topological space is a meaningful and exhaustive verbal, graphical, or mathemati-
cal system description. The adequacy of a model describing the functioning of a con-
crete system can be achieved by analyzing mathematical properties of such abstract 
object [6]. 

A TFM has topological characteristics: connectedness, closure, neighborhood, and 
continuous mapping. Despite that any graph is included into combinatorial topology, 
not every graph is a topological functioning model. A directed graph becomes the 
TFM only when substantiation of functioning is added to the above mathematical 
substantiation. The latter is represented by functional characteristics: cause-effect 
relations, cycle structure, and inputs and outputs. It is acknowledged that every busi-
ness and technical system is a subsystem of the environment. Besides that a common 
thing for all system (technical, business, or biological) functioning should be the main 
feedback, visualization of which is an oriented cycle. Therefore, it is stated that at 
least one directed closed loop must be present in every topological model of system 
functioning. It shows the “main” functionality that has a vital importance in the sys-
tem’s life. Usually it is even an expanded hierarchy of cycles. Therefore, a proper 
cycle analysis is necessary in the TFM construction, because it enables careful analy-
sis of system’s operation and communication with the environment [6]. 

There are two stages at the beginning of the problem analysis: the first one is anal-
ysis of the business (or enterprise system) context (the problem domain) and the 
second one is analysis of the application context (the application domain). These 
levels should be analyzed separately. The first idea is that the application context 
constrains the business context, not vice versa. The second idea is that functionality 
determines the structure of the planned system (Fig. 1). Having knowledge about the 
complex system that operates in the real world, a TFM of this system can be com-
posed. 

136



 
Fig. 1. Creation of the software design using the TFM. 

In [7] it is suggested that problem domain concepts are selected and described in 
an UML Class Diagram. In our work we select and describe problem domain con-
cepts by means of topological class diagrams. All these steps are illustrated by the 
example given in next section. 

3 Case Study of the Construction of the Topological Class 
Diagram 

For a better understanding of the construction of the TFM and topological class dia-
gram let us consider small fragment of an informal description from the project de-
fined in [7], in which a library application is developed. 

3.1 The Construction of the Topological Functioning Model 

Construction of the TFM consists of three steps [5] (see Fig. 2). 

 
Fig. 2. The construction of the TFM [7]. 

137



The steps for the TFM construction are: 

Step 1: Definition of physical or business functional characteristics, which con-
sists of the following activities: 

1) definition of objects and their properties from the problem domain descrip-
tion; 

2) identification of external systems and partially-dependent systems; and 
3) definition of functional features using verb analysis in the problem domain 

description, i.e., by finding meaningful verbs. 
Within the [1] it is suggested that each functional feature is a tuple (1), 

<A, R, O, PrCond, PostCond, E, Cl, Op> (1) 

where: 
• A is an object action, 
• R is a result of this action, 
• O is an object (objects) that receives the result or that is used in this action 

(for example, a role, a time period, a catalogue, etc.), 
• PrCond is a set PrCond = {c1, …, ci}, where ci is a precondition or an atom-

ic business rule (it is an optional parameter), 
• PostCond is a set PostCond = {p1, …, pi}, where pi is a postcondition or an 

atomic business rule (it is an optional parameter),  
• E is an entity responsible for performing actions, 
• Cl is a class which will represent in system static model the object which 

will contain operation for functionality defined by this functional feature 
(this parameter can be fulfilled when the class diagram is synthesized), and 

• Op is an operation which will contain functionality defined by functional 
feature (this parameter can be fulfilled when the class diagram is synthe-
sized). 

We have added parameters Cl and Op to tuple defined in [1] to contain in the tuple 
all the information about functional feature. If there is a need to store additional in-
formation about functional features then it is possible to add more parameters to this 
tuple. 

Each precondition and atomic business rule must be either defined as a functional 
feature or assigned to an already defined functional feature. 

For the library project example we have defined the following 29 functional fea-
tures (in the form of tuple containing the following parameters: identificator, object 
action (A), precondition (PrCond), object (O), mark if functional feature is external or 
internal), where Rec denotes Receptionist, R – Reader, L – Librarian, In – Inner, and 
Ex - External: 

<1, A visitor arriving in the library, Ø, Visitor, Ex>, <2, Checking of personal data 
with the library readers’ register, Ø, Rec, In>, <3, Reader’s registration in the library 
readers’ register, if the person is not registered in the readers’ register yet, Rec, In>, 
<4, Reader’s card preparation, if the reader does not have the reader’s card yet (or) if 
the reader has lost his/her reader’s card, Rec, In>, <5, Reader’s card issue to the read-
er, Ø, Rec, In>, <6, The reader status authorization, if the reader is registered (and) if 
the reader has the reader’s card, R, In>, <7, Searching for a book in the book cata-

138



logue, if the reader has the reader’s card, R, In>, <8, Completion of the book request 
form, if the reader has found the book he or she needs, R, In>, <9, Submission of the 
book request form, Ø, R, In>, <10, Count of books borrowed by the reader, Ø, L, In>, 
<11, Checking of the book availability in the book repository, if the number of books 
borrowed by the reader does not exceed the maximum allowed, L, In>, <12,  Taking 
the book from the book repository, if the book is available in the book repository, L, 
In>, <13, Handing out the book to the reader, Ø, L, In>, <14, Borrowing the book, Ø, 
R, In>, <15, Book return, Ø, R, Ex>, <16, Checking of the book condition, Ø, L, In>, 
<17, Fine calculation, if the book is damaged, L, In>, <18, Handing out the fine tick-
et, Ø, L, Ex>, <19, Fine payment, Ø, R, Ex>, <20, Book return/placement into book 
repository, Ø, L, In>, <21, Book withdrawal, if the book is extremely damaged (can-
not be used anymore), L, Ex>, <22, Book removal from the catalogue, in case of the 
last copy of the book, L, In>, <23, New book purchase, Ø, Library, Ex>, <24, Books 
data entry into catalogue, if the library does not have a copy of this book, Rec, In>, 
<25, Book identification number assignment, Ø, Rec, In>, <26, Book utilization, If 
the book is extremely damaged, Utilizer, Ex>, <27, Book repository maintenance, Ø, 
L, In>, <28 Completion of the book utilization request form, Ø, L, In>, and <29, The 
fine deletion, if the reader has paid the fine, L, In>. 

Step 2: Introduction of topology Θ, which means establishing cause and effect re-
lations between functional features. Cause-and-effect relations are represented as arcs 
of a directed graph that are oriented from a cause vertex to an effect vertex. 

 
Fig 3. Topological space of the library functioning. 

The identified cause-and-effect relations between the functional features are illu-
strated by the means of the topological space (see Fig. 3). In the Fig. 3 is clearly visi-
ble that cause-and-effect relations form functioning cycles. All cycles and sub-cycles 
should be carefully analyzed in order to completely identify existing functionality of 
the system. The main cycle (cycles) of system functioning (i.e., functionality that is 
vital for the system’s life) must be found and analyzed before starting further analy-
sis. In the case of studying a complex system, a TFM can be divided into a series of 
subsystems according to the identified cycles. 

Step 3: Separation of the topological functioning model, which is performed by 
applying the closure operation over a set of system’s inner functional features [6]: A 
topological space is a system represented by Equation (2), 

139



Z = N ∪ M (2) 

where N is a set of inner system functional features and M is a set of functional 
features of other systems that interact with the system or of the system itself, which 
affect the external ones. 

A TFM (X∈Θ) is separated from the topological space of a problem domain by the 
closure operation over the set N as it is shown by Equation (3), 

[ ] U
n

XNX
1=

==
η

η

 

(3) 

where Xη is an adherence point of the set N and capacity of X is the number n of 
adherence points of N. 

An adherence point of the set N is a point, whose each neighborhood includes at 
least one point from the set N. The neighborhood of a vertex x in a directed graph is 
the set of all vertices adjacent to x and the vertex x itself. It is assumed here that all 
vertices adjacent to x lie at the distance d=1 from x on ends of output arcs from x. 

The example below illustrates how we perform the closuring operation (3) over the 
set N in order to get all of the system’s functionality – the set X. The set of the sys-
tem’s inner functional features N = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 
20, 21, 22, 24, 25, 27, 28, 29}. The set of external functional features and system 
functional features that affect the external environment M = {1, 15, 18, 19, 21, 23, 
26}. The neighbourhood of each element of the set N is as follows: X2 = {2, 3, 4, 6}, 
X3 = {3, 4}, X4 = {4, 5}, X5 = {5, 6}, X6 = {6, 15}, X7 = {7, 8}, X8 = {8, 9}, X9 = {9, 
10}, X10 = {10, 11}, X11 = {11, 12, 27}, X12 = {12, 13, 27}, X13 = {13, 14}, X14 = 
{14, 6}, X16 = {16, 17, 20, 21}, X17 = {17, 18}, X20 = {20, 7, 27}, X22 = {22, 7}, X24 
= {24, 7, 25}, X25 = {25, 20}, X27 = {27}, X28 = {28}, and X29 = {29}. 

The obtained set X (the TFM) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 
17, 18, 20, 21, 22, 24, 25, 27, 28, 29}. 

Obtained TFM of library functioning after performing closuring operation over the 
set of system inner functional features (the set N) can be seen in Fig. 4. 

 
Fig. 4. Topological functioning model of the library functioning. 

The example represents the main functional cycle defined by the expert, which in-
cludes the following functional features “6-15-16-20-7-8-9-10-11-12-13-14-6” and is 
denoted by bold lines in Fig. 4. These functional features describe checking out and 

140



taking back a book. A cycle that includes the functional features “6-7-8-9-10-11-12-
13-14-6” illustrates an example of the first-order sub-cycle. And these functional 
features describe checking out a book. 

3.2 Construction of the Topological Class Diagram 

In the [7] is offered the conceptual development of class diagrams as the final step of 
the TFM usage. In this conceptual class diagram relevant information – directions of 
associations between the classes – is lost. This important information is lost because 
within approach given in [7] the relations between classes are defined with one of the 
relations defined in UML – the associations. It is not possible to transform topologi-
cal (cause and effect) relations between TFM’s functional features into associations 
between classes. It is impossible because: 

1) the direction of topological relation is not always the same as direction of as-
sociation, 

2) association also can be bidirected (topological relationship can not be bidi-
rected), and 

3) topological relationship only can be binary relation (association can relate 
more than two classes, for example, ternary association which relates three 
classes). 

Because of this constraint in [7] it is recommended to define those association di-
rections in further software development, for example, to develop a more detailed 
software design. But at this point a step back should be taken to review the TFM and 
its transformation on the conceptual class diagram. To avoid such regression and to 
save the obtained topology between the classes, by using the idea published in [5] 
about topological UML (TopUML) diagrams (including topological UML class dia-
grams), it is possible to develop a topological class diagram where the established 
TFM topology between classes is retained. The retained topology (cause and effect 
relations between classes) in class diagrams brings more formalism in these class 
diagrams. Formalism of class diagrams is improved because between classes now are 
precisely defined relations. In traditional software development relations (mostly 
associations and generalizations) between classes are defined by the modeler’s discre-
tion (the approach given in the [7] helps to identify associations between classes but 
the identification of direction for these associations again is defined by the modeler’s 
discretion). 

Topological relations between classes throughout this article are marked with di-
rected arcs (this means that within this article notation used for topological relations 
between classes is similar to notation of associations in UML). The example of topo-
logical relations can be viewed in Fig. 5. 

In order to obtain a topological class diagram, first of all a graph of problem do-
main objects must be developed and afterwards transformed into a class diagram. In 
order to obtain a problem domain object graph, it is necessary to detail each function-
al feature of the TFM to a level where it uses only one type of objects. 

 

141



 

 
Fig. 5. Topological relations between classes. 

After construction of domain object graph this more accurate model must be trans-
formed one-to-one to a problem domain object graph and then the vertices with the 
same type of objects and methods must be merged, while keeping all relations with 
other graph vertices. As a result, object graph with direct links is defined. Schematic 
representation of class diagram development is given in Fig. 6. 

 

 
Fig. 6. The process of the development of the topological class diagram. 

By using the ideas published in [7] it is possible to obtain from TFM a conceptual 
class diagram without orientated relations between classes and the classes without 
operations. Modifying this approach it is possible to develop not only topological 
class diagrams, where the direction of relations is retained, but also to obtain the 
possible class operation definitions. In order to define conceptual operations, it is 
necessary to change not only every functional feature to one kind of object, but also 
by doing this transformation, to add a operation to the obtained (using a point nota-
tion), the description of which shortly describes the defined activity of the functional 
feature, for example, the functional feature "The reader’s card issue to the reader" is 
transformed to the object "ReaderCard" and the method "GiveOutToReader()" (when 
point notation is used the obtained result looks like this: "Reader-
Card.GiveOutToReader()"). 

At this moment it is possible to add additional information to the tuple (fulfil pa-
rameters Cl and Op) which is describing functional feature. After adding two parame-
ters describing class and operation the tuple looks like this: <5, Reader’s card issue 
to the reader, Ø, Rec, In, ReaderCard, GiveOutToReader>. 

Our example skips the step of the topological functioning model refinement, be-
cause each functional feature deals only with one type of objects and operations. Fig. 

142



7 shows the transformation of the topological functioning model to the graph of do-
main objects with conceptual operations. 

 

 
Fig. 7. The graph of domain objects with operations. 

 
Fig. 8. Topological class diagram. 

Fig. 8 presents topological class diagram of the library example after domain ob-
ject graph is abstracted, i.e., after merging all graph vertices with the same object 
types. 

With the boldest lines in developed topological class diagram is maintained main 
functional cycle which is defined by the expert within the constructed TFM. This 

143



reflects the idea proposed in [6] and [5] that the holistic domain representation by the 
means of the TFM enables identification of all necessary domain concepts and, even, 
enables to define their necessity for a successful implementation of the system. 

The topological (cause and effect) relationship between classes, which are de-
scribed with one way directed arc, cannot be compared with none of the UML rela-
tionships between the classes given in UML language specification [14]. The UML 
language specification gives the following relationships between the classes: 

• association (including aggregation and composition),  
• generalization, 
• dependence, 
• usage, 
• abstraction, 
• realization, and 
• substitution. 

All previously mentioned relationships between classes define only the way in 
which the classes interact and use each other [9], but the adopted topology in class 
diagrams allows to keep the cause and effect relationships between objects. The saved 
topology between classes in class diagram enables more efficient development of the 
software system class diagram. 

By keeping topological relationships between the classes it is recommended to use 
one-way association, because two mutually opposed associations between two classes 
can represent various multiplications. If topological class diagram is used to make the 
non-oriented class diagram, then relations between two classes can be joined into one, 
and as a multiplicity save the biggest multiplicity of all topological associations be-
tween those two classes. 

4 Conclusions and Future Work 

The application of the TFM has the following advantages: 
• With the help of TFM it is possible to introduce more formalism in the UML 

diagrams and in their construction. In our work we have shown that it is 
possible to maintain in the class diagrams the topology which is developed 
using TFM. 

• Using TFM for problem domain modeling and application domain definition 
it is possible to provide traceability between software requirements, func-
tional features and even developed architecture elements. 

• By performing TFM transformations it is possible to develop problem do-
main objects’ graphs and topological class diagrams. 

• Topological class diagram can also be used as architecture for the new sys-
tem. With the help of TFM and topological class diagrams it is possible to 
develop software system’s business layer which corresponds to the defined 
requirements. 

144



To continue working on topological UML diagrams, it is necessary to supplement 
the description of topological class diagrams, to create the meta-model of the topolog-
ical class diagram as well as to study the possibilities of topology implementation into 
other UML diagrams (for example, activity diagrams) and to assess its influence on 
the software system development. 

References 

1. Asnina, E.: The Formal Approach to Problem Domain Modelling Within Model Driven 
Architecture. In: Proceedings of the 9th International Conference “Information Systems Im-
plementation and Modelling” (ISIM’06), pp. 97-104, Přerov, Czech Republic. Jan Štefan 
MARQ. (2006) 

2. Evans, A., & Kent, S. (1999). Core Meta-Modelling Semantics of UML: The pUML Ap-
proach. “UML”’99 – The Unified Modeling Language. Lecture Notes in Computer 
Science, Vol. 1723. Springer-Verlag Berlin Heidelberg New York (1999) 140-155 

3. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object Modeling Language, 3rd 
ed. Addison-Wesley (2003) 

4. Object management group (OMG) http://www.omg.org (2008)  
5. Osis J.: Extension of Software Development Process for Mechatronic and Embedded Sys-

tems, Proceeding of the 32nd International Conference on Computer and Industrial Engi-
neering, University of Limerick, Limerick, Ireland, pp. 305-310 (2003) 

6. Osis, J.: Formal Computation Independent Model within the MDA Life Cycle, Internation-
al Transactions on Systems Science and Applications, Vol. 1, No. 2, pp. 159 – 166 (2006) 

7. Osis, J., Asnina, E.: Enterprise Modeling for Information System Development within 
MDA. In: Proceedings of the 41st Annual Hawaii International Conference on System 
Sciences (HICSS 2008), USA, p. 490 (2008) 

8. Rumbaugh, J., Jacobson, I., & Booch, G.: The Unified Modeling Language Reference 
Manual, 2nd ed. Addison-Wesley (2004) 

9. Rumbaugh, J., Jacobson, I., & Booch, G.: The Unified Modeling Language User Guide, 2nd 
ed. Addison-Wesley (2005) 

10. Spivey, J. M.: The Z Notation: A Reference Manual, 2nd ed. Prentice Hall (1992) 
11. Szlenk, M.: UML Static Models in Formal Approach. Balancing Agility and Formalism in 

Software Engineering. Lecture Notes in Computer Science, Vol. 5082. Springer-Verlag 
Berlin Heidelberg New York (2008) 129-142 

12. Warmer, J., & Kleppe, A.: The Object Constraint Language: Getting Your Models Ready 
for MDA, 2nd ed. Addison-Wesley (2003) 

13. The Precise UML group (pUML) http://www.cs.york.ac.uk/puml/ (2004) 
14. OMG: Unified Modeling Language Superstructure Specification, version 2.1.2 (2007) 

145


