
FLESHING OUT CLUES ON 
GROUP PROGRAMMING LEARNING 

Thais Castro1,2, Hugo Fuks1, Leonardo Santos2 and Alberto Castro2 

1Department of Informatics, Pontifical Catholic University of Rio de Janeiro, r. Mq. de S. Vicente, Rio de Janeiro, Brazil 

2Department of Computer Science, Federal University of Amazonas, av. Gal. R. O. J. Ramos, 3000, Manaus, Brazil 

Keywords: CSCL, Group programming learning, Programming in groups.  

Abstract: This work examines the findings of a case study carried out in the first semester of 2008, which uses a 
programming progression learning scheme, from the individual to group programming. This approach 
implies the generation of conversation logs among students as they take part in group programming. 
Supporting strategies are the evidences fleshed out through those logs. These strategies will guide the 
teacher on his inferences in the next group programming practical sessions.  

1 INTRODUCTION 

The extremely competitive scenario in which 
organisations strive to survive nowadays has 
imposed profound changes on Human Resources in 
general and on individual and group abilities in 
particular. As a result, there is a clear demand for 
project-oriented, team-based, collaborative 
approaches to be explored at early stages during 
continuing education. In addition to this, 
pedagogical practices and teaching strategies need to 
evolve in order to suit those new requirements. 
Collaborative learning methods have also an 
important role in contributing for that challenge. 

  The use of internet based tools represents 
broadened opportunities for recording, organizing 
and reusing experiences on learning and working at 
both individual and group levels. In order to elicit 
knowledge on how to improve collaborative 
practices, it is necessary to analyse every experience 
on the artefacts produced. 

In this context, this paper reports some aspects of 
a case study on group programming learning, 
focusing on the analysis of interaction dialogues, 
fleshing out clues on how students organize 
themselves in order to act under a collaborative 
scheme. By analysing, grouping and comparing 
students’ interaction through a Learning 
Management System, it was possible to identify 
opportunities for intervention. This may result on 
new guidelines for the current supporting strategies. 

2 CONTEXTUALIZATION 

At UFAM, a Brazilian University, there is a fifteen 
year experience in introductory programming 
learning using the functional programming 
paradigm. The emphasis in the introductory course 
is in problem solving, as described in (Castro et al, 
2002). Besides the functional approach, that research 
group conducted experiments using collaborative 
methods to represent problem solving knowledge 
(Mendonça et al, 2002) (Pereira et al, 2002) (Silva  
et al, 2002).  

It is a common thought (Brooks, 1995) that there 
is a strong link between the software engineer 
performance and its academic background. Thus, in 
the introductory programming courses it is 
mandatory the use of techniques based on problem 
solving, given that problem solving is a necessary 
ability for a software engineer. That is also the 
reason why training for collaborating is an important 
part of undergraduate curricula.  

In order to collaborate, initially students have to 
be aware of some problem solving strategies. 
Consequently, a pilot study was conducted in 2004 
for probing which were the most difficult topics in 
the introductory course (Castro et al, 2005).  

That pilot study was applied to two freshmen 
groups. In their weekly practical class, students got 
one or two exercises that were previously solved 
during the theoretical class. They could consult the 
Internet or any other bibliography and also discuss 

68
Castro T., Fuks H., Santos L. and Castro A. (2009).
FLESHING OUT CLUES ON GROUP PROGRAMMING LEARNING.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 68-73
DOI: 10.5220/0001951700680073
Copyright c© SciTePress



 

the exercise with other students or trainees.  From 
roughly 80 students who attended the course, 10 
constituted the observation group. The pilot study 
follow-up was based on a qualitative analysis of 
their annotations, before and after they solved the 
exercises.  After every laboratory session, the 
researchers read the students’, trainees’ and research 
assistants’ annotations (5 assistants observed the 
observation group while they were solving the 
exercise). Then, annotations were triangulated in 
order to find out which students should be invited 
for an individual interview, based on the clinic 
method protocol, as proposed by Jean Piaget, 
explained in (Del Val, 2002). 

During the aforementioned case study analysis 
the researchers recurrently stumbled on following 
the changes done to the code. In order to solve this 
tracking problem a tool, called AAEP, was 
developed for keeping track of the students’ code 
evolution by the pairing of versions. Later on, for the 
purpose of classifying the code evolution in one of 
these three categories, namely, syntactic, semantic 
and refactoring another tool named AcKnow 
(Castro, Fuks, Castro, 2008) was developed.  

However, when students work in groups it is 
difficult to know who is responsible for each code 
fragment and who is collaborating with whom. 
Besides that, according to the literature in Cognitive 
Science (Cohen, 1997), students learn more when 
they are working in groups and programming is 
definitively a cognitive activity (Weinberg, 1971). 
Thus the proposal of integrating AAEP-AcKnow 
into a groupware, that took place in both 2007 and 
2008.  

In the following section, literature about group 
programming is presented aiming to introduce group 
programming learning. 

3 A CASE STUDY FOR GROUP 
PROGRAMMING LEARNING 

A case study was carried out in the first semester of 
2008 in order to evaluate students’ engagement on a 
programming introductory course. This article deals 
with the conversation follow-up, one of 4 supporting 
strategies identified in the context of a research 
project. One supporting strategy was discussed in 
(Castro, Fuks, Castro, 2008) and the others will be 
discussed in future works, based mainly on (Gerosa 
et al, 2006) and (Pimentel et al, 2006). The case 
study was applied to 60 Computer Science freshmen 
students. Incrementally, exercises got more complex 

as collaboration becomes necessary, according to the 
programming progression learning scheme.  

3.1 The “How-to-Do” Analysis 

The case study was based on a progression scheme 
(Castro, Fuks, Castro, 2008b) that comprises nine 
sequential exercises together with their coding, 
companion reports and conversation logs. Two 
additional warming up exercises precede the ninth 
one, which resembles a programming marathon. 

The How-To-Do analysis consists of inferring 
the communication purpose on each conversation 
turn.  For instance, when a student says “Hey folks! 
I’ve done mine and I found out that it was simple”, 
his objective is just to inform. In Table 1 there is a 
description of each message category found in the 
conversation log, followed by its instance. That 
gives the researcher an overall idea about group 
behaviour. Then, the message body was further 
analysed. Table 1 below shows the categories found. 

Table 1: Utterance Categories. 

Category Instance 
Making an 
artefact available 

“My functions…”  

Informing “Guys, the problem ins’t so 
difficult…”  

Clarifying “I couldn’t log in before.” 
Confirming “I’ve annotated it already…” 
Asking “Does someone want to add 

something else on the report?” 
Suggesting “…everyone should try to create a 

solution to each question on his 
own way…” 

Calling attention “Hey, Guys! Let’s do the 
exercise!” 

Pointing a mistake “I think you made a mistake when 
you defined the output as the type 
int…” 

Explaining “…What I did was to use the 2nd 
question that…” 

In phases 1 and 2, students start to learn how to 
collaborate using a chat tool. The whole class took 
part in the discussion, but coding was an individual 
activity.  

Next, in phase 3, coding was still an individual 
activity, but then they had to choose the best code 
among all the participants’ and also justify why that 
code was the chosen one. Almost all the groups 
generated long conversation logs and the discussions 
run deep in eliciting the requirements for the best 
code candidates. These conversations demonstrate 
that students are quite comfortable in testing each 

FLESHING OUT CLUES ON GROUP PROGRAMMING LEARNING

69



 

other’s code and comparing them with the course’s 
notion of efficiency and efficacy. 

In phase 4 they distribute the pre-divided parts of 
the exercise to all group members and then discuss it 
in order to prepare their wiki-based group report 
(that comprises the individual coding and the 
combined group coding together with the suggested 
problem solving method). Their forum-based 
conversation logs show at this point that although 
some groups could collaborate in a rudimentary way 
they lacked the ability to solve the problem as a 
group, passing the responsibility to combine the 
parts to one self-appointed group member. Almost 
half of the groups just made available their 
individual members’ coding. Their discussion log 
showed that group members had no understanding 
about the exercise as a whole and that one student 
combined all the individual codes, making the 
necessary adjustments. A few groups discussed the 
task and really solved the exercise together, 
suggesting changes in each other’s codes, where it 
was the case. One group did not use the forum tool 
to discuss, justifying that they had face-to-face 
discussion. Only one group did not do anything at 
all. 

Phase 5 asks the groups for splitting the exercise 
into functional parts for distribution among group 
members. That entailed heated discussions showing 
that they moved to a next level in their collaboration. 
One possible reason for this improvement is that the 
groups that had difficulties or misunderstandings 
about how to conduct themselves in a collaborative 
way got feedback pointing out where in the problem 
solving process they were not able to collaborate. 
Another possible reason was that students got 
progressively more involved on their activities as 
they kept carrying on the exercises posed within the 
progression scheme. 

Phase 6 of the progression scheme is the 
programming marathon, where they work in small 
groups of three members. In this phase, group 
formation is left for the students to form new groups 
of their likings. Surprisingly, not that many new 
groups were formed. During the four hour collocated 
marathon, record keeping was not mandatory, 
although they had to write the wiki-based report.  

Summing up, it could be observed that as 
students progressively solved more exercises, they 
produced better codes. Interestingly, students 
resorted to collaboration whenever they did not 
know how to solve the entire exercise a priori.  

 
 

3.1.1 A Closer Look at Exercise 5 

The conversation logs commented below were 
translated from Portuguese. For that reason, some 
misspellings and/or inappropriate use of English are 
still in the text to give the reader a more accurate 
view of the conversation. 

Exercise 5 (in Phase 4) stand as a bottleneck 
because, for the first time during the course, students 
are urged to think about the whole problem and its 
solution collectively. During the problem solving 
process they have to accommodate each other’s 
views and negotiate when there is a conflict of 
understanding. For that reason, this subsection 
presents exercise 5 in order to flesh out clues on 
group programming learning within each group’s 
conversation log.  

Table 2 describes exercise 5, noticing that the 
teacher proposes a specific method for solving it. 
Some groups adapted in order to solve the exercise 
according to their own characteristics. 

Table 2: Exercise 5: Doctors allocation problem. 

In a clinic, as soon as a patient arrives at the hospital, 
she receives an attending number. There are always 
three available doctors per shift, and they will receive 
incoming patients depending on the number of patients 
a doctor already has in her to attend list. The doctor 
who has fewer patients in her list gets the next one.   
Using tuples, we can define the following input: 
available_doctors (("dr. A", 4, 23), ("dr. B", 1, 13), 
("dr. C", 3, 27)), where the 2nd term of each tuple 
refers to the number of patients in that doctor’s list and 
the 3rd term refers to the last patient attended by that 
doctor. Based on this input, write a script in Haskell 
that, for a given incoming patient, choose in which 
doctor’s to attend list she should be allocated to. 
… 

Group 1 does not discuss about either the 
problem understanding or the problem solving, 
including the division of work and the process of 
joining all the individual solutions together to build 
a unique group solution. Contrary to that, each group 
member makes available his solution. 

One member of group 2 in a self-appointed way 
leads the group. Another one assumes the division of 
work. The discussion is rudimentary about the 
general understanding, although it gains strength 
when the matter is the work itself. The last topics in 
the conversation log deals with suggestions. The 
leader examines all codes and points out what could 
be improved in a specific one, as shown in fragment 
below (Table 3). 

 

ICEIS 2009 - International Conference on Enterprise Information Systems

70



 

Table 3: Suggestions. 

StD1: StK1 HAS TO CORRECT THE FUNCTION 
AND TO REDO POLYA’S STEPS, StD2 
AND StF1 HAVE TO CORRECT POLYA’S 
STEPS. 
StD2, I’ve already written above what is 
necessary in your case.  
StF1, the inputs are a list of tuples, even when 
the function you’re working with uses the 
previous function’s result. I’ve corrected there 
in Polya’s steps. E.g.: Inputs: [("dr. A", 4, 23), 
("dr. B", 1, 13), ("dr. C", 3, 27)]. Outputs "dr. 
B" 
StK1, your function is wrong, it has to return 
the complete list of tuples, as the doctor’s 
tuple required in the input will have the 2nd 
term -1 and the last one will be the number of 
the patient added to the input.  
Examples: Inputs: "dr. A" 28 [("dr. A", 4, 23), 
("dr. B", 1, 13), ("dr. C", 3, 27)] Outputs: 
[("dr. A", 3, 28), ("dr. B", 1, 13), ("dr. C", 3, 
27)] 

Group 3 follows the same pattern: one student 
self-appointed as group leader and division of work. 
There is a general question about understanding the 
exercise that the leader emails to the teacher. One 
student makes available his code and report which 
apparently makes another student uncomfortable. 
Immediately she poses a question, starting a 
clarifying discussion, as shown in the fragment 
below. Unfortunately, the group report was 
generated face-to-face and there is no discussion log 
about it, only the wiki indicating that some group 
members edited it. 

Group 4 differs because more than one member 
is leading the group. One student poses a topic about 
some peculiarity found in the exercise. Based on 
that, another one discusses the nature of the exercise 
and a third one suggests a slightly different problem 
solving method from the one proposed by the 
teacher. Everybody follows the third member’s 
suggestion triggering discussions about each 
member’s solution. The fragment below (Table 5) 
shows when a student figures out the nature of the 
exercise and another one proposes a way to do it and 
starts leading the process. 

Group 5 makes the codes available straight away 
and this apparently is a result of a just finished face-
to-face conversation.  

Group 6 does not discuss the exercise as a 
whole, keeping the conversation restricted to two 
members and only about the last function. 

 

 

Table 4: Clarifying discussion. 

StV1 Hey folks! I’ve done mine and I found out that 
it was simple.  
aux_menores x xs = [ y | y <- xs , y < x ] 
indice_menor xs = [i | i <- [0..length xs-1], 
aux_menores (xs!!i) xs == []] 
But even if it was simple, I’d like you to look 
at the end of the function "indice_menor xs" ( 
aux_menores (xs!!i) xs == []), ‘cause it was 
there where I had more difficulties.  
I was trying to do two extra auxiliary functions, 
where one of the extra functions is 
aux_menores and the other, which I didn’t 
make available, indicates the lowest number. 
So, in the main function could be indicated 
"xs!!i==número menor". But I realized that this 
could be done directly, with only one extra 
function. Anyway, I’d like you to test it!!  

StF1 Well, mine was pretty short, I thought it was 
odd, but I think it is complete, as it was a 
simple question.  
What I did was to use the 2nd question that 
shows the lowest indices and use them to show 
the doctor with fewer patients. It follows:  
medicos_menos_pacientes = disp!! 
indice_menor 

StV1 Man, explain that in details…. 
Because… I can’t find a method that fits my 
solution. 
uhh.. 
Did you test it? 
Because, mine is "indice_menor xs".  

Table 5: Working on a solution. 

StJ1 I think the problem is sequential… Each one of 
the required functions is easy if we use the 
previous one, once one depends on the other… 
I believe the best way of dealing with the 
exercise is doing it sequentially each function 
reusing the previous functions, creating extra 
ones, when it is the case. 

… … 
StR1 As far as I can see everybody in the group 

agrees about the fact that the problem is 
sequential and consequently reuses every item 
in the next. So, because there is not much time 
left, ideally everyone should try to create a 
solution to each question on his own way, and 
separate the best ones, to combine them in 
order to write one group solution. In case of 
wasting too much time in one question, try to 
think about the next, continuing the approach 
started by other member or even modifying 
it…  

Group 7 makes use of the most common way of 
solving the exercise. One student leads the 
discussion, asking for the division of work and at the 
same time makes available his code. Another student 

FLESHING OUT CLUES ON GROUP PROGRAMMING LEARNING

71



 

subdivides the work and asks everyone to make their 
solution available as soon as possible, together with 
their respective explanation. All members comply. 
One member of the group reads all the codes and 
finds out a mistake and its probable cause (shown in 
the fragment below). Something that deserves 
attention is at the end of the discussion, when one 
student says that he has not done his part yet, but 
needs no help. In the very end of the discussion he 
makes his solution available. The fragment below, 
Table 6, shows how the student asks for help 

Table 6: A students asks for help. 

StP1 Oops! Sorry guys. I haven’t tested it yet and 
only now I saw it has an error. But I know the 
reason why.  
It’s because StD3 function came from a 
sequence of functions of the type “one fosters 
the other” and that’s why I corrected it by 
copying and pasting every function from the 
first to the third one. 

Initially, group 8 discusses about general 
questions related to the exercise, sharing some 
expertise. One member complies with another 
member’s suggestion and everyone continues 
reusing the functions just done. There are still more 
questions about the exercise, but the group remains 
collaborative, except for one member, who does not 
take part in the conversation and does his part 
without reusing or revising the functions that have 
been done already (this is shown in Table 7). 

Table 7: Working alone. 

StF2 I’ve done the 5th question. As I didn’t used the 
questions which have been done before it is 
big, but, basically it has the same functions that 
have been done until the 4th one.  

Group 9 behaves similar to group 1, but with 
absolutely no discussion. Everyone makes his codes 
available and one member is responsible for the tests 
and group solution. 

Group 10 does not have any discussion log and 
did not do the exercise at all. 

The way each group behaves on their first group 
exercise fleshes out clues about the cause of possible 
difficulties in collaboration and evidences of 
successful use of an informal collaboration method.  

In the aforementioned description of the way 
each group collaborates in the exercise 5, most of 
the groups tried to collaborate and behave as a 
group, but they did not achieve the whole meaning 
of collaboration. The recording of these group 
exercises were very important, because it made easy 

for the teacher to identify these groups’ difficulties 
and preparing them for the next exercise.  

Other groups, namely groups 2 and 4, properly 
performed the work, without any difficulties. Group 
4 even used a new problem solving method, which 
was beyond the expectation at this point. Only two 
groups (1 and 9) completely ignored the fact they 
were doing their exercise as a group and group 10 
did not started to talk about the exercise.      

4 CONCLUSIONS 

Programming learning, as other intellectual 
activities, can benefit from collaboration. However, 
group programming learning also has to tackle 
several difficulties, common when developing 
abilities related to an effective participation in a 
group. 

In this work, we have shown how an Internet 
based, record-oriented, collaborative and progressive 
scheme can be used to allow both: knowledge 
elicitation on the development process of 
collaboration ability within the group; and 
identification of opportunities for instructional 
intervention. 

The conversation logs analysis produced an 
insightful view of a collaborative learning approach 
used in an intricate domain, expressed in the 
findings:  
• Teacher indication of a specific way of solving 

an exercise is important. As groups acquire 
more expertise, they feel more confident to try 
different approaches; 

• Self-assignment is the most common criteria for 
initial designation of a group leader. More 
important though, is that a discussion about the 
general understanding of the problem and task 
division is the subsequent step; 

• Request for selection of an individual solution 
to represent the whole group is a good way of 
starting objective discussions and positive 
criticism over the artefacts; 

• As students move forwards through stages of 
the progressive scheme, and problems get more 
complex, individual behaviour tends to be more 
responsible; 

• Inspection of dialogues and correspondent 
solutions at each stage made possible for 
teachers: 

o identifying groups’ specific difficulties 
and acting on that; 

ICEIS 2009 - International Conference on Enterprise Information Systems

72



 

o having a more levelled set of groups at 
the next stage of the progressive 
scheme. 

We are now using these findings as requirements 
for a knowledge-based framework to task guidance 
on supporting the teaching and learning process, 
using the collaborative setting presented. 

ACKNOWLEDGEMENTS 

Hugo Fuks receives individual grant from  CNPq 
and FAPERJ. This research is financed by 
ColabWeb – Proc.553329/2005-7, CNPq/CT-
Amazônia n.27/2005 and GroupwareMining – 
Proc.575553/2008-1, CNPq/CT-Amazônia 
n.055/2008.  

REFERENCES 

Brooks, F. 1995. The Mythical Man-Month (aniversary 
edition). Addison-Wesley Longman Publishing Co. 

Castro, Thais H.C.; Castro Jr, Alberto N.; Oliveira, Rosane 
S.C.; Boeres, Maria C.S.; Menezes, Crediné S. 2005. 
Enhancing Programming Understanding through 
Conceptual Schemas in Introductory Courses. CLEI 
Electronic Journal. Vol. 8, Num. 2, Pap. 4. 
(http://www.clei.cl/cleiej/). 

Castro, T., Fuks, H., Castro, A. 2008. Detecting Code 
Evolution in Programming Learning. In Proceedings 
of the 19th Brazilian Symposium on Artificial 
Intelligence. Series: Lecture Notes in Computer 
Science, Vol. 5249. Sublibrary: Lecture Notes in 
Artificial Intelligence, pp.145-156. 

Castro, T., Fuks, H., Castro, A. 2008b. Programming in 
Groups: a Progression Learning Scheme from the 
Individual to the Group. FIE - Proc. of the 38th 
Annual Frontiers in Education Conference. IEEE 
Catalog Number: pp F1F15-F1F20. 

Cohen, S. 1997. What Makes Teams Work: Group 
Effectiveness Research from the Shop Floor to the 
Executive Suite. In Journal of Management, Vol. 23, 
No. 3, 239-290.  

Delval, J. 2002. Introdução à Prática do Método Clínico: 
descobrindo o pensamento das crianças. ARTMED 
Press.  

Freudenberg, S., Romero, P., du Boulay, B.  2007. 'talking 
the talk': Is intermediate-level conversation the key to 
the pair programming success story? In Proceedings of 
Agile 2007, IEEE Computer Society, pages 84-91. 

Gerosa, M.A., Pimentel, M., Fuks, H. and Lucena, C.J.P. 
2006. Development of Groupware based on the 3C 
Collaboration Model and Component Technology. 
12th International Workshop on Groupware – CRIWG  
Lecture Notes on Computer Science LNCS 4154, 
Springer-Verlag, pp. 302-309. 

McDowell, C., Werner, L., Bullock, H., Fernald, J. 2004. 
The Impact of Pair Programming on Student 
Performance, Perception and Persistence. In 
International Conference on Software Engineering, 
pp. 602. 

Mendonça, A. P. ; Castro, A. N. ; Mota, E.S. ; Silva, L. S; 
Pereira, V. L. S. 2002. Uma Experiência com o uso de 
Mapas Conceituais para Apoiar o Método da 
Controvérsia Acadêmica. In: XXII Congresso da 
Sociedade Brasileira de Computação - VIII Workshop 
de Informática na Escola, Florianópolis-SC-BR. SBC 
Press, v. 5. p. 99-107. 

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, 
K., Miller, C., Balik, S. 2003. Improving the CS1 
experience with pair programming. In Proceedings of 
the 34th SIGCSE technical symposium on Computer 
science education., pp. 359 – 362. 

Pastel, R. 2006. Student assessment of group laboratories 
in a data structures course. In Journal of Computing 
Sciences in Colleges, v. 22, issue 1, pp. 221 – 230. 

Pereira, V. L. S. ; Castro, A. N. ; Mendonça, A. P. ; Silva, 
L. S. 2002. Análise do método Jigsaw de 
aprendizagem cooperativa através da utilização de 
mapas conceituais. In: XXII Congresso da Sociedade 
Brasileira de Computação - VIII Workshop de 
Informática na Escola, Florianópolis-SC. XXII 
Congresso da SBC. SBC Press, v. 5. p. 181-188. 

Peres, F., Meira, L. 2003. Educational software evaluation 
centered on dialogue: interface, collaboration and 
scientific concepts. In Proceedings of the Latin 
American conference on Human-computer interaction. 
Pp. 97 – 106. 

Pimentel, M., Escovedo, T., Fuks, H. and Lucena, C.J.P. 
2006. Investigating the assessment of learners' 
participation in asynchronous conference of an online 
course. 22nd ICDE - World Conference on Distance 
Education. Publisher: ABED, Rio de Janeiro, Brazil, 
Sep, 3-6. 

Silva, L. S; Castro, A. N. ; Mendonça, A. P. ; Pereira, V. 
L. S. 2002. Mapas Conceituais como suporte à 
estratégia de Investigação em Grupo: Uma experiência 
na Universidade. In: XXII Congresso da Sociedade 
Brasileira de Computação - VIII Workshop de 
Informática na Escola. Florianópolis-SC. XXII 
Congresso da SBC. SBC Press, v. 5. p. 163-172. 

Stahl, G. 2006. Supporting group cognition in an online 
math community: a cognitive tool for small-group 
referencing in text chat. In Journal of Educational 
Computing Reasearch. 

Weinberg, G. 1971. The Psychology of Computer 
Programming. Computer Science Series. Litton 
Educational Publishing. 

FLESHING OUT CLUES ON GROUP PROGRAMMING LEARNING

73


