
SECURITY AND DEPENDABILITY IN AMBIENT
INTELLIGENCE SCENARIOS

The Communication Prototype

Alvaro Armenteros
Security Products for Bussines, Telefónica I+D, Madrid, Spain

Antonio Muñoz, Antonio Maña, Daniel Serrano
Department of Computer Science, Universidad de Malaga, Spain

Keywords: Security patterns, Security services, Ambient Intelligence.

Abstract: Ambient Intelligence (AmI) refers to an environment that is sensitive, responsive, interconnected,
contextualized, transparent, intelligent, and acting on behalf of humans. Security, privacy, and trust
challenges are amplified with AmI computing model and need to be handled. Along this paper the potential
of SERENITY in Ambient Intelligence (AmI) Ecosystems is described. Main objective of SERENITY
consists on providing a framework for the automated treatment of security and dependability issues in AmI
scenarios. Besides, a proof of concept is provided. In this paper, we describe the implementation of a
prototype based on the application of the SERENITY model (including processes, artefacts and tools) to an
industrial AmI scenario. A complete description of this prototype, along with all S&D artefacts used is
provided in following sections.

1 INTRODUCTION

One of the key aspects of the new emerging
environments of Ambient Intelligence is Security.
Dependability for these environments is also an
important feature to be considered. In this paper, we
will consider the problems and challenges arising
concerned to security and dependability in Ambient
Intelligence. We will provide an overview of the
current solutions proposed for them as well as an
instance of a real world scenario related to AmI
where those solutions are applied to cover its S&D
requirements as a practical way to validate them and
explore challenges arising for these kinds of
scenarios.

This paper is structured as follows: section 2 is a
background. Section 3 introduces some
considerations of security and dependability in AmI
scenarios. Section 4 presents the SERENITY
(SERENITY project, 2006) approach. In section 5
we describe a proof of concept on a wireless
communication scenario. Finally section 6 some
conclusions.

2 BACKGROUND

Among the more relevant approaches for modelling
security and dependability aspects in Ambient
Intelligence (AmI) ecosystems found in literature,
we highlight those based on Components,
Frameworks, Middleware, Agents and the enhanced
concept of Pattern. Concerning components, these
capture expertise in the form of reusable software
elements to solve a problem under a set of context
conditions, provided by a set of well defined
interfaces and an associated description of their
behaviour (Merabti et. al, 2004; Zhang Shi, 1998).

Middleware based approaches capture expertise
in the form of standard interfaces & components.
Then applications developers are provided with a
simpler aspect to access a set of specialized,
powerful and complex capabilities. However, some
issues arise such as the high computational cost of
the middleware components, especially for those
small devices involved in AmI ecosystems with
limited capabilities, as well as the security
infrastructure of middleware systems, which is

49
Armenteros A., Muñoz A., Maña A. and Serrano D. (2009).
SECURITY AND DEPENDABILITY IN AMBIENT INTELLIGENCE SCENARIOS - The Communication Prototype.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages 49-56
DOI: 10.5220/0001949500490056
Copyright c© SciTePress

restricted to authorization and access control in most
cases (BEA White Paper, url; Object Management
Group, url). The potential use of Frameworks is
found in developing secure services (Wilson et. al,
2003; Sanchez, 2007). In (Sampemane et. al, 2004)
a framework that uses ontologies and the Common
Criteria classification of security requirements are
described. This is intimately related with the main
approach of this paper, where the use of ontology
facilitates reasoning about the requirements and also
reusability of goal and domain knowledge across a
large body of software developers. From a different
perspective there is the Agent paradigm, which is
especially well suited for highly distributed
environments such as AmI scenarios thanks to
properties like: autonomy, interaction, context
awareness and goal-oriented nature. But in case of
modelling security aspects are much more limited
(Boudaoud et. al, 2002) because an agent is an
independent entity and many security solutions can
not be represented as agents.

The concept of security pattern was introduced to
support the system engineer in selecting appropriate
security or dependability solutions. However, most
security patterns are expressed in textual form, as
informal indications on how to solve some (usually
organizational) security problem (IBM's Security
Strategy team, 2004; Yoderand et. al, 2000). Some
of them make use of more precise representations
based on UML diagrams (E. B. Fernandez, 2000).
Perhaps the first and the most valuable contribution
as pioneer in security is the work from Joseph Yoder
and Jeffrey Barcalow (Yoderand et. al, 2000), a
natural evolution of this work is presented by
Romanosky in (S. Romanosky, 2001). Eduardo B.
Fernandez in his work about authorization patterns
(E. B. Fernandez, 2000) proposes a further step in
the abstraction of patterns. In (Fernandez et. al,
2001) authors propose the decomposition of the
system into hierarchical levels of abstraction.

Other authors propose other alternatives to
provide formal characterizations of patterns. The
idea of precisely specifying a given class using class
invariants and pre- and post-conditions
(Soundarajan, e. al, 2006). Also Mikkonen in (T.
Mikkonen, 1998) focus his approach on behavioural
properties. In this approach data classes are used to
model role objects, but guarded actions (in an action
system) are used to model roles methods.

3 SOME CONSIDERATIONS OF
S&D IN AMI SCENARIOS

The Information Society Technology Advisory
Group vision is that AmI applications will be
influenced by the computational, physical and
behavioural contexts that surround the user (for
instance, because of resource availability and
security or privacy requirements). The concepts of
system and application as we know them today will
disappear, evolving from static architectures with
well-defined pieces of hardware, software,
communication links, limits and owners, to
architectures that will be sensitive, adaptive,
context-aware and responsive to users’ needs and
habits. AmI ecosystems offer highly distributed
dynamic services in environments that will be
heterogeneous, large scale and nomadic, where
computing nodes will be omnipresent and
communications infrastructures will be dynamically
assembled.

AmI environments impose some constraints in
the connectivity framework, power computing as
well as energy budget. This makes of AmI a
significantly different case within distributed
systems. The combination of heterogeneity,
dynamism, sheer number of devices, along with the
growing demands placed on software security and
dependability (S&D), make application development
vastly more complex. Also, the provision of security
and dependability for applications becomes
increasingly difficult to achieve with the existing
security engineering mechanisms and tools.

In the new AmI scenarios, not only systems as a
whole but also individual applications running in or
supported by those systems will have to adapt to
dynamic changes to hardware and software, and
even firmware configurations, to unpredicted and
unpredictable appearance and disappearance of
devices and software components. In other words
applications must be able to adapt dynamically to
new execution environments. As a consequence pre-
defined trust relationships between components,
applications and their system environments can no
longer be taken for granted. Therefore, the increased
complexity and the unbounded nature of AmI
applications make it impossible, even for the most
experienced and knowledge-able S&D engineers, to
foresee all possible situations and interactions which
may arise in AmI environments and therefore create
suitable solutions to address the users’ security and
dependability requirements. Additionally S&D
engineers will be faced with pieces of software,
communication infrastructures and hardware de-

ICEIS 2009 - International Conference on Enterprise Information Systems

50

vices not under their control. Thus, approaches
based on the application-level security will not be
sufficient to provide security and dependability to
the AmI eco system as a whole.

An AmI environments relevant feature is that
they will contain a large number of heterogeneous
computing and communication infrastructures and
devices that will provide new functionalities,
enhance user productivity, and ease everyday tasks.
These devices will hold a variety of data with
different security and privacy requirements. This
information will be used in different ways in
different applications and computing contexts and,
therefore, different policies (possibly contradicting)
will be applied. Hence, in such settings, securing the
device or the information alone or even each
individual application is not sufficient, and context
information should be integrated in order to be able
to choose appropriate security mechanism on-the-
fly.

Because of their complexity, and because
elements will be under the control of different
owners, security mechanisms will need to be
supervised (monitored) in order to identify potential
threats and attacks and decide on recovery actions, if
possible. Thence some existing approaches can
provide suitable solutions to sup-port the dynamic
evolution of security policies for specific security
mechanisms at particular system operation layers
(application, networking). However, these
approaches cannot be extended to support the
dynamic evolution of general security mechanisms
(as opposed to security policies for a single
mechanism). Furthermore, their results are
extremely complicated to integrate, monitor and
dynamically evolve as would be required by AmI
ecosystems. For the very same reasons, S&D
approaches for AmI ecosystems cannot hope to
synthesize new S&D mechanisms or new
combinations of these mechanisms fully
automatically and dynamically. Thus we can
summarize the individual challenges that we have
devised so far into a simpler and yet tougher grand
challenge:

The provision of S&D in AmI ecosystems
requires the dynamic application of the expertise of
security engineers in order to dynamically react to
unpredictable and ever-changing contexts. The
intuitive solution would be to create an “intelligent”
system able to analyze the requirements and the
context in order to synthesize new solutions.
Unfortunately, given the state of the art in both
security engineering and intelligent systems, this
approach is not a promising one in the foreseeable

future. To meet this challenge in our time we need to
look more closely to what technology is available
for S&D mechanism in AmI ecosystems.
Security related common problems of systems can
be classified into three categories, according to
whether they threat confidentiality, integrity or
availability of systems. In the following we will
describe each of them.

Confidentially is the property that information
holds when it remains unknown to unauthorized
principals. In the case of AmI environments almost
all the communication are carried out through
wireless connections. It is well known that wireless
connections are more vulnerable to attacks than
wired connections since the information could be
transmitted to anyone in the network range. Hence,
we would expect that some of the security solutions
existing for wireless networks could be adapted to
AmI environments.
Among the most used techniques for distributed
systems it is worth to mention those based on
encryption and decryption. These techniques achieve
a certain level of security by obscurity. Examples of
these techniques are stream cipher and; block cipher
techniques by Vernam and Maubogne (Richard W.
Hamming, 1980) More recent techniques in the
same line of research include those introduced in
(Gideon Yuval, 1979) by Schneier. Public Key
Infrastructure is also a technique used to achieve
confidentiality. In some cases, it is more convenient
to combine both public and private key
cryptographic systems. This leads to the well known
hybrid systems.

Integrity is the property that is violated when
information is altered without authorization. This
definition applies to the information held in a host as
well as for the information in transit between hosts.
As we mention before, wireless networks are more
vulnerable to attacks than wired ones. The main
reason being that anyone on the range of the wireless
network can receive the signal. Thus, a man-in-the-
middle attack is easy to be performed and, as a
consequence, an attack on the data integrity.

Some of techniques used widely in distributed
systems are Errors Detection Code (Gideon Yuval,
1979), Hash’s tables (Maña et. al, 2006), MAC
(Message Authentication Code) or Digital Signature.
These techniques could be also applied to the new
emerging environments of AmI, though we should
take into account the new problems arising,
concerning the nature of AmI.
Availability is the property of a system that grants
and legitimizes requests by the authorized parties. A
possible attack occurs when a malicious principal is

SECURITY AND DEPENDABILITY IN AMBIENT INTELLIGENCE SCENARIOS - The Communication Prototype

51

able to achieve that the service is denied to an
authorized principal by means of overloading the
system. In any AmI environment where the users are
connected to the host, it is possible to carry out an
attack by denying the service. This could put under
risk the availability of the system.

4 INTRODUCING THE
SERENITY APPROACH

The objective of the SERENITY Project is to
provide a framework for the automated treatment of
security and dependability issues in AmI scenarios.
In order to do that the SERENITY Project focuses
has two main cornerstones: (i) capturing the specific
expertise of security engineers in a way that allows
its automated processing; and (ii) providing means
to perform run-time monitoring of security and
dependability mechanisms. They have been
deployed by means of:

1. A set of modelling artefacts used to capture
security expertise (called S&D artefacts). We use
the term S&D solution to refer to an isolated
component that provides a security and/or
dependability service to an application. S&D
artefacts are used to represent S&D solutions at
different levels of abstraction. The representation
of S&D solutions at different levels of
abstraction responds to the needs of using them
at the different phases of the software
development process. These S&D artefacts are
presented in this section.

2. A development-time framework (the
SERENITY Development-time Framework,
SDF) supporting:
• The development of S&D solutions by
means of the aforementioned S&D artefacts.
The SDF includes processes and tools used by
security experts for the creation of new S&D
solutions. S&D solutions developed using the
SDF include semantic information related to its
informational description and its operational
behaviour.
• The development of secure applications
following the SERENITY approach. These
secure applications rely on SERENITY for
fulfilling its security and dependability
requirements. Applications developed by this
way are called SERENITY-aware applications.
They include references to SERENITY S&D
artefacts. At run-time these references are

resolved so that S&D solutions are provided
and can be used by applications.

The SDF is supported by on-line repositories
populated with S&D artefacts. Security experts
use these on-line repositories in order to store the
S&D solutions they develop. And, application
developers access to on-line repositories when
they are developing SERENITY-aware
applications in order to look for S&D solutions
to reference from their applications. A detailed
description of the development of application
based on these on-line repositories can be found
at (Serrano et. al, 2008).

3. A Run-time framework, called SERENITY
Run-time Framework (SRF). The SRF provides
support to applications at run-time, by managing
S&D solutions and monitoring the systems'
context. SERENITY-aware applications are
developed by means of open architectures that
are complemented at run-time by the SRF.

In order to facilitate the understanding of the
SERENITY approach the rest of this section
introduces how it is possible to capture security
expertise by means of the SERENITY S&D
artefacts.
The SERENITY Project provides five main S&D
artefacts to represent S&D solutions: S&D Classes,
S&D Patterns, Integration Schemes, S&D
Implementations and Executable Components.
These S&D artefacts, depicted in figure 1, represent
S&D solutions using semantic descriptions at
different levels of abstraction. All S&D artefacts, but
Executable Components, are represented using XML
files. Executable Components are code.
• To start, S&D Classes represent abstractions of
a security service that can be provided by
different S&D solutions characterized for
providing the same S&D Properties and
complying with a common interface. At the level
of S&D Classes, S&D solution descriptions are
very simple, containing some information about
the name of the solution, and its creators, the
security properties provided, and the interface
offered by the solution. Regarding to the security
properties, SERENITY provides a formalism
created for representing and reasoning about
security properties (called S&D properties),
interested readers can refer to (Aresdani Aboba,
2003) .
• S&D Patterns are detailed descriptions of
abstract S&D solutions. As presented in Figure 1,
each S&D Pattern belongs at least to one S&D
Class. At this level of abstraction the description
of S&D solutions are more detailed than in the

ICEIS 2009 - International Conference on Enterprise Information Systems

52

previous one (S&D Classes). These descriptions
contain all the information necessary for the
selection, instantiation, adaptation, and dynamic
application of the security solution represented in
the S&D Pattern. Since each S&D Pattern may
have a different interface, they contain a
specification that allows mapping the abstract
calls defined in the S&D Class interface into the
specific calls defined by the S&D Pattern
interface. Also, S&D Patterns include behavioural
description of the security mechanisms they
represent. Besides, they include the pattern
semantics, which are related to the semantics of
the security properties provided. Finally, S&D
Patterns include information about the restrictions
imposed by the solution. It is important to take
into account that the S&D Patterns we are using in
the SERENITY Project differ from the current
concept of patterns in software engineering. S&D
Patterns are components containing detailed
information about S&D solutions. These
components (S&D Patterns) are machine
readable.

class Pattern detail v 4

S&DPattern

S&DImplementation

S&DClassS&DProperty

S&DSolution

ExecutableComponent

IntegrationScheme

BelongsTo

Combines

RefersTo

RefersTo

Provides

Complies

*
BelongsTo

*

Implements

*

*
RefersTo

Figure 1: Class Pattern detail.

• Integration Schemes are an especial type of
S&D Pattern that represent S&D solutions that are
built by combining several S&D Patterns. While

S&D Patterns are independent or atomic
descriptions of S&D solutions, Integration
Schemes describe solutions for complex
requirements achieved by the combination of
smaller S&D solutions (represented by means of
S&D Patterns).
• S&D Implementations represent the
components that realize the S&D solutions. S&D
Implementations are not real implementations but
their representation/description. This is the lower
abstraction level, at this level S&D solutions are
defined in terms of the technology used in their
development and how to make use of it.
• Finally, Executable Components are the actual
implementations (pieces of code) of S&D
solutions. The automatic processing of Executable
Components is based on the use of the
information provided by the S&D artefacts
representing the S&D solution implemented by
them.

S&D Classes, S&D Patterns and S&D
Implementations are development-time oriented
artefacts, and Executable Components are especially
suitable for run-time. These S&D artefacts are
organized as a hierarchy, that is to say, each S&D
Class has several S&D Patterns, and each S&D
Pattern has several S&D Implementations. As
aforementioned, SERENITY-aware applications
include references to S&D artefacts. Depending on
the S&D artefact level of abstraction used by
application developers, at run-time the SRF is more
flexible when selecting S&D Solutions. The main
purpose of introducing this hierarchy is to facilitate
the dynamic substitution of the S&D Solutions at
run-time, while facilitating the development process.
For instance, at run-time all S&D Patterns (and their
respective S&D Implementations, see figure 1)
belonging to an S&D Class will be selectable by the
SRF in response to an S&D Class-based request by
the application.

5 THE PROOF OF CONCEPT: A
WIRELESS
COMMUNICATIONS
PROTOTYPE SCENARIO

In this section we describe a target scenario for
applying previously presented SERENITY
approach, as well as the corresponding prototype
from a SERENITY perspective, as a remarkable
example of a scenario related on AmI and with
direct application in the industry. It is important to

SECURITY AND DEPENDABILITY IN AMBIENT INTELLIGENCE SCENARIOS - The Communication Prototype

53

clarify that we can’t consider any pure AmI scenario
for the time being, since AmI is an emerging
concept and current technologies don’t allow actual
AmI deployments in the widest sense of the term.
But he proposed scenario depicts key characterises
of AmI environments. In fact, the scenario shows
that in addition to the impact in the future AmI
scenarios, the SERENITY approach can have a
short-to-medium term impact as an enhancement of
many current technologies.

The proposed scenario focuses on the provision
of seamless and access-controlled communication
over a wireless network, which provides connection
and access to multiple resources in the company,
such as internal digital documents, data bases,
intranet services and internet connection. Moreover,
it offers a convenient mobility to users, who do not
need to be physically connected to any cable or
access point.

In a conventional company network, security
policies are usually assigned in a fixed way, thus not
including AmI features or dynamic changes based
on context at run-time, and a thorough knowledge of
S&D issues is needed when deploying the wireless
network and the associated access control to
information. In order to improve this conventional
situation, in the proposed scenario we include AmI
features and use the SERENITY model. In this AmI
communication scenario, several context features are
considered in order to improve S&D. In particular,
we highlight user location and device authentication.

Location is a key factor in the access control
policies of the scenario: some re-sources may or
may not be accessed depending on the current
position of the re-questing user in the office.
Location information is provided by an existing
Indoor Location System (ILS). Furthermore, device
identity is also used as a factor to allow/deny access
to certain resources: only users whose devices are
properly authenticated as company devices (and thus
trusted devices), will have access to resources with a
high security level.

In the scenario we consider several situations
dealing with the network security. In all of them we
have one or more users trying to access resources
through the wireless network from a specific
location. Users are first authenticated with their
identity, associated with a user profile. An Access
Control Server (ACS) decides to grant or deny the
access taking into account:

• Location: using information provided by an ILS.
• User identity: users are authenticated to initiate a

session and then can be properly classified as a

certain profile (administrator, employee,
visitor…).

• Device identity: each device is identified by using
a Trusted Platform Module (TPM).

We can extract many requirements from this
scenario, but for the sake of simplicity we focus on
S&D requirements and within them especially on
those related to Ami issues. In order to better
address them, a SERENITY-enabled prototype has
been developed, aiming to denote the benefits of
applying the SERENITY approach and show its
good suitability for AmI environments. Taking into
account those S&D requirements, we have designed
the following prototype architecture where the
SERENITY model has been adopted:

Figure 2: Scenario Architecture.

In this figure, we can recognize all the main
actors involved in the scenario. At first glance you
may observe the SERENITY enabled entities
(denoted with the SERENITY icon). These entities
include an SRF instance providing all the
functionalities mentioned in section 4.

• The Wi-Fi infrastructure is main access network
in the company. Additionally, it is the base for
localization since it’s achieved by Wi-Fi signal
triangulation (using several access points).

• The Authentication Server processes user
connection requests, and allows or denies them
attending to presented user credentials. It uses a
database as a user data repository. It uses the
EAP-RADIUS protocol (Chiba et. al, 2008).

• The Location Server implements a Wi-Fi based
ILS that tracks real-time location of all connected
users.

• User devices can be any able to connect to Wi-Fi
network. In our scenario we use laptops with
TPM chips for device identification, as well as

ICEIS 2009 - International Conference on Enterprise Information Systems

54

SERENITY-aware client applications and a SRF
instance.

• The ACS runs a Control Application which
implements the core functionalities of the system:
it controls the user accesses to resources based on
user profiles, their location and the “identity” of
their devices. This Control Application is
designed a full SERENITY-aware application
that relies on an instance of the SRF, which is
responsible for the selection and provision of the
most suitable S&D solutions to fulfils requests
from the applications. For instance, the SRF
decision may result in a dynamic reconfiguration
of filter rules in the firewall.

• The Firewall isolates the wireless network from
the rest of the (wired) network and is dynamically
configured by ACS (rules can be changed “on the
fly”)

The prototype point out the good conditions of
the SRF for AmI environments by showing its
negotiation feature in action: there is one SRF
instance in the central ACS and several instances in
client devices. The central SRF and device instances
can interact and negotiate with the SRFs in the
devices in order to provide appropriate distributed
solutions such as client-server protocols, enhancing
distributed security and flexibility.

In the prototype we provide a set of artefacts
addressing specific requirements for the scenario but
these artefacts are not strictly bound to it. Taking
advantage of the S&D Pattern approach, these
artefacts could be used in other environments since
they represent independent S&D Solutions.
Alternatively, we might have used previously
developed S&D patterns and solutions instead of
developing them. The artefacts used for the scenario
are:

• TPM-based device identification pattern: this
pattern represents a mechanism to identify a
device, based on the TPM technology. In the
same way that humans identify themselves in
different ways (e.g. by means of biometrics), a
TPM-enabled device can claim its “identity” by
cryptographic means, using a TPM for that
purpose. TPMs provide a set of hardware-based
cryptographic functions that allow making these
claims in a trusted way. TPMs implement a
challenge-response protocol that allows control
servers to obtain proofs of the identity of the
device.

• Zone-based security measurement pattern: the
solution represented by this pattern provides a
security assessment for specific zones inside

controlled areas: obtain a qualitative value or
measurement of the security taking in count
predefined zone profiles.

• Access Control Integration Scheme: in our
scenario, previous patterns are conceived to work
together. The different solutions represented by
these patterns in isolation are not enough to take a
decision on access control. However, a combined
solution can be used to provide fine-grained
access control. For this purpose, SERENITY
provides a very useful artefact: the Integration
Scheme that allows the creation of a new pattern
based on the composition of other patterns. In our
case an Integration Scheme is used to provide a
final access control decision.

The overall result of the application of SERENIY
approach on the proposed scenario shall be denoted
by the following perceived benefits: Simplicity for
adding new factors to the control access, that is the
system administrator just needs to add new patterns
implementing those factors to de S&D Library.
Combining the factors is as easy as creating
Integration Schemes using different patterns. And
last but not least the high adaptability provided by
the event collector mechanism and the monitoring
system the control system counts with a ready-to-use
high adaptable engine to provide the best solution
available in each case.

On the other hand, we must not ignore some
implications and challenges. Firstly extra code needs
to be added in order to get a proper Executable
Component, and therefore to be executed in a SRF
environment. At this point, dealing with proprietary
software presents an important issue: in the real
world, system developers and integrators use
existing commercial solutions, which normally can’t
be modified. In this case we have used software
wrappers providing the SERENITY interface.
Providing the events and monitoring data, an
extension of the previous point is considering all the
monitoring stuff you need to provide to allow SRF
to treat correctly the use of every S&D Solution.
However, these issues must not discourage potential
adopters of SERENITY.

6 CONCLUSIONS

The realization of the Ambient Intelligence concept
entails many important challenges, but the most
important barriers to this realization, is the lack of
adequate support for security. Along this paper we
have presented the SERENITY approach consisting

SECURITY AND DEPENDABILITY IN AMBIENT INTELLIGENCE SCENARIOS - The Communication Prototype

55

on a new model for addressing the security issues in
the development of distributed applications and
systems for Ambient Intelligence scenarios. We
showed as the main objective of the SERENITY
Project is to provide a framework for the automated
treatment of security and dependability issues in
AmI scenarios. SERENITY is focused on two main
cornerstones: (i) capturing the specific expertise of
security engineers; and (ii) providing means to
perform run-time monitoring of the security and
dependability mechanisms. Finally we provide a
proof of concept by means of the Wireless
Communication prototype, which is related on AmI
and with direct application in the industry.

ACKNOWLEDGEMENTS

This work is funded by the 6th Framework
Programme of the European Union developed in the
SERENITY (IST-027587) Project.

REFERENCES

SERENITY project. Funded by European Commission.
Directorate General Information Society & Media.Unit
D4 - ICT for Trust and Security, under grant IST-
027587. http://www.SERENITY-project.org, 2006.

Merabti M. Shi Q. Askwith B. Llewellyn-Jones, D.
Utilising component composition for secure
ubiquitous computing. In Proceedings of 2nd UK-
UbiNet Work-shop., 2004.

Zhang Shi, Q. An effective model for composition of
secure systems. 1998. Journal of Systems and
Software, 433:233-44.

BEA White Paper. BEA WebLogic Security Framework:
Working with Your Security Eco-System.
http://www.bea.com.

Object Management Group. The Common Object Request
Broker: Architecture and Specification.
http://www.omg.org.

Gilson Wilson and Ullas O. Tharakan. Unified security
framework. In Trinity College Dublin, editor, In ISICT
'03: Proceedings of the 1st international symposium
on Information and communication technologies,
pages 500-505, 2003.

Le Gruenwald Carlos Sanchez and Mauricio Sanchez. A
monte carlo framework to evaluate context based
security policies in pervasive mobile environments. In
New York, USA, ACM, editor, In MobiDE '07:
Proceedings of the 6th ACM international workshop
on Data engineering for wireless and mobile access.,
pages 41-48. ACM, 2007.

R. Sampemane G. Ranganathan A. Campbell R.H. Hill. A
framework for automatically satisfying security
requirements. In Workshop on pecification and

Automated Processing of Security Requirements' -
SAPS'04 at the 19th IEEE International Conference on
Automated Software Engineering., 2004.

C. Boudaoud, K.; McCathieNevile. An intelligent agent-
based model for security management. In iscc, editor,
Seventh International Symposium on computers and
Communications, page 877, 2002.

IBM's Security Strategy team, 2004. Introduction to
Business Security Patterns. An IBM White Paper.
Available at http://www-
3.ibm.com/security/patterns/intro.pdf. 2004.

J. Yoder and J. Barcalow. Architectural patterns for
enabling application security. In MA: AddisonWesley
Publishing Company. Reading, editor, Pattern
Languages of Program Design., volume 4, pages 301-
336, 2000.

E.B. Fernandez. Metadata and authorization patterns. In
Technical report, Florida Atlantic University, 2000.

Romanosky, S., 2001. Security Design Patterns, Part 1,
1.4.

E.B. Fernandez and Rouyi. Pan. A pattern language for
security models. In PLoP01 Conference., 2001.

Soundarajan N. Hallstrom, J. O. Pattern-based system
evolution: A case-study. In the Proc of the 18th
International Conference on Software Engineering
and Knowledge Engineering. San Francisco Bay,
USA., 2006.

T. Mikkonen. Formalizing design patterns. In IEEE
Computer Society Press.,editor, In Proc. Of 20th
ICSE., pages 115-124, 1998.

Richard W. Hamming. Coding and Information Theory.
Prentice-Hall, 1980. ISBN 0-13-139139-9.

Gideon Yuval. “How to Swindle Rabin”. Cryptologia, 3:
187189, Jul 1979. ISSN 0161-1194.

A. Maña, C. Rudolph, G. Spanoudakis, V. Lotz, F.
Massacci, M. Melideo, and J. M. López-Cobo.
Security Engineering for Ambient Intelligence: A
Manifesto. Integrating Security and Software
Engineering. IDEA Group, 2006. ISBN 1-59904-148-
0.

 Daniel Serrano, Antonio Maña, and Athanasios-Dimitrios
Sotirious. Towards precise and certified security
patterns. In Proceedings of 2nd International
Workshop on Secure systems methodologies using
patterns, Spattern 2008, pages 287-291, Turin, Italy,
September 2008. IEEE Computer Society. ISBN 978-
0-7695-3299-8.

Aresdani Aboba B, Calhoun P, 2003 RADIUS Support For
Extensible Authentication Protocol EAP. IETF RFC
3579 , updates: RFC 2869.

Chiba M, Dommety G, Eklund M, Mitton D, Aboba B.,
2008 Dynamic Authorization Extensions to Remote
Authentication Dial In User Service. IETF RFC 5176.
Obsoletes: RFC 3576.

ICEIS 2009 - International Conference on Enterprise Information Systems

56

