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Abstract: Top-k spatial preference queries allow searching for objects on the basis of their neighbourhoods’ character. 
They find k objects whose neighbouring objects satisfy the query conditions to the greatest extent. The 
execution of the queries is complex and lengthy as it requires performing numerous accesses to index 
structures and data. Existing algorithms therefore employ various optimization techniques. The algorithms 
assume, however, that all data sets required to execute the query are aggregated in one location. In reality 
data is often distributed on remote nodes like for example data accumulated by different organizations. This 
motivated developing algorithm capable of efficiently executing the queries in a heterogeneous distributed 
environment. The paper describes the specifics of operating in such environment, presents the developed 
algorithm, describes the mechanisms it employs and discusses the results of conducted experiments. 

1 INTRODUCTION 

A top-k spatial preference query specifies a target 
data set and conditions describing the preferred 
neighborhood of objects from that set (Yiu et al., 
2007). The conditions are based on non-spatial 
attributes of objects from other data sets, which are 
further called feature objects. The query also 
specifies a method of finding the objects whose 
attribute values will influence target objects’ score. 
It can for example classify as such their nearest 
neighbors or objects located within a specified 
distance from the target objects. 

An example of top-k spatial preference query is 
a search for apartments having in their vicinity 
restaurants offering a wide selection of vegetarian 
food and convenient access to public transport. 
Figure 1 illustrates the execution of such query.  
White circles represent target objects which in this 
case are residential buildings. Black circles represent 
bus and train stations while gray circles represent 
restaurants; depending on their chosen attribute 
values target objects’ scores will be computed.  

The conditions of the query illustrated on the 
figure define neighboring objects as the ones least 
distant from the target objects, which are pointed by 
arrows.  In this case object r1 is found to have the 

highest value. Its total score amounts to 0.8+0.9=1.7, 
while r2 object’s value equals 0.8+0.6=1.4, r4 
object’s value equals 0.6+0.7=1.3 and r3 object’s 
value equals 0.3+0.6=0.9. 
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Figure 1: Schema of top-k spatial query execution. 

Finding each partial score of an object requires 
executing an appropriate spatial query which finds 
objects located in the object’s neighborhood. The 
queries can comprise many preferences and spatial 
data sets are characterized by high cardinality. This 
results in performing a large number of spatial 
queries during each execution. 

Therefore, the optimization technique introduced 
in SP algorithm (Yiu et al., 2007) strives to discard 
these objects whose maximum possible score is 
lower than the score of k-th object classified as a 
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result at that moment. Another R-tree based 
(Guttman, 1984) optimization method, introduced in 
GP algorithm (Yiu et al., 2007), bases on 
simultaneous computation of partial values of 
objects stored in one index leaf. Finally, the 
technique that simultaneously computes partial 
values of an object, based on similar preferences can 
be utilized (Gorawski and Dowlaszewicz, 2008.09).  

Algorithms employing these techniques assume 
that indices and data can be directly accessed and 
that all information about the process is available 
throughout their execution. Generally, in distributed 
environments these conditions are not satisfied, thus 
neccessitating developing adequate algorithm. 

A similar problem has  already been studied in 
(Güntzer, Balke and Kießling, 2001), (Michel, 
Triantafillou and Weikum, 2005) and (Bruno, 
Gravano and Marian, 2002). The research concerns, 
however, regular top-k queries and focuses e.g. on 
efficient ranking creation when remote nodes hold 
lists of partial scores. Executing top-k spatial 
preference queries requires a specialized solution. 

2 PROBLEM SPECIFICS 

Determining the level of compliance of object’s 
neighborhood with query conditions requires finding 
objects basing on their location and reading the 
values of their attributes. Therefore, when data sets 
are located on remote nodes, it is necessary to send 
all information required to execute the query through 
the network. As data transmission is a relatively 
lengthy operation, it is essential for algorithms 
operating on distributed data to minimize the amount 
of transmitted data. The specifics allow, however, 
utilizing the resources of computers on which the 
data is stored. Furthermore, in a distributed 
environment the parameters of remote computers, 
such as their load and network capacity, can vary. 
Therefore, it is necessary to minimize the influence 
of computers lacking available resources on the 
query execution process. Finally it is essential to 
utilize existing optimization techniques since they 
proved to substantially reduce the number of index 
and data accesses as presented in (Yiu et al., 2007) 
and (Gorawski and Dowlaszewicz, 2008). 

3 EXECUTION SCHEMA 

The adopted solution bases on computing partial 
scores on nodes storing feature data. In such case the 
transmission of raw objects’ data is unnecessary.  

Two message types are sent during query 
execution. The request contains locations, their 
current maximum possible values, preferences and 
the current score of k-th best object. The response 
comprises maximum possible values updated using 
the results of partial value computation. The process 
is presented on figure 2. 

 

Updated maximum possible value t+(p) 

Update maximum possible value of location p 

Computer storing 
target data set D 

Computer storing 
feature data sets 

utilized by 
preferences in P 

on the basis of preferences’ set P. 

 
Figure 2: Basic communication during query execution. 

Such solution also ensures direct access to 
indices during partial value computation and allows 
to easily employ existing optimization methods. 
Internal schema of updating maximum possible 
value is presented on figure 3. 

Query execution is therefore split in two parts. 
The part executed on the node storing target data is 
responsible for sending requests and finding objects 
satisfying the query conditions to the greatest extent. 
The part executed on nodes storing feature data 
updates maximum possible values. 
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Figure 3: Update of location’s maximum possible score. 

4 PARTIAL SCORE ALGORITHM 

The implemented partial score computation 
algorithm evaluates partial values of locations on the 
basis of preferences defined in the request and uses 
the values to update maximum possible scores of 
locations. The algorithm employs existing R-tree 
based optimization techniques during the process. 

The pseudo code of the algorithm is presented as 
algorithm 1. The algorithm utilizes either 
GroupRNGValue or GroupNNValue algorithm 
(presented as algorithms 2 and 3). They draw upon 
the description of computing many objects’ values 
simultaneously (Yiu et al., 2007). Additionally 
GroupNNValue draws upon the nearest neighbour 
search method presented in (Hjaltson and Samet, 
1999). 
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Algorithm 1. Value Computation Algorithm updating maximum 
possible partial values of locations. 
1.Repeat: 
2. Wait until value computation request is received. 
3. Extract set P of preferences, set V of locations and 

discarding value x from the request.  
4. Group preferences fc∈P into sets Sd of similar 

preferences. 
5. Create list I containing sets Sd ordered descending by 

their cardinality. 
6. For every S I: i∈
7. If fc∈S  define neighborhood using range method: d

8. Compute partial values td(p) of p∈V 
executing GroupRNGValue(root of index 
storing data utilized by fc∈Sd, V, range 
parameter of fc∈S , S ). d d

9. Else if fc∈Sd define neighborhood using nearest 
neighbor method: 

10. Compute partial values td(p) of p∈V 
executing GroupNNValue(root of index storing 
data utilized by fc∈Sd, V, Sd). 

11. For every p∈V: 
12. Update maximum possible value t+(p) of p on 

d(p). the basis of t
t+13. If (p) ≤ x: 

 [object discarding] 14. Remove p from V.
15. Send a response containing t+(p) of current p∈V. 

Algorithm 2. Algorithm GroupRNGValue simultaneously 
computing partial values of locations using RNG search. 
GroupRNGValue(node N of index storing feature data, set V 

e d, similar preferences set S) of locations, rang
1.For every e∈N: 
2. For every p∈V: [simultaneous computation of partial 

values of many objects] 
3. is a leaf: 

If di ≤ d: 
If N 

4. stance between e.MBR and p 
Get o5. bject g pointed by e: 

If distance between g and p ≤ d: 6. 
7. For every fc∈S: 

[simultaneous computation of 
partial values based on 
similar preferences] 

8. Compute tc(p) based on 
attribute c of object g, 
specified by fc, and its 
current value tc(p). 

9. if N is not a leaf: 
If di

Else 
10. stance between e.MBR and p ≤ d: 

, V, d, S). 11. Execute GroupRNGValue(e
12. Break. 

Algorithm 3. Algorithm GroupNNValue simultaneously 
computing partial values of locations using NN search. 
GroupNNValue(root R of index storing feature data, set V of 

locations, similar preferences set S) 
∈1. Create centroid C based on locations p V. 

2. Create set T storing locations for which nearest 
neighbor is not yet found and fill it with all p∈V. 

3. Create a priority queue Q storing entries ordered by 
om C. their distance fr

4. Insert R into Q. 
Until5.  T = Ø or Q = Ø: 

from Q. 6. Remove e = Q.first 
If e 7. is an object  

8. For every p∈T: [simultaneous computation 
of pa

:

rtial values of many objects] 
9. If minimal distance p.mindist between p 

and a feature object is unknown or 
p.mindist ≥ distance between p and e: 

10. p.mindist = distance between p and 
e. 

11. For every fc∈S: [simultaneous 
computation of partial values 
based on similar preferences] 

12. Compute tc(p) based on 
attribute c of object e, 
specified by fc, and its 
current value tc(p). 

13. If distance between Q.first and C > 
distance between p and C + p.mindist: 

14. Remove 
Else 

p from T. 
15. if e is a leaf: 

object pointed by e into Q. 16. Insert 
17. Else: 

For e ∈18. very y  e: 
19. Insert y into Q. 

5 SCHEDULING ALGORITHM 

In (Braun et al., 2001) and (Munir et al., 2008) 
various scheduling algorithms for distributed 
environment are presented. The problem of 
scheduling requests in case of distributed top-k 
spatial query computation, where several conditions 
have to be met is however specific. This has driven 
development of a specialized DMDL (Distributed 
Mixed Dynamic Leveled) scheduling algorithm. The 
algorithm controls query execution by managing the 
schema of sending requests. It is also responsible for 
finding query results on the basis of data received in 
responses. 

5.1 Requests 

One of the features of the DMDL algorithm is the 
method of choosing locations sent in one request. 
Each request contains locations of objects stored in 
one R-tree leaf. Such solution is characterized by a 
higher ratio of processing time spent on value 
computation to time spent on managing the 
messages than the ratio of a schema where each 
request contains e.g. one location. 

The technique has many other advantages. It 
allows efficient utilization of the optimization based 
on discarding objects, which is not possible when 
requests contain a large number of locations. For 
example, when each request contain all locations, it 
is impossible to utilize the technique as no total 
score is known before all partial values are 
computed. To utilize the discarding technique each 
request contains the score of k-th best object, which 
allows discarding objects on nodes computing 
partial values and further reducing transmitted data. 

The solution also allows to utilize the 
optimization based on simultaneous computation of 
partial values of objects stored in one R-tree leaf. 

Another feature of the algorithm is grouping 
preferences by the node storing data on which they 
depend on. Each request contains all preferences 
based on data stored on its target node. In effect, 
computing scores of objects from one leaf requires 
that communication between node storing target data 
and each node storing utilized feature data occurs 
once. Otherwise it would be equal to the number of 
preferences based on data sets stored on the node. It 
allows to reduce the number of exchanged messages. 

5.2 Scheduling Schema 

The DMDL algorithm utilizes parallel processing in 
a manner appropriate for the specifics of top-k 
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spatial preference queries. It simultaneously 
computes different partial values of objects from 
different leaves, while partial scores of objects from 
one leaf are computed serially. This results in 
computing partial scores in a parallel manner and 
simultaneously allows to utilize object discarding 
technique, which in order to be efficient requires the 
knowledge of previously computed partial scores. 

The algorithm also aims at maximizing the level 
of parallel processing, as it strives to it guarantee 
that at any moment each node has at least two 
requests to process. After sending a response to one  
of them it can instantly start processing the other. 

The algorithm also highly adapts itself to the 
environment in which it is being executed. Its 
schema of sending requests depends on the time of 
computing partial scores on remote nodes and the 
distribution of requests on the nodes. It uses a 
register of the number of requests on each node and 
sends eah request first to the node which did not  yet 
compute the partial values of the objects it concerns 
and is characterized by the lowest number of waiting 
requests. This solution generally gives higher 
priority to nodes processing requests fast which 
results in optimizing execution by discarding objects 
before sending requests to nodes computing partial 
scores slowly. As the mechanism is not based on  
any constants describing the execution environment 
the algorithm automatically adapts itself to changes 
occuring in the observed node efficiency.  

It has to be noted that predicting the optimal 
order of computing partial values is not trivial. There 
are many factors that influence the time between 
sending the request and receiving the response. 
Apart from character of preferences and data, it is 
influenced by availibility of resources and network 
capacity. Furthermore, the times of computing 
partial values on different nodes can change as their 
load and network’s capacity is dynamic. 

Another mechanism employed by the algorithm 
strives to balance the number of requests on all 
nodes. If more than six requests are waiting on any 
of the nodes then no new requests concerning 
objects from not yet analyzed R-tree leaves are sent. 
It prevents an undesirable effect from occuring. It 
developes in environments in which the time of 
processing requests on different nodes is heavily 
varied. In such case new requests concerning not yet 
analyzed object sets are constantly sent to fast nodes, 
while a very low number of objects’ total scores is 
known. It results in not discarding many objects 
because of a relatively low score of k-th best object 
at the time of sending new requests. Requests being 
later sent to slower nodes contain larger number of 

locations and the total execution time is significantly 
increased. The employed technique adjusts the level 
of parallel processing for the discarding technique to 
be efficient in any execution environment. 

The pseudo code of this algorithm is presented as 
algorithm 4. 

 
Algorithm 4. Request Sending algorithm DMDL. 
DMDL 
1.Repeat: 
2. Wait until query execution request is received. 
3. Extract preferences fc, k parameter and information 

about target data set from the request. 
4. Locate the root R of index storing target data. 
5. Create list L containing sets Pe of preferences fc 

based on data stored on one remote node. 
6. Create list W of currently analyzed target object 

sets. 
7. Create a min-heap D storing objects ordered by score. 
8. Create variable s = 0 storing the number of already 

analyzed leaves. 
9. Repeat until s = R.leafnum and W = Ø: 
10. If W ≠ Ø: 
11. Wait until a response is received. 
12. Get the object set Vx∈W concerned by the 

response. 
13. Decrement Pe.numexec of Pe concerned by the 

response. 
14. For every p∈V : x

15. If response contains t (p): +

16. Update maximum possible value of p 
using t (p). +

17. Else: 
18. Remove p from Vx. 
19. If objects’ p∈Vx partial values are 

computed for all preference sets Pe∈L: 
20. For every p∈V : x

21. If D.size < k or t(p) > 
t(D.first): 

22. Insert p into D. 
23. If D.size > k: 
24. Remove D.first from D. 
25. Remove V  from W. x
26. Else: 
27. If Vx ≠ Ø: 
28. Get preference set Pe∈L, not used 

yet to compute partial values of 
objects from Vx and which 
P .numexec is lowest. e

29. Send partial value computation 
request concerning objects from Vx 
set to the remote node storing 
data utilized by f ∈P . c e

30. If all preference sets’ P ∈L, Pe.numexec <6: e

31. For every preference set P ∈L: e

: 32. While Pe.numexec < 2 and s < R.leafnum
33. Create set Vx containing objects 

stored at s+1 leaf of R tree. 
34. Send a partial value computation 

request concerning objects from Vx 
set to the remote node storing 

 by fc∈Pe. data utilized
35. Increment s. 
36. Increment Pe.numexec. 
37. Send a query response containing description of 

objects stored in D. 

 
It sends requests concerning objects from 

different R-tree leaves to different nodes 
participating in query execution. After receiving 
each response the scores of the objects are updated 
and the next request concerning these objects is sent 
to the next node which did not compute the partial 
values of the objects yet and is characterized by the 
lowest number of requests. After receiving each 
response the algorithm checks if any there are more 
than six requests on any of the nodes. If it does not 
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find any it instantly sends new requests concerning 
objects from not yet analyzed R-tree leaves to all 
nodes with less than two requests. The process ends 
after computing total scores of all objects, which 
were not discarded thus yielding the best-k objects. 
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Figure 4: DMDL algorithm’s execution schema. 

Figure 4 presents the schema of this algorithm. 
The node storing target data is labeled as “ctd” and 
nodes storing feature data are labeled as “cfd”. Sets 
of objects from one leaf are presented as circles 
containing dots. Solid lines represent requests and 
dashed lines represent responses. 

6 ALGORITM’S EFFICIENCY 

In order to examine the efficiency of DMDL 
algorithm an experiment was conducted aiming at 
comparing it to algorithms realizing the queries on 
locally available data. Such algorithms do not 
require data transmission and have access to all 
information about the query execution process.  

Table 1: Preferences of the executed query. 

 
Neighbor-

hood 
Definition 

Data 
Set 

Attri-
bute Range  

Value 
Computation 

Method 
Preference 1 NN F1a p1 N/A N/A 
Preference 2 NN F1b p2 N/A N/A 
Preference 3 NN F2 p1 N/A N/A 
Preference 4 NN F2 p2 N/A N/A 
Preference 5 RNG F3 p1 3 maximum 
Preference 6 RNG F3 p2 3 maximum 
Preference 7 RNG F4 p1 3 maximum 
Preference 8 RNG F4 p2 3 maximum 

 
The experiment based on executing a query 

moderately prone to all optimization techniques 
implemented in score computation algorithm. It 
searches for the objects from set D which satisfy the 

conditions presented in table 1 to the greatest extent. 
Four of the preferences define the neighborhood of 
the object as its nearest neighbor (NN) and four 
classify all objects located within some specified 
distance from the object as its neighbors (RNG). The 
conditions are based on attributes of objects from 
differetn data sets. The distance parameter of all 
range preferences equals 3 units and they utilize the 
highest attribute value of objects from the area as a 
base for the partial score. 

To realize the comparison the query was being 
executed by DMDL and L1P1S1 (Gorawski and 
Dowlaszewicz, 2008.09) algorithms. The experiment 
based on an assumption that three computers are 
available. First, the distributed application was setup 
on the computers as described by table 2 and 
employed to execute the query. Later, assuming that 
it would be possible to aggregate the data required 
by the query, each of the computers was used to 
execute the query using L1P1S1 algorithm. The 
cardinality of utilized data sets equalled 10000 and 
20000. 

Table 2: Character of the distributed environment. 

Configuration Intel 
Pentium M 
1,7GHz 

Intel Core 2 
Duo 
1,83GHz 

AMD Duron 
1,6GHz 

distributed system aF1 aD, aF3, pF4 aF2 (75%) 
aX[y]: application responsible for operating on data sets X[y[n]] 

(XX%): percent of generated artificial processor load 

 
Figure 5 presents the results. In the test case the 

distributed algorithm executed the query in 
significantly shorter time than the local algorithm, 
despite the need of data transmission. It stems from 
the fact that the algorithm not only minimizes 
transmitted data and utilizes existing optimization 
techniques, but also further optimizes the execution. 
Also, further rise of data sets’ cardinality resulted in 
increasing DMDL’s relative performance. 
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Figure 5: Time of query execution using local L1P1S1 and 
distributed DMDL algorithm for data sets’ cardinality 
equal 10000 and 20000 objects. 

Another experiment concerned executing the 
query while generating artificial load on one of the 
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computers. The load modelled a different process. 
The cardinality of data sets utilized during this 
experiment equalled 20000. The results are 
presented on figure 6. 

In the future we consider extending the query 
definition possibilities. One of the possible upgrades 
is defining an area in which the query is executed. 
This is a straightforward modification, which can 
leverage the functionality and substantially reduce 
the time required to obtain relevant results. 

The experiment proved that executing queries in 
a distributed environment is much more efficient 
when the computers comprising the system are 
simultaneously used for other tasks. It can utilize 
computers shared by many queries less frequently 
and move the main processing effort to computers 
specific for each query. Such behaviour is 
particularly desired when many queries are executed 
in parallel.  
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