
K-ANNOTATIONS
An Approach for Conceptual Knowledge Implementation using Metadata

Annotations

Eduardo S. E. Castro, Mara Abel and R. Tom Price
Instituto de Informática, UFRGS, Av. Bento Gonçalves, 9500, Bloco IV, Campus do Vale, Porto Alegre, Brazil

Keywords: Knowledge System, Conceptual Model Implementation, Metadata Annotations for Knowledge
Interpretation, Aspect Oriented Programming.

Abstract: A number of Knowledge Engineering methodologies have been proposed during the last decades. These
methodologies use different languages for knowledge modelling. As most of these languages are based on
logic, knowledge models defined using theses languages cannot be easily converted to the Object-Oriented
(OO) paradigm. This brings a relevant problem to the development phase of KS projects: several complex
knowledge systems are developed using OO languages. So, even if the conceptual model can be modelled
using the logical paradigm, it is important to provide a standard knowledge representation with the OO
paradigm. This paper introduces the k-annotations, an approach for conceptual knowledge implementation
using metadata annotations and the aspect oriented paradigm. The proposed approach allows the
development of the conceptual model using the OO paradigm and it establishes a standard path to
implement this model. The main goal of the approach is to provide ways to reuse both the knowledge design
and related programming code of the model based on a single model representation.

1 INTRODUCTION

Several Knowledge Engineering methodologies
have been proposed during the last decades for
building knowledge systems (KS). For instance,
VITAL (Meseguer & Preece, 1995), MIKE (Angele
et al., 1998), CommonKADS (Schreiber et al.,
2000), XP.K (Knublauch, 2002), RapidOWL (Auer,
2006) and KM-IRIS (Chalmeta & Grangel, 2008).
Almost all those methodologies have focused on the
modelling phase of the project, specifically, in the
knowledge model elaboration. This model is
composed by three components according to
Schreiber et al. (2000):

 Conceptual Component: describes the static
information/knowledge structure (concepts,
attributes, relations, rules and axioms) related to
the application domain;

 Task Component: defines the strategies used by
the system (on the conceptual component) to
solve problems;

 Inferential Component: defines the basic
reasoning steps used to complete a task.

These methodologies use different languages for
knowledge modelling. For instance, AI-based

languages (e.g.: Ontolingua, CML) and ontology
markup languages (eg: RDF, OWL). As most of
these languages are based on logic, knowledge
models defined using theses languages cannot be
easily converted to the Object-Oriented (OO)
paradigm. This brings a relevant problem to the
development phase of KS projects: several complex
knowledge systems are developed using OO
languages. So, even if the conceptual model can be
modelled using the logical paradigm, it is important
to provide a standard knowledge representation with
the OO paradigm, because many projects use Java
and C# as languages for KS development.

However, in spite of all the methodological
efforts, there is not yet a methodology that offers an
extensive approach composed by guidelines and
tools for the representation of the conceptual model
using the OO paradigm. Currently each KS project
uses an ad-hoc solution for the implementation in
OO of the conceptual model. For instance, an ad-hoc
solution in use by a project complex KS for
underground oil reserves evaluation (Castro et al.,
2008) defines the following mapping between the
conceptual model and its implementation using the
OO paradigm:

66 Castro E., Abel M. and Price R. (2009).
K-ANNOTATIONS - An Approach for Conceptual Knowledge Implementation using Metadata Annotations.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Artificial Intelligence and Decision Support Systems, pages
67-73
DOI: 10.5220/0001863100670073
Copyright c© SciTePress

 Concepts map to classes;
 Concept attributes map to class properties;
 Facets (for constraint definition), Axioms and

Rules map to external classes (validator design
pattern (Fowler, 1997)) or to methods of the
conceptual classes.

In consequence, not only the aforementioned ad-
hoc approach but also several KS projects face the
following problems:

 The ad-hoc solution design can cope with the
current system requisites, but, it may become
quickly inadequate because of the frequent
changes in system requirements due to
knowledge evolution;

 In most of cases, the ad-hoc solution generates
components that merge the conceptual model
with other requirements. In the aforementioned
example, it is hard to distinguish methods that
implement facets from methods that implement
other requirements. This ambiguity of method
role turns much harder to understand the code
goals and structure and to perform testing and
maintenance. Also, it is almost impossible to
extract documentation about the conceptual
model from the code and it is hard to maintain
the documentation of the conceptual model
coherent with its implementation;

 The model implementation is well-know only by
the team of programmers of the project. This
increases this risk of maintenance problems.
This is usually worsened because of high staff
turnover.

The proposed approach allows the development

of the conceptual model using the OO paradigm and
it establishes a standard path to implement this
model. The main goal of the approach is to provide
ways to reuse both the knowledge design and related
programming code of the model based in a single
model representation.

The approach is based on a set of metadata
annotations integrated with the aspect-oriented
paradigm (AOP). According to Stephens (2004)
metadata is traditionally defined as ‘information
about information’. In the proposed approach,
annotations are used to distinguish conceptual model
elements from the rest of the code, and these
annotations are stored within the metadata
components of the interpreters. In the case of Java
and C#, metadata is information about the elements
of a class., for instance, constructors, methods and
properties.

Widely used OO languages provide annotations
for metadata definition, so the proposed approach

uses this resource to add metadata. Annotations are
used to clearly and visually distinguish conceptual
model elements in the software code, marking them
as such. As these annotations are identifying
knowledge elements, they are here called K-
Annotations (KA). Concepts, attributes, facets,
axioms and rules are defined using k-annotations.
Each annotation must be processed by the KA-
Processor tool that generates the correspondent code
for each annotation. Section 3.1 defines the set of k-
annotations proposed in this article and the KA-
Processor that generates code based on the
annotations.

Integrated to the k-annotations, the Aspect
Oriented Paradigm is used to avoid the proliferation
of auxiliary properties and methods in the class that
implements the conceptual model. For instance, in
the ad-hoc solution, if a facet that inhibits null
values is used four times, the developer must
implement four times the correspondent value
comparison. The code for each check is manually
inserted for each use, so the system is more
susceptible to bugs. An aspect is defined (Kiczales et
al., 2001) as a software entity that captures a
transversal functionality in relation of an application.
Regarding this definition, k-annotations identifies
aspects which must be managed by the tool that
generates code.

The management is performed by a tool that
injects the correspondent code for each annotation.
So, the developers do not need anymore to insert
repetitively the code, thus avoiding the phenomenon
of dispersion and reducing the risk of bugs and the
cost of maintenance. The activation of the code
generated for each annotation is automatically
configured by the annotation processor tool. It is not
necessary anymore for the developer to define when
it must be called. Also, a code library is part of this
approach, so, the code generated by the annotation
processor tool can be reduced using calls to the
library.

Regarding the above propositions, several KS
projects can use the proposed notation and
interpreting tool for developing the conceptual
model, avoiding ad-hoc solutions for every project.

In section 2, related works are discussed, in
particular XP.K that includes KBeans (Knublauch,
2002), a proposition of an OO implementation for
the conceptual model. In section 3, the central
concepts of the proposed annotations and
interpreting tool are briefly described, and the set of
annotations to be used, with their roles, are defined.
Also, in section 3, the description of a tool for code
generation and a tool for monitoring the

K-ANNOTATIONS - An Approach for Conceptual Knowledge Implementation using Metadata Annotations

67

maintenance of the knowledge body is presented. In
section 4, a case study using the proposed tools is
presented. In section 5, conclusions and future work
are presented.

2 RELATED WORK

Among the methodologies for KS development,
XP.K is distinguished because it proposes the OO
paradigm as a starting point. It proposes an OO
solution called KBeans for implementing the
conceptual model. Section 2.1 is uses XP.K
(Knublauch, 2002) as source base.

2.1 KBeans

KBeans is based on JavaBeans and code conventions
for defining transparently the semantics of the
conceptual model elements. Semantic transparency
can be reduced to formal information about the
model elements and their relations (Knublauch,
2002). KBeans proposes the use of code conventions
to provide metadata information related to the model
elements and their relations. It uses reflection to
process each metadata and to generate the
correspondent code.

KBeans maps concepts to classes and attributes
to class properties. Also, it provides a pre-defined
catalog of facets for constraint checking. Each facet
is defined on a class using a code convention related
to properties and methods. For instance, to define
that a class property named age can not be less than
0, another class property named ageMinValue must
be defined as 0. However, some disadvantages arise
when using only this sort of code conventions to
provide metadata:

 The use of code conventions creates ambiguities
related to method and property roles. Properties
and methods that define facets can be confused
with properties and methods related to the
application domain. For instance, a property
named ageMin can be defined as a property of a
concept, but it can be mistakenly be understood
as a facet;

 There is a proliferation of auxiliary properties
and methods in the class that implements the
conceptual model. This increases the code and
turns it harder to read and to maintain the
knowledge base and the application;

 A large set of code conventions must be learnt
by the developers. However, the language
interpreter is not capable to identify the misuse
of conventions. For instance, a code can be

syntactically correct, but convention mistakes
are not identified;

 The use of code conventions reduces the power
of code refactoring. As semantic is defined
using conventions, a refactoring can generate
bugs in the code. For instance, if a property
called age is refactored to personAge, a facet
named ageMinValue will not be automatically
refactored to personAgeMinValue.

To address the above disadvantages, the k-

annotation approach is proposed. It is detailed in the
next section.

3 K-ANNOTATION APPROACH

The discussed disadvantages can be reduced using
the k-annotations approach. Annotations reduce or
may eliminate the use of code conventions. This is
so because each annotation has a well defined role
and the related code is automatically generated by
the interpreter. Annotations are checked by the
interpreter and code conventions are not checked
(Piveta et al., 2007). Avoiding code convention
eliminates the problem of ambiguity related to the
role of properties and methods. Concepts, attributes,
facets, axioms and rules can be clearly identified in
the code.

The proliferation of auxiliary properties and
methods is reduced using annotations. Annotations
can be easily processed by a tool for generating code
and documentation.

The developer team does not need to use a large
set of code convention which is not verified by the
compiler. Annotations are validated by the language
interpreter. So, it helps the developer to avoid
mistakes.

The problem of code refactoring is reduced. For
instance, a facet to restrict the minimum value of a
property is defined using @FacetMinValue. If the
property is renamed, it does not affect the facet.

The K-Annotations process (Figure 1) starts
when a conceptual model (CM) specification is
received by the developer. It is necessary to
implement the specification in the OO using k-
annotations (Section 3.1). After implementing the
CM, the KA-processor tool verifies if the code
contains any mistake. When the KA-processor
detects some problem, it cancels the process of
annotation interpretation and it sends warnings to the
developer. If the code does not contain mistakes, the
KA-processor calls the KA-DocGen that generates
documentation for the CM model. The KA-DocGen

ICEIS 2009 - International Conference on Enterprise Information Systems

68

is provided to allow visual and textual comparisons
between the CM specification and the CM
implementation. Besides the documentation, the
KA-Processor generates the code necessary to
implement the semantic associated to an annotation.
The generated CM implementation by the KA-
Processor is interpreted with all code by the Java or
C# language processor and an executable CM
implementation is generated.

Executable CM
implementation

KA‐Processor

Java/C# Interpreter

CM implementation

with code related to

OO CM implementation

KA‐DocGen

CM documentation
for revision

Is the
code ok?

Yes

No Send warnings to
developer.

Figure 1: K-Annotation Process.

3.1 K-Annotations

The set of annotations proposed clearly distinguishes
the CM elements in the OO implementation, which
contains other elements related to other
requirements. The k-annotations defined in Table 1
allow defining the following CM elements
(examples are presented in section 4):

 @Concept: it is used with a class declaration to
define that a class is a concept. The
interpretation of this annotations does not
directly generate code, but visually
distinguishes classes from concepts;

 @Attribute: defines that a property is an
attribute of a concept. The interpretation of

this annotation does not directly generate
code, but visually distinguishes properties
from attributes of a concept;

 @HasParts: defines the parts of a concept. Each
part is defined in a different class;

 @PartOf: defines that a concept is a part of
another concept. It must be used with the class
declaration. For instance, when this annotation
is declared as @PartOf(value=B.class) in a
class named A, the KA-Processor verifies if
there is a class constructor that contains a
parameter of type B. If it does not detect the
parameter of the specified type, it cancels the
interpretation process and it alerts the
developer;

 @FacetMinCardinality/MaxCardinality: these
annotations can be used to define the
cardinality of collections and thus also
relations;

 @Facet<Name>: all annotations whose names
start with Facet are based on the KBeans facet
catalog (Knublauch 2002, p. 109). Facets are
used to define restrictions over the valid
values of an attribute;

 @OnKnowledgeViolation: defines the class
that manages a runtime exception generated
by an event that violates a facet of an attribute.
For instance, during runtime, an attribute
could receive a null value, but a facet denies
null value for it. So, an exception must be
thrown to alert about the violation and this
allows repairing the invalid state. The
application should block all operations until
the repair of the invalid state;

 @Axiom: it can be used with concepts to define
expressions that always must be true. It
requires a parameter named value that
identifies the class that implements an axiom.
An axiom must be defined in the object level
using OO expressions, for instance, if-then-
else. This annotation can be used to create
custom facets;

 @Rule: it can be used with concepts to define
rules that are related to a concept. It requires a
parameter named value that identifies the class
that implements a rule. When the KA-
Processor detects this annotation, it modifies
all methods that modify attribute values to call
the rule instance after a modification of an
attribute value. It is necessary to invoke the
rule method after a value modification to
validate the state of the instance.

K-ANNOTATIONS - An Approach for Conceptual Knowledge Implementation using Metadata Annotations

69

Simple inheritance among concepts is directly
expressed using OO. It is not necessary to provide
an annotation with this purpose. Multiple inheritance
is not supported by OO, neither by this approach. To
verify if a concept is a super-type of another
concept, Java and C# offer reflection mechanisms
that provides this information.

Table 1: The K-Annotations for CM Implementation.

Annotation Role
@Concept(name = x) Identifies a concept.
@Attribute(name = y) Identifies a concept attribute.
@PartOf
(value=Element.class)

Defines that a class is a part of
Element.class.

@HasParts(values=’
…’)

Defines the parts of a concept.

@FacetNotNull Defines that an attribute value
can not be null.

@FacetDefaultValue
(value = x)

Defines the default value of an
attribute as x.

@FacetMinInclusive
@FacetMaxInclusive
 (value = x)

Defines that an attribute value
must be greater/less or equal
than x.

@FacetMinExclusive
@FacetMaxExclusive
(value = x)

Defines that an attribute value
must be greater/less than x.

@FacetMinLength
@FacetMaxLength
(value = x)

Defines the minimal/maximum
length of a string.

@FacetFractionDigits
(value = x)

Defines the maximum length of
digits.

@FacetMaxCardinalit
y
@FacetMinCardinalit
y (value = x)

Defines the
maximum/minimum cardinality
of a collection.

@FacetValidClasses
@FacetInvalidClasses

Defines the classes that a
collection (does not) supports.
Parameters omitted.

@FacetPattern
(pattern = x)

Defines the string pattern x that
an attribute value must respect.

@FacetOrdered Defines that a collection must
be ordered.

@FacetDuplicateFree Defines that a collection must
not contain duplicated values.

@FacetValidValues
@FacetInvalidValues

Defines the valid/invalid values
of an attribute. Parameters
omitted.

@OnKnowledgeViola
tion(value =
Handler.class)

Defines the class that manages
the exception generated by an
event that violates a facet of an
attribute.

@Rule(value =
RuleImpl.class)

Defines the class that
implements a rule.

@Axiom(value =
AxiomImpl.class)

Defines the class that
implements an axiom.

3.2 KA-Processor: Code Generation
Tool

The KA-Processor tool validates the declaration of
k-annotations and it generates any code related to k-
annotations. This tool process the CM
implementation enriched with annotations. It adds
the necessary code to implement the expected
behaviour for each annotation. To comprehend this
section, it is necessary to bear in mind the concepts
pointcut and advice of Aspect Oriented Paradigm
(Kiczales et al., 2001). Pointcut is a point in a
software where a transversal functionality must be
invoked. For instance, when @FacetMinLength is
defined on a concept attribute, at this point, an
advice must be invoked. Advice is the additional
code necessary to implement an aspect. For instance,
the code that validates the length of a string.

The annotations @Concept and @Attribute do
not generate additional code. However, they are
mandatory to identify elements of the CM models.
Also, they are used to extract the model
documentation.

For annotations of facets, the KA-Processor
generates a pointcut that activates the advice related
to the defined facet. For instance, if the facet
@FacetPattern is used, before invoking the method
that defines the value of a string variable, the
pointcut is called to validate the pattern of the value.
This group of annotations is responsible for
constraint validations.

The annotation @HasParts is used by the tool to
generate validation code related to the method with
the signature addPart(Object part). This method
allows adding parts to its owner. So, part instances
can be directly accessed by the owner. It must
validate the class type of the parameter part. If the
class type is not declared in @PartOf, a knowledge
violation must be thrown by the method. Section 4
shows a detailed example.

The annotation @PartOf is used by the tool to
verify if the annotated class contains a constructor
with a single parameter. The class type of this
parameter must be the same type defined in the
annotation. If the constructor is not detected, the tool
alerts the developer. See section 4 for a detailed
example.

By using axioms, it is possible to define custom
facets. An axiom is declared with a class and the
processor tool generates a pointcut in each method
that modifies an attribute value. So, when a value
changes, all axioms are validated by invoking their
advices.

ICEIS 2009 - International Conference on Enterprise Information Systems

70

Rules can be linked to concepts using the
annotation @Rule. The KA-Processor tool generates
a pointcut in each method that modifies attributes
values. The advice is invoked after the modification
of the attribute value. For instance, if an attribute has
a value dependent of another attribute, when the
value of the later attribute changes, the advice must
be invoked.

The next section presents a case study using k-
annotations and the KA-Processor tool.

4 CASE STUDY

The following case study is initially presented on a
semi-formal specification based on CML (Schreiber
et al., 2000) of a conceptual model (Table 2). CML
is the language used by CommonKADS to build
knowledge models.

Table 2: Model of the concepts Sample and Identification.

Concept Sample
Is-a Object
Name string(40)

Concept Identification
Is-a Object
Part-of Concept Sample
Depth

real, range [0.0 - 9999.99]

Use string, list-of [Depositional, Diagenetic,
Ecologic, Provenance], MAX (3
occurrences)

Date date, (DD/MM/YYYY)

Table 3: Java implementation of the concept Sample.

Concept Sample
@Concept
@HasParts(values=Identification.class)
public interface Sample{
 @Attribute(name = 'Name')
 @FacetMinLength(value = 1)
 @FacetMaxLength(value = 40)
 @OnKnowledgeViolation(value =
 SampleExceptionHandler.class)
 String name;

 addPart(Object part);
}

In this case study, only a small fraction of the
conceptual model is presented, the complete model
can be found in (Abel, 2001). This model is part of a
complex knowledge system for underground oil
reserves evaluation. After the presentation of the
model fragment (Table 2), an implementation in

Java using k-annotations is presented (Tables 3 and
4) and the results are evaluated.

The concept named Sample (Table 2) results in
the code defined in Table 3. It is possible to notice
that k-annotations can be declared in both Java/C#
interfaces and classes. The support for interfaces is
offered to increase the re-use of the model
implementation. The annotation @Concept is
mandatory to define that KA-Processor must process
any k-annotation declared in the class or interface.

Table 4: Java implementation of the concept
Identification.

Concept Identification
@Concept(name='Identification')
@PartOf(value=Sample.class)
@OnKnowledgeViolation(value =
 MacroExceptionHandler.class)
public class Identification{
 @Attribute(name='Depth')
 @FacetMinInclusive(value = 0)
 @FacetMaxInclusive(value = 9999.99)
 @FacetNotNull
 Float Depth;

 @Attribute(name='Use')
 @MaxCardinality(value = 3)
 @FacetValidValues(values =
 'Depositional, Diagenetic,
 Ecologic, Provenance')
 List<String> Use;

 @Attribute(name='Date')
 @FacetPattern(pattern =
'DD/MM/YYYY')
 String date;

 //Constructor
 Identification(Sample owner);
 Sample getOwner(){…}; //Parent
}

For identifying the parts of this concept,

@HasParts is used with the list of parts. This
annotation also requires the definition of a method
with the signature addPart(Object part). This
method is mandatory to allow the storage of parts of
Sample. When the mandatory method is not
identified, the KA-Processor alerts the developer.
The annotations @Attribute and @Facet<Function>
is used with properties (e.g.: name) and it identifies
attributes of a concept and its facets, respectively.

The annotation @OnKnowledgeViolation
identifies a class that manages the violation of one or
more facets. A class that manages knowledge
violations must contain a method with the signature
manageException (Map context). Variable context is

K-ANNOTATIONS - An Approach for Conceptual Knowledge Implementation using Metadata Annotations

71

a map that contains the instance of the class that
generated the exception and the value that violates
the facet. The map is offered to allow the developer
to manager or alert the user about the exception.
Standard method signatures are used instead of pre-
defined classes to avoid blocking the use of
inheritance by classes of the conceptual model. A
pre-defined abstract class would consume the single
inheritance offered by OO languages.

The concept named Identification (Table 2)
results in the code defined in Table 4. In this case, k-
annotations were used directly in a class declaration.
As Identification is a part of Sample, it used
@PartOf. When this annotation is used, it is
mandatory to define a constructor with a single
parameter. This class type of the parameter must be
the same as the part owner (e.g.: Sample). Also, the
method getOwner is implemented for obtaining the
instance of the owner from its parts.

It is possible to notice that
@OnKnowledgeViolation is defined with the class
declaration instead of with a property. When this
annotation is declared with a class, all knowledge
violations are managed by it. This functionality
avoids defining the same annotation multiple times
in the same class. Also, the facet @FacetPattern is
used with an attribute that is a string. This facet is
very useful to avoid errors related to string patterns,
for instance, the pattern of dates.

5 CONCLUSIONS

This paper presents an approach based on metadata
annotations for implementing the conceptual model
of a KS. The proposed approach defines a common
vocabulary and tools that can be shared among
multiples projects. Also, it is compatible with
multiple knowledge modelling languages.

The approach defines a standard path for the task
of implementing the conceptual model, so the
problems related to the use of ad-hoc solutions can
be reduced and even eliminated. This may help to
reduce the implementation time and improve the
reusability of conceptual knowledge models.

As future work, the CM model presented in
section 4 will be completely implemented using k-
annotations to identify important improvements to
this approach. In addition, the next step of this
research is to define connections between the CM
implementation based on k-annotations and the
implementation of the task model. A link between
both implementations can provide ways to develop
inferences machines based on the use of aspects.

Using aspects, redundant code for each inference
machine implementation could be reduced or
eliminated. The future investigation will focus on k-
aspects, an approach to build reusable inference
machines using the aspect oriented paradigm.

ACKNOWLEDGEMENTS

This work is supported by Finep and ENDEEPER
Co. that retails PETROLEDGE, the described KS.

REFERENCES
Abel, M 2001, ‘Estudo da perícia em petrografia

sedimentar e sua importância para a engenharia de
conhecimento’, PhD thesis, Universidade Federal do
Rio Grande do Sul.

Angele, J, Fensel, D, Landes, D & Studer, R 1998,
‘Developing Knowledge-Based Systems with MIKE’,
Automated Software Engg, vol. 5, no. 2, pp. 389-418.

Auer, S 2006, ‘Towards Agile Knowledge Engineering:
Methodology, Concepts and Applications’, PhD
thesis, University of Leipzig.

Castro, ESE, Victoreti, FI, Fiorini, SF, Abel, M & Price,
RT 2008, ‘Um Caso de Integração de Gerenciamento
Ágil de Projetos à Metodologia CommonKADS’, In
Proceedings of the 1st Workshop of Software Project
Management, Brazil, pp. 12-21.

Chalmeta, R & Grangel, R 2008, ‘Methodology for the
implementation of knowledge management systems’,
Journal of American Society for Information Science
and Technology, vol. 59, no. 5, pp. 742-755.

Fowler, M 1997, Analysis Patterns: Reusable Object
Models, Addison-Wesley, California.

Kiczales, G, Hilsdale, E, Hugunin, J, Kersten, M, Palm, J
& Griswold, W 2001, ‘An overview of AspectJ’, In
Proceedings of the 15th European Conference on
Object-Oriented Programming, UK, pp. 327-353.

Knublauch, H 2002, ‘An Agile Development
Methodology for Knowledge-Based Systems’, PhD
thesis, Universidade of Ulm.

Meseguer, P & Preece, A 1995, ‘Verification and
Validation of Knowledge-Based Systems with Formal
Specifications’, The Knowledge Engineering Review,
vol. 10, no. 4, pp. 331-343.

Piveta, E, Moreira, A, Pimenta, M, Araújo, J, Guerreiro, P
& Price, T 2007, ‘Avoiding Bad Smells in Aspect-
Oriented Software’, In Proceedings of the 19th
International Conference on Software Engineering
and Knowledge Engineering, USA, pp. 81-84.

Schreiber, G, Akkermans, H, Anjewierden, A, Hoog, RD,
Shadbolt, N, Velde, D & Wielinga, B 2000,
Knowledge Engineering and Management: The
CommonKADS Methodology, MIT Press, Cambridge.

Stephens, RT 2004, ‘Utilizing Metadata as a Knowledge
Communication Tool’, in Proceedings of IEEE
IPCC2004, UK, pp. 55-60.

ICEIS 2009 - International Conference on Enterprise Information Systems

72

