
AN OBJECT MODEL FOR THE MANAGEMENT OF
DIGITAL IMAGES

S. Khaddaj and A. Hoppe
Faculty of Computing, Information System and Mathematics, Kingston University

Kingston upon Thames KT1 2EE, U.K.

Keywords: Object Oriented Modelling, Object Versioning, Image Management Systems.

Abstract: With digital image volumes rising dramatically there exists an important and urgent need for novel
techniques and mechanisms that provide efficient storage and retrieval facilities of the voluminous data
generated daily. It is already widely accepted that the use of data abstraction in object oriented modelling
enables real world objects to be well represented in information systems. In this work we are particularly
interested with the use of object oriented techniques for the management of digital images. Object
orientation is well suited for such systems, which require the ability to handle multiple type content. This
paper aims to investigate a conceptual model, based on object versioning techniques, which will represent
the semantics in order to allow the continuity and pattern of changes of images to be determined over time.

1 INTRODUCTION

Digital imaging management systems, in which
images are collected, organised and categorised to
facilitate their preservation, retrieval and use are
becoming an essential part of many organisations
particularly in visual surveillance and medical
imaging sectors.

Object oriented techniques have been used
successfully in many different applications that
range from numerical modelling to web applications.
The main benefits, apart from the abstraction power
to represent real objects, are the provision for the
extensibility needed to create new models and the
semantic needed to construct complex objects of
similar states (Yourdon, 1994; Bertrand, 1997).

The use of object oriented techniques in
information management has been given
considerable attention in the past decade (Cattell,
1991; Loomis, 1995). Recent research works have
used temporal information and object oriented
techniques to explicitly define the relationship
between object behaviour over time (Khaddaj,
2004). The ability to examine the continuity of
object changes is important for many different
applications.

The object oriented approach provides the
flexibility to make the changes to attributes and/or
behaviour of objects independent of one another, in

order to allow the examination of detailed
information of object application model. Therefore,
it can be used to identify the pattern of changes
within the objects. The simplest way to store
changes to objects is that every time a change occurs
the whole object is stored again, but this can be
prohibitively costly in terms of storage space, and
might compromise system performance particularly
if objects are updated regularly (fast changes). An
alternative is to use object versioning techniques in
order to track the evolution of objects. This paper
aims to investigate an object model for the
management of digital images that will represent the
semantics to allow the continuity and pattern of
changes of image objects to be determined over
time.

In this work we start by considering object
orientation’s major concepts and information
management. Then, object versioning is considered
for the development of the proposed model and is
used for the determination of the continuous links
between different versions of objects and
maintaining the metadata of those objects. An object
oriented image management model is then
considered together with an object-oriented
environment for system implementation. Finally, we
present some conclusions and suggestions for future
works.

25
Khaddaj S. and Hoppe A. (2009).
AN OBJECT MODEL FOR THE MANAGEMENT OF DIGITAL IMAGES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Databases and Information Systems Integration, pages 25-30
DOI: 10.5220/0001861000250030
Copyright c© SciTePress

2 OBJECT ORIENTATION AND
INFORMATION
MANAGEMENT

The object-oriented approach has the abstraction
power to represent real objects. It represents space as
a domain populated with independently existing
objects that encapsulate attributes and operations.
Therefore, this encourages modularity within
information systems, while entity relationship
models will not show these properties. For example,
changes in an object do not necessarily affect the
properties of any other object in the system.

The object-oriented approach provides the
extensibility needed to create new models through
“inheritance” which also promotes hierarchies of
objects. It also provides the semantic power needed
to construct complex objects of similar states,
through “polymorphism”, for handling complex
attributes and behaviour changes, and the flexibility
needed to develop simulation models that can adapt
to the changing states of information systems. This
approach makes it easier to develop new software
from existing ones, thus, promoting reusability.

The object-oriented approach has been used
successfully for the unification of temporal and other
information related to objects. It is supported by
efficient design tools such as UML (Universal
Modelling Language), programming tools such as
Java, C# and C++, and Object Oriented Database
Management Systems (ODBMS) such as Objectivity
and Versant. The choice of a particular database,
however, clearly depends on the actual application.
A relational database is a better choice for a project
where relationships among objects are fairly fixed
and well known. Object-oriented databases can
outperform relational databases at handling complex
relationships among objects (Loomis, 1995). The
problem becomes acute, however, when the changes
are too fast for a database to be redesigned so it can
rapidly deliver necessary information.

An object-oriented database could model the
presented changes based on a mix of objects and
their relationships. For example, if a real life object
is represented in object oriented form, rather than as
an entry in a database table, associations with other
objects (to which it is linked) can automatically
"inherit" any changes made, making it easier to track
later. At this point it is important to mention that the
Enhanced ER Model supports generalisation,
aggregation and composition. Moreover, many
object oriented features are provided by object-
relational database management systems

(ORDBMS) and are supported by SQL3 standard.
However, an ORDBMS does not represent a true
object oriented database, since it still represents a
data-centric system as a relational database.

The ORDBMSs, which have now been supported
by most vendors, are much larger and have huge
entrenched marketing infrastructure. By comparison,
the ODBMS vendors are much smaller. It is clear
that in today's complex, rapidly changing world,
ODBMSs provide the more flexible, extensible
alternative for companies that must act quickly to
match the capabilities of their information systems
with the needs of their organizations. Users will
make choices of database vendors based on many
criteria, some of which are addressed here.

3 OBJECT VERSIONING

Associating additional temporal information with
individual objects provides a means of recording
object histories, and thereby allowing the histories of
objects and the types of objects to be easily traced
and compared. This means that the temporal aspects
can also be described by their temporal topological
relationships. The object-oriented approach has been
used in different ways to effectively track versions
of the original object and these include the use of
version management (Wachowicz, 1994) and the
identity-based method (Hornsby, 2000). Although in
this work we are concerned with object versioning,
other strategies such as schema versioning can also
be considered (Grandi, 2002).

There are a number of methods for dealing with
object versioning (Khaddaj, 2004). The first
technique stores the complete objects, and any of the
versions can be accessed simply by a reference to
the particular object. The second approach, which is
a relative technique, stores one version as a complete
object and the rest of the versions are presented as
differences between the current version and the
previous version. The method of storing the versions
as complete objects is relatively easy to implement
in existing database systems. But, this method
introduces problems, such as waste of storage space
as the number of versions increases. The technique
of storing only one complete version and the rest as
differences between the current and the previous
version is difficult to implement but is suitable for
representing continuous and dynamic changes; and it
solves the storage space problem of the previous
approach. These two approaches have been
examined for relational databases (Dadam, 1984).

ICEIS 2009 - International Conference on Enterprise Information Systems

26

Using the second approach, changes of objects
are handled using version management, starting with
a generic object; then first and subsequent changes
can be represented as versions. Each version of the
object reflects changes of attributes and/or
behaviour. Subsequent changes of the versions will
generate related dynamic attributes and temporal
links to be updated to respective versions. Version
management reduces the need for large storage
space, since only the generic object or the current
object holds the complete attributes and behaviour of
the object.

3.1 Complete Versions

The first approach can be stated using the following
equation (1):

Versions(x)=(CVx(n), CVx(n-1),….., CVx(n0)) (1)

In equation (1), CVx(n) represents the complete
version, n indicates the number of the version, x is
the object and n0 is the oldest version number. Each
version can be accessed directly by reference to the
number of the version, n. Although access to any
version is supported directly and all versions have
similar access time, storage space can be costly.

3.2 Linear Versioning

Using this technique one version is stored as a
complete object, and the rest of the versions are
presented as differences between the versions
Khaddaj, 2004). The relationship using this
approach is based on one-to-one versioning of
objects, which means any parent or base object will
have only one child or derived object. The technique
can be classified into two versioning strategies. The
first strategy allows the current version to be
calculated from the previous version and is referred
to as forward oriented versioning. The second
strategy enables the previous version to be evaluated
from the current version and is referred to as
backward oriented versioning. Using forward linear
versioning the temporal relationships between the
generic object and versions is given by:

Versions(x)=(Δx (n,n-1), Δ x (n-1,n-2),.. .,
 Δ x (n0+1, n0), CVx(n0))

 (2)

Where CVx(n0) indicates the generic version,
which holds the complete attributes and behaviour.
Δ x (k, k’) represents the difference between the
current version (k) and the previous version (k’) of
object x. As shown in equation (2) access to the
current version n requires n-1 iterations, which

means that this strategy provides faster access time
for the oldest version.

In backward linear versioning the current object
holds the complete attributes and behaviour. The
temporal relationships between the current object
and versions is given by:

Versions(x) = (CVx(n), Δx (n,n-1), Δx (n-1,n-2), . .,
 Δx (n0+1, n0))

 (3)

As shown in the equation (3), the rest of the
versions are expressed as delta to the successor-in-
time version, which means that this strategy
provides faster access time for the newest versions.
As a result, this strategy is bound to be more useful
than the previous one for most applications.

 …
V0 V1 Vn Vn-1

Figure 1: Object versioning.

3.3 Branching

This technique is also classified into two versioning
strategies. The branch forward oriented strategy is
based on one-to-many object versioning (object
splitting), which means any parent or base object
will have many children or derived objects. The
branch backward oriented strategy is based on
many-to-one object versioning (object merging)
which means any child or derived object will have
many parents or base objects. The relationship using
the first strategy provides the same access time for
all versions:

Versions(x) = (∆x (n,n0), ∆x (n-1,n0),,
 ∆x (n0+1, n0), CVx(n0))

 (4)

The relationship using the second strategy
provides a faster access time for the current version:

Versions(x) = (CVx(n), Δx (n,n-1), Δx (n,n-2), . .,
 Δx (n, n0))

 (5)

However, due to the relationships between the
current version and the previous ones the values of
the versions are re-calculated whenever a new
version is created.

V0 = Generic version,
V1 …Vn= Versions of the generic object

 = Temporal topology link

AN OBJECT MODEL FOR THE MANAGEMENT OF DIGITAL IMAGES

27

Figure 2: Composite classes of a video object.

4 MANAGEMENT OF DIGITAL
IMAGES

Video images can now be generated and distributed
easily, but what is still needed is support in
managing the information contained in those images.
This is vital because by putting pieces of
information from different images together, the user
can generate new knowledge. The ability to
efficiently collect, store, manage, analyse, and
retrieve digital images remains a major issue.

4.1 Object Oriented Model for the
Management of Digital Images

Although there has been some work on using object-
oriented databases for storing and retrieving images
(Dönderler, 2003; William, 2001) not much
investigation has been done using the object oriented
approach in conjunction with the concept of object
versioning. To show the potential benefit of the
approach, it is sufficient to consider a typical CCTV
monitoring a car park where the background of the
scene does not change and the background object
can be stored in the database as a generic object, any
changes to the scene, for instance a car entering a car
park, can be stored in the database as versions
instead of storing the whole object, background and
changes, again (for simplicity at this point we are
assuming stable weather conditions).

Thus, in this work we are concerned with a
generic digital image management, context
independent, object model reflecting the structure
and semantic linking for different types of images.
The model should take into account issues like
image versions, notification and propagation of
changes. Of particular interest in this approach, are
scenarios when images are changing fast, and new
versions are created whether there is a need for time
stamping or not. Clearly, it is more useful when time
stamping is required, i.e. where there is a need to
keep a history of activities.

The development of a working system, using this
model, requires an intelligent video database that
provides automatic method of indexing and content-
based retrieving of images or video shots generated
by video-cameras based on the time they have been
recorded and the analysis of their features and
content. This can be used to provide an intelligent
database solution to the continuous logging and
annotation of events in public spaces and
environments. To achieve this we propose a new
object oriented video model. According to the
proposed model a video consists of a number of
shots. A shot is consecutive sequence of frames,
which are the smallest unit of video data. A frame
consists of a number of physical objects, static like
building, car park etc. and dynamic objects such as
persons, cars etc. Considered classes include the
events, processes and the versions class which is
fundamental to the system (figure 2).

 Physical Temporal

Version, Events and Processes Classes

Aggregated Link
Associated Link

Frame Object Class

Clip Object Class
 Video Object Class

Spatial

ICEIS 2009 - International Conference on Enterprise Information Systems

28

Using the versioning approach a frame object is
represented as a generic object, the first object and
any subsequent changes can be represented as
versions. Each version of the object consists of
changes (involving an attribute or behaviour) of the
aggregated and the associated classes. Subsequent
changes of attributes of the versions will generate
related dynamic attributes and temporal links to be
updated to the respective versions. The relationships
between the generic object and the versions of the
object are represented by temporal version
management approach (Khaddaj, 2004). To avoid
the use of large storage space, only the generic
object or the current object holds the complete
attributes and behaviour of the object whiles the
other versions represents the changes of their
attributes and behaviour. While MPEG-7 defines a
large set of description classes for multimedia
content-encoding schemes, it is considered
complementary to, rather than competing with, data
models such as the one proposed in this project.

Moreover, the query technique of the system will
be classified into different parts in order to identify
the attribute and behaviour changes to the classes
and objects of the model. This will provide support
of different types of queries such as spatio-temporal,
semantic and low level features (color, shape etc.)
queries on video data.

4.2 System Implementation

A successful implementation of the model will
require an Object Oriented Programming
Environment (OOPE) and an Object Oriented
Database System (OODBS). This approach
eliminates the need for mapping the model to an
OODBS, since the class structure used in the model,
the OOPE and OODBS are consistent. The OODBS
considered in this work is based on Objectivity/DB
(Objectivity, 2000). The classes are defined in the
application schema file, called Data Definition
Language (DDL). The DDL processor generates the
schema header file and the schema source code
which are linked with the application source code. In
the application DDL and application source code
files, all the classes have their own representation.

Objectivity/DB has the capabilities to represent
the various versioning approaches: linear, splitting
and merging. Image objects persist by storing the
object within the container of the database.
Persistent objects are identified using the object
identifier (OID) which remains unique within a
federated database. Objectivity/DB uses an object
handling class to access persistent objects
automatically by the DDL process for every
persistence class found in the schema header. All the
objects can be determined by scanning through the
database using iterative scanning functions.

Schema Application
Database

Federated Database

DDL
Processor

Compiler / Linker
Application Program

Application
Source Code

Figure 3: General architecture of the System implementation.

Schema
Header

Application DDL
Schema

Schema Source
Code

AN OBJECT MODEL FOR THE MANAGEMENT OF DIGITAL IMAGES

29

Aggregated relationships between the classes are
established in the application source code.
Moreover, in order to determine and analyse
dynamic changes, the model establishes a temporal
relationship between the versions, the event and the
manager classes. A dynamic function handles the
temporal relationships between the versions, the
event and the manager classes.

Moreover, the relationships between the versions
allow forward and backward movement. The
previous version and the next version to the current
version can be obtained by iteration using either
backward or forward movement functions. In order
to avoid the use of large storage space, only the
generic object or the current object holds the
complete attributes and behaviour of the object
while the other versions represents the changes of
their attributes and behaviour.

5 CONCLUSIONS

The applications of object oriented techniques to the
management of digital images have been discussed
in this paper. Particular attention was paid to the
concept of object versioning and its applications.
The presented object oriented approach provides an
integrated framework for effective tracking of the
evolution of image objects. It also promotes good
temporal modelling, because the temporal attributes
and behaviour of the versions are independent but
have relationships that enable the tracking of
patterns of change. Also, less data storage is
required since only the generic object and its
versions are stored.

REFERENCES

Bertrand M., “Object-Oriented Software Construction”,
Prentice Hall Publishing International Series in
Computer Science. 1997.

Cattell R.G.G., “Object Data Management, Object-
Oriented and Extended Relational Database Systems”,
Addison-Wesley Publishing, 1991.

Dadam, P., Lum, V., Werner, H. D., “Integrating of time
versions into relational database systems”, Very Large
Database Conference, pp. 509-522, 1984.

Dönderler, M, Şaykol, E., Ulusoy, Ö., Güdükbay, U.,
“BilVideo: A Video Database Management System”,
IEEE Multimedia, Vol. 10, No. 1, pp. 66-70, 2003.

Grandi F., Mandreoli F., “A Formal Model for Temporal
Schema Versioning in Object-Oriented Databases”. A
Timecenter Technical Report, 2002.

Hornsby K., Egenhofer M., “Identity-Based Change: A
Foundation For Spatio- Temporal Knowledge
Representation”, International Journal of Geo
Information Systems 14(3), pp 207-224, 2000.

Khaddaj S., Adamu A., M. Morad, "Object versioning
and Information Management”, Journal of Information
and Software Technology,t46(y) Elsevier Science,
June, pp. 491-498, 2004.

Loomis M.E.S., “Object Databases; The Essentials”,
Addison-Wesley Publishing,1995.

Objectivity/DB, “Complete handbook for objectivity/C++
Instruction Manual”, 2000.

Wachowicz, M. and Healey, R. “Towards temporality in
GIS” Innovation in GIS I, by Worboys M. F. Vol 1
pp.105- 115, Taylor & Francis, 1994.

William I. Grosky and Peter L. Stanchev, “Object-
Oriented Image Database Model”, 16th International
Conference on Computers and Their Applications, pp
93-98 2001.

Yourdon, E. “Object-Oriented System Design: An
Integrated Approach”, Yourdon Press, 1994.

ICEIS 2009 - International Conference on Enterprise Information Systems

30

