
A P2P IMPLEMENTATION FOR THE HIGH AVAILABILITY
OF WEB SERVICES

Zakaria Maamarα, Mohamed Sellamiγ, Samir Tataγ and Quan Z. Shengε
αZayed University, Dubai, U.A.E
γInstitut TELECOM, Evry, France

εThe University of Adelaide, Adelaide, Australia

Keywords: Web service, Community, High availability, Peer-to-Peer.

Abstract: This paper introduces a P2P-based approach to sustain the high-availability of Web services using a similarity-
based replication strategies. To this end three strategies known as active, passive, and hybrid, are studied. This
approach takes replication one step further by focussing on Web services that offer the same functionality as
the original Web service does (i.e., the one to back up). This functionality similarity is built upon communities
that gather similarly-functional Web services. To prove the suitability of the selected replication strategy for
Web services high-availability, a P2P testbed on top of the JXTA platform is developed.

1 INTRODUCTION

This research work discusses the high availability of
Web services using the concept of communities. In a
dynamic, open environment like the Internet, it is un-
likely that applications built around software compo-
nents such as Web services can be constantly available
at run-time. Multiple reasons could make these appli-
cations break down, which triggers corrective plans
execution to achieve business-operation continuity.

Despite the increasing popularity of Web services
for the development of service-centric applications,
there is still room for boosting this popularity by tar-
getingcritical systems (e.g., medical, nuclear) where
availability is a centralconcern. Availability, as de-
fined in (Avizienis et al., 2004), is an attribute of de-
pendability that qualifies the readiness of an applica-
tion. Traditional solutions to achieve availability are
mostly based on replication (Juszczyk et al., 2006;
Salas et al., 2006). Replication“refers to the use of
redundant resources, such as software or hardware
components, to improve reliability, fault-tolerance, or
performance. Replication typically involves replica-
tion in space, in which the same data is stored on
multiple storage devices or the same computing task
is executed on multiple devices, or replication in time,
in which a computing task is executed repeatedly on a
single device”(Wikipedia Online Dictionary).

Although replication seems to be the trend in the
development of highly-available Web services in the
last few years (Juszczyk et al., 2006; Salas et al.,

2006), this paper shows how we can substitute replica
Web services (identical copies of the original Web
service) with communities that host Web services se-
mantically equivalent to the original Web service. In
agreement with other definitions (Benatallah et al.,
2003; Bentahar et al., 2007; Medjahed and Bouguet-
taya, 2005), we define community as a means to
gather Web services with similar functionalities re-
gardless of who developed these Web services, where
these Web services are located, and how these Web
services function. The high availability of applica-
tions built around Web services is then, ensurednot
by replicas of these Web servicesbut by a commu-
nity of Web services that aresimilarly functional to
these Web services. Through the use of communi-
ties, several immediate benefits are obtained because
of this shift in tackling the high-availability concern
of Web services. For example, code management be-
tween replica Web services in case of changes, is no
longer needed since these replica Web services have
different codes. A second benefit is the possibility of
screening communities when looking for similar Web
services instead of traditional registries like UDDI.
Although these benefits are appealing to any system
developer, some of them are considered as obstacles
in the existing replication strategies. For example, any
minor code change in an application requires an im-
mediate reflection of this change on all replicas.

Section 2 provides a short literature review on
the topic of Web services high-availability. Sec-
tion 3 summarizes the architecture and functioning of

19
Maamar Z., Sellami M., Tata S. and Z. Sheng Q. (2009).
A P2P IMPLEMENTATION FOR THE HIGH AVAILABILITY OF WEB SERVICES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 19-24
DOI: 10.5220/0001855500190024
Copyright c© SciTePress



a community of Web services. Our approach based on
communities for the high availability of Web services
is detailed in Section 4. Section 5 presents some ex-
perimental details on the feasibility of our approach.
Finally, Section 6 concludes the paper.

2 BRIEF LITERATURE REVIEW

Our literature review identified a good number of re-
search projects, but a few promote the idea of using
semantically-equivalent Web services to achieve this
high-availability. In (Abraham et al., 2005), Abra-
ham et al. report that little work on availability of
Web services exists. As a result, Web services are au-
tomatically excluded from the technologies reserved
for the development of mission-critical applications.
Furthermore, Abraham et al. note that current spec-
ifications such as WS-ReliableMessaging and WS-
Transaction do not support the availability of Web
services. Abraham et al.’s approach suggests an en-
terprise level gateway and a Web service hub. The
former operates at the enterprise level and has a moni-
toring role, while the latter operates across enterprises
and has a selection role.

In (Juszczyk et al., 2006), Web services discovery,
replication, and synchronization in ad-hoc networks
are considered. This type of networks poses chal-
lenges to those who are in charge of supporting Web
services high-availability due to dynamic topologies
and unpredictable moves of hosts. As a result, when
a Web service ceases to exist or changes its loca-
tion, appropriate information need to be broadcasted
to different recipients for instance UDDI registries.
Juszczyk et al.’s solution consists of a discovery and
registry system that feeds distributed UDDI registries
with up-to-date information on available Web ser-
vices, and a replication and synchronization mecha-
nism that improves Web services reliability.

In (Laranjeiro and Vieira, 2007), the authors ex-
amine Web services availability from a fault-tolerance
perspective. Their solution promotes the use of alter-
native Web services that are grouped by functional-
ity. Each group is headed by an adapter (or proxy)
that assesses the status of each member Web service
in the group using metrics (response time, response
correctness, etc.) before either simultaneously or se-
quentially invoking the alternative Web services. One
of the issues that Laranjeiro and Vieira plan to address
in the future is the lack of state consistency between
alternative Web services in a group. We show in our
approach how this lack of state consistency restricts
the type of replication strategy to use.

In (Ribeiro et al., 2007), Ribeiro Jr. et al. propose

smart proxies as a solution to access replicated Web
services. These Web services are semantically equiv-
alent and might be located in different and compet-
ing organizations or in the same organization. The
smart proxies are adopted to encapsulate a variety
of server-selection policies for selecting independent,
autonomous Web services and to deploy adapters that
bridge potential interface incompatibilities between
Web services and clients.

3 COMMUNITY OF WSS

A community can be defined through the functionality
of a representative abstract Web service (called mas-
ter), i.e., without explicitly referring to any concrete
Web service that will implement this functionality at
run-time (Maamar et al., 2007). A community is es-
tablished and dismantled with respect to some ded-
icated protocols. Moreover, a community has a dy-
namic nature; Web services enter and depart at their
convenience. All this happens with respect to other
protocols as well (Maamar et al., 2007).

In a community, a special Web service acting as
a master Web service leads the community of slave
Web services. Interactions between master and slave
Web services and the designation of a master Web ser-
vice outside this paper’s scope. Some responsibilities
of the master Web service include attracting Web ser-
vices to the community it leads using rewards, con-
vincing Web services to stay longer in the commu-
nity, and identifying the Web services to participate
in composition scenarios and tobackup the function-
ing of their peers if needed. Extensive details about
communities of Web services and their functioning
are given in (Bentahar et al., 2007).

4 OUR APPROACH

Replication is thede factooption to tackle the high
availability challenge of applications. Simply put,
replication means (i) distribute copies of a software
application over a network and (ii) make these copies
back up the functioning of this application when prob-
lems arise. The way the original copy of the ap-
plication and its replicas function relies on strate-
gies known asactive, passive, andhybrid (Wiesmann
et al., 2000). For applications built around Web ser-
vices, we propose in this paper substituting repli-
cas with Web services extracted out of a commu-
nity. We show that maintaining state-consistency be-
tween replicas and reflecting code changes over repli-
cas are to a certain extent no longer needed in our

ICEIS 2009 - International Conference on Enterprise Information Systems

20



community-based high availability approach.

4.1 Failure Types and Detection

Several types of failures exist ranging from crashes
where a Web service simply stops working to situa-
tions where a Web service delivers incorrect results.
In this paper, we restrict ourselves to late-timing fail-
ures for the sake of illustration. To detect failures,
several ways are identified such as test acceptance,
watchdog, timeout, and voting (Kim, 2000). Among
them two approaches could suit Web services: Watch-
dog and Timeout.

Since it is unreasonable that Web services gener-
ate signals for watchdogs, our approach combines the
aforementioned techniques where signals are gener-
ated upon watchdogs’ requests, i.e., a watchdog pings
a Web service for liveness checking. We use timeout
to avoid endless wait for feedback. Since watchdogs
can be themselves subject to failures as well, our solu-
tion makes users act as watchdogs. Communications
are supposed to be dependable, i.e., absence of sig-
nals’ communications that Web services send to users
acting as watchdogs are treated as Web services fail-
ures as well.

4.2 Replication Strategies Groundwork

The following points are parts of our community-
based high-availability approach regardless of the
replication strategy (active, passive, or hybrid) to use.

Control vs. Operational Flows. Using state
charts (Harel and Naamad, 1996), we specify a Web
service using two types of flow: control and oper-
ational (Fig. 1). Both flows interact with one an-
other like Fig. 2 shows. The control flow describes
the business logic that underpins the functionality of
a Web service. And the operational flow guides the
execution progress of the control flow of a Web ser-
vice. Because state synchronization in some replica-
tion strategies is mandatory , our approach synchro-
nizes only the operational flows of Web services in a
community.

To illustrate the use of the control and operational
flows, let us useWeatherWSas an example. Its func-
tionality is to return a five-day weather forecast for a
certain city. Fig. 2 shows how these flows interact to-
gether. Two types of transitions are shown: intra-flow
(plain lines) and inter-flow (dashed lines). The initia-
tion of WeatherWSis indicated withactivatedstate in
the operational flow.

Because of (activated,city-located) inter-flow
transition, the execution ofWeatherWSbegins by
searching for the requested city using a dedicated

a) Control flow


Refinement


Submission


City located

Unavailable


Ava
ila

ble


Access


Weather

collected


Access

failed


Search

cancelled


Report

delivered


Connection

closed


Completion


b) Operational flow


Abortion after

failed retrials


Compensation after failed retrials


Commitment

Done


Start
Not

activated


Activated


Rolling back

Compensated


E
xception


R
et

ria
l


Suspended
 Aborted


Failure


Compensation

after commitment


Figure 1: Control and operational flows ofWeatherWS.

Operational flow
 Control flow


a)


Operational flow
 Control flow


b)


Legend


Inter-flow transition
 Intra-flow transition


Activated


Done


Activated


Aborted


City located
 DB
 City located
 DB


Weather

collected


Report

delivered


Access failed


Connection

closed


WeatherWS
Users
 WeatherWS
 Users


Figure 2: Control and operational flows in interaction

database. This now makesWeatherWStake oncity-
locatedstate but this time in the control flow. After
carrying out the necessary actions in this state, two
cases are identified:

• In case a), everything goes fine and a five-day
weather-forecast report is delivered back to the
user. This makesWeatherWScomplete its oper-
ation with success by transiting todonestate in
the operational flow.

• In case b), the access to the database fails. This
makesWeatherWSterminate its operation with
failure by transiting toabortedstate in the oper-
ational behavior.

Those two cases illustrate how transitions in the
operational flow of a Web service are affected by the
states that this Web service binds to in the control
flow.

Backup slave Web service.When a user selects
a community because of the functionality that satis-
fies her needs, its respective master Web service is
contacted. The master Web service has to identify
a specific slave Web service that will implement this
functionality. It sends all slave Web services a call
for bids to express interest in implementing this func-
tionality. The slave Web services in a community that
positively responded to the call for bids are all notified

A P2P IMPLEMENTATION FOR THE HIGH AVAILABILITY OF WEB SERVICES

21



of their non-selection (except the one that is notified
of its selection). The selected slave Web service will
take over the role ofprimary, meaning that it will ex-
ecute the functionality that the user needs.

The extra notification, for non selection, means
that the unselected slave Web services might have to
take over the role ofbackupto support the primary
slave at run-time. These slave Web services can ei-
ther accept or reject to act as a backup.

4.3 “Twisting” Replication Strategies

In this part of the paper, we discuss how the exist-
ing replication strategies can be either adopted or dis-
carded due to the characteristics of the community-
based high-availability approach.

4.3.1 Active-replication strategy

Active replication requires that all replicas receive
and process the same sequence of users’ requests in
the same order. Result consistency across all replicas
is guaranteed because requests are processed in a de-
terministic way. The main advantage of this strategy
is its simplicity and failure transparency. If a replica
goes down, the rest of replicas continue running. At
the end, results are collected from one of them. The
deterministic constraint is the major drawback in this
strategy (Wiesmann et al., 2000).

Fig. 3 usesWeatherWSto illustrate the interac-
tions in the active-replication strategy. Plain lines
correspond to the interactions that take place be-
tween users and Web services and between the oper-
ational and control flows ofWeatherWS(primary and
backup) and dashed lines correspond to the interac-
tions that take place between the operational flows of
WeatherWSand backupWeatherWSs. Dashed line (1)
illustratesWeatherWSthat forwards a user’s request
to its backups and initiate their execution. The master
Web service provides the list of backup slave Web ser-
vices to the primary slave. Afterwards, allWeather-
WSsconcurrently process this request. If the primary
WeatherWSfails the other backup slave Web services
continue running. In addition, one of them needs now
to be selected to act as a primary so that it can deliver
responses to the user.

4.3.2 Passive-replication Strategy

Passive replication suggests that users submit their re-
quests directly to a specific application (usually the
original copy), which is the primary backup. This
application processes users’ requests and regularly
sends the rest of backup applications update requests
during processing. These latter are on standby waiting

to receive these update requests to implement them in
order to get their respective behaviors synchronized
with the original application’s behavior. This strat-
egy is unsuitable for Web services with respect to
our approach. The discrepancies in the control flows
that exist between the primary backup and other back-
ups prevents the correct execution of this replication
strategy. Indeed, actions that the primary backup car-
ries out, can not match the actions that backups have
to carry out as well. In addition, when a primary
backup fails, the control flow of the new elected pri-
mary backup can not be updated because of the dis-
parity with the old primary backup control flow.

4.3.3 Hybrid-replication strategy

Hybrid replication handles the deterministic con-
straint of the active replication by referring inde-
terministic decisions to a specific component called
leader. The leader makes the choice among several
available ones and sends it to all followers. In our ap-
proach, indeterminism exists by default since all Web
services are expected to return different results. As
a result and like the passive-replication strategy, the
hybrid-replication strategy is not suitable for Web ser-
vices with respect to our approach.

5 EXPERIMENTS

To illustrate the feasibility of our Web services high-
availability approach using communities, we de-
ployed a P2P based-testbed on top of Sun Microsys-
tems’s JXTA platform (Traversat et al., 2003). JXTA
is an open source P2P technology that permits sim-
ulating virtual overlay networks and grouping peers
according to some common interests that these peers
express. It was enriched with services known as
JXTA services and offers a wide range of prede-
fined P2P facilities including service/peer advertise-
ment/discovery and messaging. The JXTA platform
is suitable for implementing our proposed approach;
it enables the handling of the dynamic nature of com-
munities like Web services arrival and departure. A
community is then viewed as a peer group where each
Web service corresponds to a JXTA peer.

Our experimental work implements the active
replication strategy. Here, a client peer interacts with
a group of peers, i.e., a community, that hosts a set
of peers, i.e., Web services. Three JXTA peers have
been developed:MasterServicePeeracting as a com-
munity master,SlaveServicePeeracting as commu-
nity slave, and finallyClientPeeracting as a user who
interacts with theMasterServicePeerto invoke the

ICEIS 2009 - International Conference on Enterprise Information Systems

22



Figure 3: Interactions in active-replication strategy

functionality of aSlaveServicePeer. The aforemen-
tioned JXTA peers have been deployed over various
distributed platforms. Clients’ queries to a commu-
nity are routed to Web services via their representative
JXTA peers, creating thus a virtual network on top of
the physical network (Fig. 4).

Figure 4: Implementation of our high-availability approach

In our experiments, we created aMasterServi-
cePeer, two SlaveServicePeer(s) that belong to the
community and connected to Web services, and a
ClientPeer.Fig. 5 uses some screenshots to illustrate
the interactions between the peers at run-time. In this
figure, the different interactions are numbered. For il-
lustration purposes,SlaveServicePeer(s) provide con-
nection to Web services offering weather forecast for
a city submitted by a client. The master service peer
and slave service peers belong to the same community
(JXTA peer group), which we denote byWeatherWS-
Community. When a client peer contacts the master
service peer (Fig. 5, interaction(i1)), this one assigns
a slave service peer among the available slave service
peers(i2-i3) and tags the first slave as primary and the

rest as backups. This assignment and tagging hap-
pen in compliance with the description we provided
in Section 4.2. The master service peer sends the
name of this primary slave service peer to the client
peer(i4). Afterwards, the client peer interacts with
the primary slave service peer(i5) (i.e., sends “Paris”
as input). When the client peer request is received,
the primary service peer initiates the backup slave ser-
vice peers as well so that all slaves are now running in
parallel(i6). The names of the initiated backup slave
service peers are sent to the client peer(i7). To im-
plement a failure detection mechanism, we made the
client peer acts as a Watchdog; it regularly pings the
primary slave service peer for the sake of testing its
availability (i8). We trigger a failure by simply stop-
ping the primary slave service peer. Upon failure de-
tection due to lack of response, a slave service peer
from the backup slaves is elected by the client peer as
the new primary slave(i9). The client peer contacts
the first slave service peer from the backup slaves list
previously received from the ex-primary slave service
peer. If the first slave service peer responds, it will
be considered as the new primary slave service peer.
When it completes its execution, the first slave ser-
vice peer submits its results to the client peer(i10)
(i.e., sends the weather forecast of “Paris”).

Currently, our Web services are deployed on Web
service containers for instance AXIS and JXTA peers
bind and convey requests to them. In term of
testbed improvement, we are working on using JXTA-
SOAP (Amoretti et al., 2008) so that JXTA peers pass
on requests to Web services.

6 CONCLUSIONS

In this paper, we looked into the high-availability is-
sue of Web services and put forward solutions that

A P2P IMPLEMENTATION FOR THE HIGH AVAILABILITY OF WEB SERVICES

23



Figure 5: Some screenshots captured at run-time.

promote communities. We proposed a replication
based approach for sustaining Web services high
availability where replicas are Web services extracted
out from a community. Putting the active, passive,
and hybrid replication strategies in the context of
communities revealed the suitability of the first strat-
egy only. We specified the functioning of similarly-
functional Web services using control and operational
behaviors. We also demonstrated and deployed the
active-replication strategy on top of a JXTA-based
tested we developed.

Our future research work will focus on continuing
the testbed we started and investigating various issues
in terms of (1) how much transactional properties im-
pact the high-availability requirement of Web services
from a community perspective, (2) how to assess the
semantic impact of replacing a failed Web service
with a backup Web service on the progress of a com-
position scenario in which the failed Web service was
taking part and (3) how to select within a community
a backup Web service that could maintain the same
level of QoS that the failed Web service and/or user
requirements in terms of QoS.

REFERENCES

Abraham, S., Thomas, M., and Thomas, J. (2005). Enhanc-
ing Web Services Availability. InICEBE’2005.

Amoretti, M., Zanichelli, F., Conte, G., and Bisi, M. (2008).
Enabling peer-to-peer Web service architectures with
JXTA-SOAP. Ine-Society’08.

Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C.
(2004). Basic Concepts and Taxonomy of Depend-
able and Secure Computing.IEEE Transactions on
Dependable and Secure Computing, 1(1).

Benatallah, B., Sheng, Q. Z., and Dumas, M. (2003). The
Self-Serv Environment for Web Services Composi-
tion. IEEE Internet Computing, 7(1).

Bentahar, J., Maamar, Z., Benslimane, D., and Thiran,
P. (2007). Using Argumentative Agents to Manage
Communities of Web Services. InWAMIS’2007.

Harel, D. and Naamad, A. (1996). The STATEMATE Se-
mantics of Statecharts.ACM Transactions on Soft-
ware Engineering and Methodology, 5(4).

Juszczyk, L., Lazowski, J., and Dustdar, S. (2006). Web
Service Discovery, Replication, and Synchronization
in Ad-Hoc Networks. InARES’2006.

Kim, K. H. (2000). Issues Insufficiently Resolved in Cen-
tury 20 in the Fault-Tolerant Distributed Computing
Field. InSRDS’2000.

Laranjeiro, N. and Vieira, M. (2007). Towards Fault Toler-
ance in Web Services Compositions. InEFTS’2007.

Maamar, Z., Lahkim, M., Benslimane, D., Thiran, P., and
Sattanathan, S. (2007). Web Services Communities -
Concepts & Operations -. InWEBIST’2007.

Medjahed, B. and Bouguettaya, A. (March 2005). A Dy-
namic Foundational Architecture for Semantic Web
Services.Distributed and Parallel Databases, Kluwer
Academic Publishers, 17(2).

Ribeiro, J. J. G., do Carmo, G. T., Valente, M. T., and C.,
M. N. (2007). Smart Proxies for Accessing Repli-
cated Web Services.IEEE Distributed Systems On-
line, 8(12).

Salas, J., Pérez-Sorrosal, F., Patiño Martı́nez, M., and
Jiménez-Peris, R. (2006). WS-Replication: A
Framework for Highly Available Web Services. In
WWW’2006.

Traversat, B., Arora, A., Abdelaziz, M., Duigou, M., Hay-
wood, C., Hugly, J.-C., Pouyoul, E., and Yeager, B.
(2003). Project JXTA 2.0 Super-Peer Virtual Network.
Technical report, Sun Microsystems.

Wiesmann, M., Pedone, F., Schiper, A., Kemme, B., and
Alonso, G. (2000). Understanding Replication in
Databases and Distributed Systems. InICDCS’2000.

ICEIS 2009 - International Conference on Enterprise Information Systems

24


