
USING GRIDS TO SUPPORT
INFORMATION FILTERING SYSTEMS

A Case Study of Running Collaborative Filtering Recommendations on gLite

Leandro N. Ciuffo and Elisa Ingrà
Istituto Nazionale di Fisica Nucleare, Sez. di Catania, Via S. Sofia 64 – 95123, Catania, Italy

Keywords: Recommender systems, Personalization, Collaborative filtering, Grid computing, Distributed computing,
gLite middleware.

Abstract: Today’s business becomes increasingly computational-intense. Grid computing is a powerful paradigm for
running ever-larger workloads and services. Commercial users have been attracted by this technology,
which can potentially be exploited by industries and SMEs to offer new services with reduced costs and
higher performance. This work aims at presenting a “gridified” implementation of a Recommender System
based on the classic Collaborative Filtering algorithm. It also introduces the core services of the gLite
middleware and discusses the potential benefits of using Grids to support the development of such systems.

1 INTRODUCTION

Recommender Systems (RS) are best known for
their use in e-commerce Websites. Such systems are
a type of Information Filtering system that use
inputs about customers’ interests to generate a list of
tailored items for them. In general, the more
accurate the recommendations are, the bigger will be
the sales.

In recent years, Collaborative Filtering (CF)
(Resnick,1994)(Cöster,2002) has proven to be one
of the most popular algorithms used in
Recommender Systems. Its technique essentially
automates the process of "word-of-mouth"
recommendations. Items are recommended to an
active user based on the evaluations of users who
have similar preferences.

However, CF requires computations that are very
expensive and grow polynomially with the number
of users and items in a system. For a large retailer
like Amazon.com, with huge amount of data, tens of
millions of customers and millions of distinct
catalog items, generate accurate recommendations in
real-time is impractical (Linden,2003). Such
limitation has driven the research of a vast amount
of alternative solutions. Hence, several variations of
the classic CF algorithm are present in the literature,
including the adoption of Bayesian network,
clustering techniques, dimensionality reduction,

sampling and many others – all of which reduce, in a
certain extent, recommendation’s quality.

In this scenario where traditional CF systems
have suffered from scalability issues, Grid
computing appears as an innovative approach that
can be used for running ever-larger workloads and
services.

Although developed over a relatively short
timeframe, Grid computing is a fairly mature area
which is rapidly gaining momentum in many diverse
industries and among the biggest IT players like
IBM, HP, Microsoft, Sun and Oracle. In addition,
several international Grid projects such as EGEE
(2008), BEinGRID (2006) and Biz2Grid (2008)
have pushing industries and SMEs (Small and
Medium-sized Enterprises) to have their business
applications running in their Grid infrastructure.

Also, it is commonly recognized that computing
resources can be treated as a commodity that can be
sold. The provision of on-line business services can
ease ICT companies from over-provisioning and
from dealing with low level resources. In fact, many
users are gaining confidence of outsourcing
production services and part of their IT
infrastructure to cloud providers such as Amazon
(Bégin,2008). For this reason, the Grid community
is working on the implementation of new services
and accounting mechanisms that will soon allow the
commercial use of Grids (Ragusa,2007).

12
N. Ciuffo L. and Ingrà E. (2009).
USING GRIDS TO SUPPORT INFORMATION FILTERING SYSTEMS - A Case Study of Running Collaborative Filtering Recommendations on gLite.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 12-18
DOI: 10.5220/0001845300120018
Copyright c© SciTePress

This work aims at presenting a “gridified”
implementation of the classic CF algorithm as well
as discussing the potential benefits of using Grids to
support the development of information systems. In
order to test empirically our proposed approach, we
developed an application that runs on a Grid test-bed
based on gLite middleware (2008) and uses CF to
generate recommendations to the users of an on-line
Movie Recommender System (Ciuffo,2001). To the
best of our knowledge, no other group has deployed
a recommender system over a gLite-based Grid.

2 RECOMMENDER SYSTEMS

Recommender Systems (RS) have been used for
suggesting items (books, movies, songs, restaurants
and even jokes) (Herlocker,2000) that users might
like. In e-commerce environments, Recommender
Systems are software applications that aim at
supporting users/customers in the decision-making
and buying process. The main tasks of such systems
typically include the elicitation of user preferences,
the construction (or update) of the user’s profile and
the generation of personalized recommendations.
Figure 1 depicts the operation of a simple basic RS.

Figure 1: Operation schema of a simple RS.

2.1 Collaborative Filtering

Roughly, Collaborative Filtering (CF) considers the
following hypothesis: users who agreed in the past
will probably agree again in the future. For instance,
imagine an active user Ua who wants to receive a
movie recommendation. First, the RS must look for
users who have similar profiles, i.e., users who have
watched the same movies in the past and evaluated
them in a similar way (the neighbors of Ua). Then,
the RS will either recommend the movies best
evaluated by the similar users or predict the Ua
ratings based on its neighbors’ profiles.

A traditional CF algorithm uses as input a mXn
matrix of ratings (Table 1). Each line represents an
user and each column a distinct catalog item. The
cells contain normalized ratings provided by user m
to item n. The empty cells indicate that the item has
not been rated by the respective user.

Table 1: A simple matrix of ratings.

 item 1 item 2 item 3 item 4 item 5
John 2 2 5
Rick 6 4 4 2
Jully 5 4 3 2 5

Maria 5 4 4
Paul 4 5 6 3 5

In order to compute the similarities between
users, a variety of similarity measures has been
proposed, such as Pearson correlation, cosine vector
similarity, Spearman correlation and mean square
difference. The proposed application adopts Pearson
correlation, since it is the most commonly technique
used in the literature. Thus, the correlation between
an user a and another user b is calculated by:

∑ ∑
∑

−−

−−
=

2,2,

,,

)()(

))((
),(

bibaia

bibaia

NNNN

NNNN
bar (1)

 where:
 i ∈ items evaluated by both users: a and b
 iuN , the rating given by user u to the item i

 uN the average rating of user u (arithmetic
mean)
Applying the correlation calculus for each pair of

users in Table 1, the following matrix is generated.

Table 2: Similarity matrix.

 John Rick Jully Maria Paul

John 1 - 0.816 - 0.618 - 0,8 - 0.943

Rick - 0.816 1 + 0.916 + 0.447 + 0.314

Jully - 0.618 + 0.916 1 - 0.176 + 0.269

Mari
a - 0.8 + 0.447 - 0.176 1 + 0.754

Paul - 0.943 + 0.314 + 0.269 + 0.754 1

The result varies from +1 (identical profiles -

perfect linear relationship) to -1 (opposed profiles).
A correlation degree close to zero can’t be used to
infer accurate predictions.

USING GRIDS TO SUPPORT INFORMATION FILTERING SYSTEMS - A Case Study of Running Collaborative
Filtering Recommendations on gLite

13

Analyzing the Table 2, one can note that John
and Paul have opposite tastes, i.e., John like the
items that Paul doesn't like.

Once calculated the similarity among the active
user and all other users in the matrix, the next step
consists of using this information to select the
neighborhoods. Basically two different approaches
can be used: Correlation Weight Threshold and
Maximum Number of Neighbors (Herlocker,2000).
The first technique is to set a default correlation
degree, where all neighbors with absolute
correlations greater than the default threshold are
selected. The second approach is to pick the best N
neighbors for a given N. This technique may reduce
the accuracy of the recommendations, but on the
other hand it always manage to set neighborhoods,
even for small datasets.

The third and last step of the algorithm is to
infer, for each unrated item of a given user, his/her
most likely rating based on his/her neighbors’
ratings for that item. The rating prediction pa,i for the
active user a for an item i can be calculated by
means of the weighted average presented below:

∑
∑

=

=
−

+= n

u ua

n

u uauiu

r

rNN
aia Np

1 ,

1 ,, *
, (2)

where n is the number of neighbors who have rated i
and ra,u is the similarity weight between the active
user a and his neighbor u, as defined by the Pearson
correlation.

One of the advantages of the CF is that it can be
applied in every domain, with no additional efforts
required for humans editors to classify items or tag
contents. However, this technique depends on the
participation of a great number of users to tune the
RS. In general, the larger the number of evaluations
provided, the more accurate the recommendations
will be. For this reason the CF algorithm is best
suitable to operate with large databases and therefore
suffers from complexity issues.

2.1.1 Worst Case Complexity

The most expensive computation of the classic CF is
the calculation of the user-to-user similarities. In
order to deal with this, major e-commerce systems
use to carry out such computations offline and feed
the database with updated information periodically
(Linden,2003). This approach may allow them to
provide quick recommendations based on pre-
computed similarities, but it fails on providing
recommendations with the highest degree of

confidence, since ratings submitted between two
offline computations are not considered. The worst
case complexity of maintaining a similarity matrix
with the Pearson correlation between every pair of
users is O(m2n) (Papagelis,2005), where m is the
number of users and n is the number of catalogue
items. Alternatively, if the user similarities are not
pre-computed offline, they need to be calculated at
the time a recommendation is requested. In this case,
there is no need for computing the whole user
similarities matrix, but only the similarities between
the active user and all the others. This computation
has a computational cost of O(mn).

3 GRID COMPUTING

A computational Grid is a geographically distributed
system aimed at putting together large sets of
heterogeneous resources (computing power, storage
space, software applications, data etc.) among
communities of users federated in the so-called
Virtual Organizations (VOs). It derives its name
from the fact that its idealistic goal is to grant access
to computing resources in a transparent and easy
way as the Power Grid does with the electrical
power. VOs are sets of individuals and institutions
that agree upon common policies for sharing and
accessing resources.

The interaction between users and the resources
is made possible by a software layer known as
middleware. It is a set of components that provides
the user with high-level services for scheduling and
running computational jobs, accessing and
transferring data, obtaining information on the
available resources and so on, covering the most
relevant operations that can be done in a Grid
environment.

Currently, there is not a single Grid (as there is
one single "Internet"). Instead, there are many Grid
initiatives around the world created by group of
organizations wanting to share their local resources
to increase their individual access to the overall Grid
resources.

The work presented in this paper makes use of
the GILDA Grid (Babera,2008), a fully fledged Grid
test-bed devoted to training and outreach activities
which has been adopted as the official training
infrastructure by many Grid projects all around the
world.

GILDA adopts the gLite middleware (2008), an
European solution developed by the CERN jointly
with the EGEE project. Next section briefly presents
the main characteristics of the gLite architecture.

ICEIS 2009 - International Conference on Enterprise Information Systems

14

3.1 The gLite Middleware

Distributed under a business friendly open source
license, gLite integrates components from the best of
current middleware projects, such as Condor
(Thain,2003) and the Globus Toolkit (2007), as well
as components developed for the LCG project
(2008).

The gLite middleware is based on the concept of
"Job Submission". A job is an entity which contains
information about all the stuff needed for a remote
execution of an application, such as its executable
program, the environment settings, the input data
and the expected output files to be retrieved. All
these parameters are defined in a text-file written in
the Job Description Language (JDL) syntax, that is a
high-level specification language based on the
Classified Advertisement language (2004).

End users can access the Grid through a Grid
component called User Interface (UI), which is a
client properly configured to authenticate and
authorize the user to use the Grid resources. When a
user wants to execute a computational job, he/she
composes a JDL file and submits it to the Workload
Management System (WMS), which is the service in
charge of distributing and managing tasks across the
computing and storage resources. The WMS
basically receives requests of job execution from a
client, finds the required appropriate resources and
then dispatches and follows the jobs until
completion, handling failure whenever possible.

The jobs are sent to Computing Elements (CEs),
which manage the execution queue of the Worker
Nodes (WNs), the computers where a job actually
run. In other words, a CE acts as an interface to the
computing farm installed in a Grid site.

Once the task has been accomplished, all the
output files listed in the JDL are packed in the
Output Sandbox and sent back to the WMS. Finally,
the user can retrieve the Output Sandbox onto
his/her UI. Applications that need to manage large
data files (either as input or output) can
store/retrieve the data by accessing directly the Grid
Storage Elements (SEs) using the data management
API provided by the middleware.

It is important to mention that although data files
are held in SEs, they are made available through File
Catalogues, which record information for each file
including the locations of its replicas (if any). The
File Catalogue adopted by gLite is the LCG File
Catalogue (LFC). This tool allows users to view the
entire Grid as a single logical storage device.

Figure 2 roughly presents the interaction among
the aforementioned Grid elements. Please notice that

although only one SE and CE are represented in the
picture, a Grid infrastructure might have hundreds of
these elements geographically distributed.

Figure 2: Schematic diagram of some Grid elements.

Another Grid service relevant to this work is the
Metadata Catalogue, which permit users to attach
metadata to the files stored in the Grid. Typically,
each file being described has a respective entry in
the catalogue. The entries are described by user-
definable attributes, which are key/value pairs with
type information. The Metadata Catalogue adopted
by gLite is the Arda Metadata Catalogue Project
(AMGA,2006).

For further definitions about the gLite
architecture, the reader is requested to consult
(Laure,2006).

4 GRIDIFICATION APPROACH

Just like "webifying" applications to run on a web
browser, Grid users need to "gridify" their
applications to run on a Grid. This process may
comprises the creation of additional bash scripts as
well as changes in the original source codes in order
to include APIs to directly interact with Grid
components. In some cases, it is also necessary to
stop using services and libraries that are not
supported by the standard distribution of the adopted
Grid middleware.

USING GRIDS TO SUPPORT INFORMATION FILTERING SYSTEMS - A Case Study of Running Collaborative
Filtering Recommendations on gLite

15

As aforementioned, we developed a RS to
recommend movies at Cinefilia website
(Ciuffo,2001). To be able to get movie
recommendations, Cinefilia visitors need to sign in
and to rate at least 20 movies. The rating scale varies
from 0 to 6 for each watched movie. There is also an
option that enable users to indicate the movies that
he/she hasn't watched yet.

Altogether, more than 800 movies are available
to be rated, from classics to the latest releases. Our
current dataset consist of 32,817 ratings (ranging
from 0 to 6) provided by 327 unique users. It is
important to remark that this is considered a small
dataset for what concern the measurement of either
the accuracy of the generated recommendations or
the performance of the proposed workflow. Both
analyses are out of scope of this work.

The implementation strategy for porting our
Recommender System on the GILDA test-bed is
depicted in Figure 3 and explained as follows: users
can freely interact with the Cinefilia website to rate
as much movies as they can. Cinefilia makes use of
a standard MySQL database to store and retrieve
information about its users (1). In order to generate
recommendations, a pre-processing script must be
executed in the Grid User Interface. This is a bash
script that can be launched either on-demand or by
using cron to run it many times a day on a schedule.
The pre-processing script is in change of
downloading all ratings from the on-line database
(2); chopping the users’ ratings into several text-file
strings - one per user (3); registering the files in the
LFC (4) and storing them on a Grid SE (5). The pre-
processing script should also dynamically create the
JDL file (6). In our approach we are using
parametric Jobs (Giorgio,2008) where each user ID
is a parameter of the actual executable file called
“recommender”. This is a compiled code originally
written in C that implements the classic CF
algorithm and calculates recommendations for a
single user – specified as a parameter. The
“recommender” code uses as input the text files
obtained from the database and generates as output a
.SQL file containing recommendations to the
specified user. For the reader's convenience, the JDL
file is shown in Figure 4.

The last action of the pre-processing script is to
submit the parametric job to the WMS (7), which
dispatches multiple jobs (one job per user, as defined
in the parameters list) to the available Computing
Elements (8). The usage of parametric jobs ensures
the distributed characteristic of our approach, where
each user can have his/her recommendations
calculated simultaneously by different Worker
Nodes (in different Computing Elements queues).

Figure 3: Implementation workflow.

Figure 4: JDL file generated by the pre-processing script.

One can note that the “recommender” code is
included in the Input Sandbox and therefore
transferred to be executed in the Worker Nodes.

[
Type = "Job";
JobType = "Parametric";
Executable = "start-recommender.sh";
Arguments = "_PARAM_";
StdOutput = "output_PARAM_.out";
StdError = "error_PARAM_.err";
InputSandbox = {"recommender",
"start-recommender.sh"};
OutputSandbox = {"recommendations.sql",
"output_PARAM_.out","error_PARAM_.err"};
Parameters =
{userID1,userID2,userID3,...,userID320};
]

ICEIS 2009 - International Conference on Enterprise Information Systems

16

Also, the text-files previously stored in the SE are
downloaded to be used as input files by each job
execution (9).

At the end of the execution, it is possible to
retrieve multiple output files (one .SQL file per
user). Therefore, another script must be launched in
order to assemble all these files into a single one
containing recommendations for all users. The
ultimate step of this workflow is to update the on-
line database using the generated .SQL file.

To keep track of all executions of our
Recommender System, the post-processing script is
also in charge of storing some relevant statistics into
the AMGA Metadata Catalogue, such as the date
and time when the .SQL file was generated, the total
of ratings, the amount of users entitled to get
recommendations, the number of generated
recommendations and so forth.

5 CONCLUSIONS AND FUTURE
WORKS

Grids first emerge within scientific communities,
like High Energy Physics (HEP) experiments.
However, the enormous research activity in recent
years has contributed to the development of new
areas of interest. Commercial users have been
attracted by this technology, which can potentially
be exploited by industries and SMEs to offer new
services with reduced costs and higher performance.

This expansion from science to business is
nearing Grids to “utility computing”, where
computing power is viewed as a utility, available on
a pay-as-you-use basis, like gas or electricity. This is
not yet the case, but there are several ongoing
initiatives to develop new tools and Grid services
that should allow the outsourcing of computing
resources in the short term.

Although the case study presented in this paper
did not focus on a comparative analyses between
our approach and other implementations of CF
algorithm, it is interesting to note that the resources
required to run our Recommender System are owned
by other entities, letting our own resources
(computers and storage) free to perform other tasks.
This is an immediate benefit of using Grids,
specially for SMEs that cannot afford to have their
own computer farm to run their
simulations/algorithms.

The distributed approach used in this case study
has helped to reduce the time consumption of the
original algorithm, since each job launched to the

Grid is in charge of calculating the recommendations
for one single user - O(mn). The overall execution
time to generate recommendations to all users will
depend on the number of Computing Elements and
Worker Nodes available in the Grid. The best
scenario would be to have all jobs running
simultaneously in different Worker Nodes. The
bigger the number of free CPUS in a Grid, the better
is the chance of this scenario occurs.

The strategy of fetching data from the database
and splitting it into several text-files is due to a lack
of a Grid enabled DataBase Management System
(DBMS) supported by the middleware and available
to the users. However, since many applications need
to access, manage and process huge amount of data,
there are several initiatives trying to face this
important challenge. One of them is the Grid
Relational Catalog Project (GRelC,2007), which
provides a data access interface to access standards
DMBS (MySQL, PostgreSQl, Oracle etc.) in a Grid
environment.

As a future work, we intend to create a new
version of our Recommender System exploring the
GRelC service. We also intend to deploy our system
in the EELA-2 production Grid infrastructure, since
GILDA is devoted to learning purposes only. The
results and discussions of both experiments will be
presented in future papers.

REFERENCES

Amga (2006). The gLite Grid Metadata Catalogue.
Retrieved February 8, 2009, from:
http://amga.web.cern.ch/amga/

Barbera, R., Ardizzone, V., Ciuffo, L.N. et al. (2008) Grid
INFN virtual Laboratory for Dissemination Activities -
GILDA (2008). 6th International Conference on Open
Access, Lilongwe, Malawi. GILDA portal available at:
https://gilda.ct.infn.it/

Bégin, M.E. (2008) An EGEE comparative study: Grids
and Clouds - Evolution or Revolution? Retrieved
February 8, 2009, from:
https://edms.cern.ch/file/925013/4/EGEE-Grid-Cloud-
v1_2.pdf

Beingrid. (2006). Business Experiments in Grid. Retrieved
February 8, 2009, from: http://www.beingrid.eu/

Biz2Grid. (2008). Moving Business to the Grid. Retrieved
February 12, 2009, from: http://www.biz2grid.de

Ciuffo, L.N. (2001). Cinefilia website. Retrieved February
12, 2009, from: http://canalcinefilia.com.br

ClassAd. (2004). Condor Classified Advertisements.
Retrieved February 12, 2009, from:
http://www.cs.wisc.edu/condor/classad

USING GRIDS TO SUPPORT INFORMATION FILTERING SYSTEMS - A Case Study of Running Collaborative
Filtering Recommendations on gLite

17

Cöster, R. (2002) The architecture and implementation of
a system for collaborative and content-based filtering,
Technical Report, Stockholm University.

Eela-2. (2008). E-science grid facility for Europe and
Latin America. Retrieved February 7, 2009, from:
http://www.eu-eela.eu

Egee. (2008). Enabling Grids for E-sciencE. Retrieved
February 8, 2009, from: http://www.eu-egee.org/

Egee and Business (2008). Retrieved February 8, 2009,
from: http://www.eu-egee.org/index.php?id=120

Garcia, A. C. B. & Ciuffo, L.N. (2005) Applying the
HYRIWYG incentive mechanism in a Recommender
System. In: IEEE/WIC/ACM International Conference
on Web Intelligence (WI'05), Compiègne. Proceedings
of the WI'05. IEEE Computer Society, 2005. pp.770-
773.

Giorgio, E. (2008). Gilda Wiki - Quickstart for complex
jobs. Retrieved February 7, 2009, from:
https://grid.ct.infn.it/twiki/bin/view/GILDA/WmProxy
Use

gLite (2008). Documentation. Retrieved February 7, 2009,
from: http://glite.web.cern.ch/glite/documentation/

Globus Toolkit. (2007). Homepage. Retrieved February 7,
2009, from: http://www.globus.org/toolkit/

Grelc. (2007). Grid Relational Catalog Project. Retrieved
February 7, 2009, from: http://grelc.unile.it/home.php

Herlocker, J.L. (2000). Understanding and Improving
Automated Collaborative Filtering Systems, Ph.D.
Thesis, University of Minnesota.

LCG (2008). Large Hadron Collider (LHC) Computing
Grid. Retrieved February 7, 2009, from:
http://lcg.web.cern.ch/LCG/

Laure, E., Fisher S.M., Frohner, A., Grandi, C. et al (2006)
Programming the Grid with gLite. Computational
Methods in Science and Technology. pp.33-45.

Linden G., Smith, B. & York J. (2003). Amazon.com
Recommendations: Item-to-Item Collaborative
Filtering. IEEE Internet Computing, ISSN:1089-7801,
v.7, Issue 1. pp.76-80.

Papagelis, M., Rousidis, I., Plexousakis, D. &
Theoharopoulos, E. (2005). Incremental Collaborative
Filtering for Highly-Scalable Recommendation
Algorithms. Lecture Notes in Computer Science.
Heidelberg, Germany: Springer-Verlag, ISSN 0302-
9743, Issue 3488, 2005. pp.553-561.

Ragusa, C., Arinisi, S., Longo F. & Puliafito, A. (2007). A
Grid-based Infrastructure for Business Applications.
Proceedings of the Symposium "Grid Open Days at
the University of Palermo", Italy, ISBN: 978-88-
95892-00-9. pp.205-211.

Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. &
Riedl, J. (1994). GroupLens: an open architecture for
collaborative filtering of netnews. Proceedings of the
Conference on Computer Supported Cooperative
Work (CSCW'94), Chapel Hill, NC, EUA. ACM
Press, pp. 175-186.

Shen, R.-m., Yang, F., Han, P. & Xie, B. (2005). PipeCF:
a DHT-based Collaborative Filtering recommendation
system. Journal of Zhejiang University SCIENCE,
China, ISSN 1009-3095, v.6A; pp.118-125.

Thain, D. Tannenbaum, T. & Livny M. (2003) Condor
and the grid. Grid Computing: Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and T.
Hey, Eds. John Wiley & Sons Inc.

ICEIS 2009 - International Conference on Enterprise Information Systems

18

