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Abstract: Today’s business becomes increasingly computational-intense. Grid computing is a powerful paradigm for 
running ever-larger workloads and services. Commercial users have been  attracted  by  this  technology, 
which can potentially be exploited by industries and SMEs to offer new services with reduced costs and 
higher performance. This work aims at presenting a “gridified” implementation of a Recommender System 
based on the classic Collaborative Filtering algorithm. It also introduces the core services of the gLite 
middleware and discusses the potential benefits of using Grids to support the development of such systems. 

1 INTRODUCTION 

Recommender Systems (RS) are best known for 
their use in e-commerce Websites. Such systems are 
a type of Information Filtering system that use 
inputs about customers’ interests to generate a list of 
tailored items for them. In general, the more 
accurate the recommendations are, the bigger will be 
the sales.  

In recent years, Collaborative Filtering (CF) 
(Resnick,1994)(Cöster,2002) has proven to be one 
of the most popular algorithms used in 
Recommender Systems. Its technique essentially 
automates the process of "word-of-mouth" 
recommendations. Items are recommended to an 
active user based on the evaluations of users who 
have similar preferences. 

However, CF requires computations that are very 
expensive and grow polynomially with the number 
of users and items in a system. For a large retailer 
like Amazon.com, with huge amount of data, tens of 
millions of customers and millions of distinct 
catalog items, generate accurate recommendations in 
real-time is impractical (Linden,2003). Such 
limitation has driven the research of a vast amount 
of alternative solutions. Hence, several variations of 
the classic CF algorithm are present in the literature, 
including the adoption of Bayesian network, 
clustering techniques, dimensionality reduction, 

sampling and many others – all of which reduce, in a 
certain extent, recommendation’s quality. 

In this scenario where traditional CF systems 
have suffered from scalability issues, Grid 
computing appears as an innovative approach that 
can be used for running ever-larger workloads and 
services.  

Although developed over a relatively short 
timeframe, Grid computing is a fairly mature area 
which is rapidly gaining momentum in many diverse 
industries and among the biggest IT players like 
IBM, HP, Microsoft, Sun and Oracle. In addition, 
several international Grid projects such as EGEE 
(2008), BEinGRID (2006) and Biz2Grid (2008) 
have pushing industries and SMEs (Small and 
Medium-sized Enterprises) to have their business 
applications running in their Grid infrastructure. 

Also, it is commonly recognized that computing 
resources can be treated as a commodity that can be 
sold. The provision of on-line business services can 
ease ICT companies from over-provisioning and 
from dealing with low level resources. In fact, many 
users are gaining confidence of outsourcing 
production services and part of their IT 
infrastructure to cloud providers such as Amazon 
(Bégin,2008). For this reason, the Grid community 
is working on the implementation of new services 
and accounting mechanisms that will soon allow the 
commercial use of Grids (Ragusa,2007).  
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This work aims at presenting a “gridified” 
implementation of the classic CF algorithm as well 
as discussing the potential benefits of using Grids to 
support the development of information systems. In 
order to test empirically our proposed approach, we 
developed an application that runs on a Grid test-bed 
based on gLite middleware (2008) and uses CF to 
generate recommendations to the users of an on-line 
Movie Recommender System (Ciuffo,2001). To the 
best of our knowledge, no other group has deployed 
a recommender system over a gLite-based Grid. 

2 RECOMMENDER SYSTEMS 

Recommender Systems (RS) have been used for 
suggesting items (books, movies, songs, restaurants 
and even jokes) (Herlocker,2000) that users might 
like. In e-commerce environments, Recommender 
Systems are software applications that aim at 
supporting users/customers in the decision-making 
and buying process. The main tasks of such systems 
typically include the elicitation of user preferences, 
the construction (or update) of the user’s profile and 
the generation of  personalized recommendations. 
Figure 1 depicts the operation of a simple basic RS. 

 
Figure 1: Operation schema of a simple RS. 

2.1 Collaborative Filtering 

Roughly, Collaborative Filtering (CF) considers the 
following hypothesis: users who agreed in the past 
will probably agree again in the future. For instance, 
imagine an active user Ua who wants to receive a 
movie recommendation. First, the RS must look for 
users who have similar profiles, i.e., users who have 
watched the same movies in the past and evaluated 
them in a similar way (the neighbors of Ua). Then, 
the RS will either recommend the movies best 
evaluated by the similar users or predict the Ua 
ratings based on its neighbors’ profiles.  

A traditional CF algorithm uses as input a mXn 
matrix of ratings (Table 1).  Each line represents an 
user and each column a distinct catalog item. The 
cells contain normalized ratings provided by user m 
to item n. The empty cells indicate that the item has 
not been rated by the respective user.  

Table 1: A simple matrix of ratings. 

 item 1 item 2 item 3 item 4 item 5
John  2 2 5  
Rick 6 4 4 2  
Jully 5 4 3 2 5 

Maria   5 4 4 
Paul 4 5 6 3 5 

In order to compute the similarities between 
users, a variety of similarity measures has been 
proposed, such as Pearson correlation, cosine vector 
similarity, Spearman correlation and mean square 
difference. The proposed application adopts  Pearson 
correlation, since it is the most commonly technique 
used in the literature. Thus, the correlation between 
an user a and another user b is calculated by: 
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 where:  
 i ∈ items evaluated by both users: a and b 
 iuN ,  the rating given by user u to the item i 

 uN   the average rating of user u (arithmetic 
mean) 
Applying the correlation calculus for each pair of 

users in Table 1, the following matrix is generated. 

Table 2: Similarity matrix. 

 John Rick Jully Maria Paul 

John 1 - 0.816 - 0.618 - 0,8 - 0.943 

Rick - 0.816 1 + 0.916 + 0.447 + 0.314

Jully - 0.618 + 0.916 1 - 0.176 + 0.269

Mari
a - 0.8 + 0.447 - 0.176 1 + 0.754

Paul - 0.943 + 0.314 + 0.269 + 0.754 1 

 
The result varies from +1 (identical profiles - 

perfect linear relationship) to -1 (opposed profiles).  
A correlation degree close to zero can’t be used to 
infer accurate predictions.  
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Analyzing the Table 2, one can note that John 
and Paul have opposite tastes, i.e., John like the 
items that Paul doesn't like. 

Once calculated the similarity among the active 
user and all other users in the matrix, the next step 
consists of using this information to select the 
neighborhoods. Basically two different approaches 
can be used: Correlation Weight Threshold and 
Maximum Number of Neighbors (Herlocker,2000). 
The first technique is to set a default correlation 
degree, where all neighbors with absolute 
correlations greater than the default threshold are 
selected. The second approach is to pick the best N 
neighbors for a given N. This technique may reduce 
the accuracy of the recommendations, but on the 
other hand it always manage to set neighborhoods, 
even for small datasets. 

The third and last step of the algorithm is to 
infer, for each unrated item of a given user, his/her 
most likely rating based on his/her neighbors’ 
ratings for that item. The rating prediction pa,i for the 
active user a for an item i can be calculated by 
means of the weighted average presented below: 
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where n is the number of neighbors who have rated i 
and ra,u is the similarity weight between the active 
user a and his neighbor u, as defined by the Pearson 
correlation. 

One of the advantages of the CF is that it can be 
applied in every domain, with no additional efforts 
required for humans editors to classify items or tag 
contents. However, this technique depends on the 
participation of a great number of users to tune the 
RS. In general, the larger the number of evaluations 
provided, the more accurate the recommendations 
will be. For this reason the CF algorithm is best 
suitable to operate with large databases and therefore 
suffers from complexity issues.   

2.1.1 Worst Case Complexity 

The most expensive computation of the classic CF is 
the calculation of the user-to-user similarities. In 
order to deal with this, major e-commerce systems 
use to carry out such computations offline and feed 
the database with updated information periodically 
(Linden,2003). This approach may allow them to 
provide quick recommendations based on pre-
computed similarities, but it fails on providing 
recommendations with the  highest degree of 

confidence, since ratings submitted between two 
offline computations are not considered. The worst 
case complexity of maintaining a similarity matrix 
with the Pearson correlation between every pair of 
users is O(m2n) (Papagelis,2005), where m is the 
number of users and n is the number of catalogue 
items. Alternatively, if the user similarities are not 
pre-computed offline, they need to be calculated at 
the time a recommendation is requested. In this case, 
there is no need for computing the whole user 
similarities matrix, but only the similarities between 
the active user and all the others. This computation 
has a computational cost of O(mn). 

3 GRID COMPUTING 

A computational Grid is a geographically distributed 
system aimed at putting together large sets of 
heterogeneous resources (computing power, storage 
space, software applications, data etc.) among 
communities of users federated in the so-called 
Virtual Organizations (VOs). It derives its name 
from the fact that its idealistic goal is to grant access 
to computing resources in a transparent and easy 
way as the Power Grid does with the electrical 
power. VOs are sets of individuals and institutions 
that agree upon common policies for sharing and 
accessing resources.  

The interaction between users and the resources 
is made possible by a software layer known as 
middleware. It is a set of components that provides 
the user with high-level services for scheduling and 
running computational jobs, accessing and 
transferring data, obtaining information on the 
available resources and so on, covering the most 
relevant operations that can be done in a Grid 
environment.  

Currently, there is not a single Grid (as there is 
one single "Internet"). Instead, there are many Grid 
initiatives around the world created by group of 
organizations wanting to share their local resources 
to increase their individual access to the overall Grid  
resources. 

The work presented in this paper makes use of 
the GILDA Grid (Babera,2008), a fully fledged Grid 
test-bed devoted to training and outreach activities 
which has been adopted as the official training 
infrastructure by many Grid projects all around the 
world. 

GILDA adopts the gLite middleware (2008), an 
European solution developed by the CERN jointly 
with the EGEE project. Next section briefly presents 
the main characteristics of the gLite architecture. 
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3.1 The gLite Middleware 

Distributed under a business friendly open source 
license, gLite integrates components from the best of 
current middleware projects, such as Condor 
(Thain,2003) and the Globus Toolkit (2007), as well 
as components developed for the LCG project 
(2008). 

The gLite middleware is based on the concept of 
"Job Submission". A job is an entity which contains 
information about all the stuff needed for a remote 
execution of an application, such as its executable 
program, the environment settings, the input data 
and the expected output files to be retrieved. All 
these parameters are defined in a text-file written in 
the Job Description Language (JDL) syntax, that is a 
high-level specification language based on the 
Classified Advertisement language (2004). 

End users can access the Grid through a Grid 
component called User Interface (UI), which is a 
client properly configured to authenticate and 
authorize the user to use the Grid resources. When a 
user wants to execute a computational job, he/she 
composes a JDL file and submits it to the Workload 
Management System (WMS), which is the service in 
charge of distributing and managing tasks across the 
computing and storage resources. The WMS 
basically receives requests of job execution from a 
client, finds the required appropriate resources and 
then dispatches and follows the jobs until 
completion, handling failure whenever possible.   

The jobs are sent to Computing Elements (CEs), 
which manage the execution queue of the Worker 
Nodes (WNs), the computers where a job actually 
run. In other words, a CE acts as an interface to the 
computing farm installed in a Grid site.  

Once the task has been accomplished, all the 
output files listed in the JDL are packed in the 
Output Sandbox and sent back to the WMS. Finally, 
the user can retrieve the Output Sandbox onto 
his/her UI. Applications that need to manage large 
data files (either as input or output) can 
store/retrieve the data by accessing directly the Grid 
Storage Elements (SEs) using the data management 
API provided by the middleware. 

It is important to mention that although data files 
are held in SEs, they are made available through File 
Catalogues, which record information for each file 
including the locations of its replicas (if any). The 
File Catalogue adopted by gLite is the LCG File 
Catalogue (LFC). This tool allows users to view the 
entire Grid as a single logical storage device. 

Figure 2 roughly presents the interaction among 
the aforementioned Grid elements. Please notice that 

although only one SE and CE are represented in the 
picture, a Grid infrastructure might have hundreds of 
these elements geographically distributed. 

 

 
Figure 2: Schematic diagram of some Grid elements. 

Another Grid service relevant to this work is the 
Metadata Catalogue, which permit users to attach 
metadata to the files stored in the Grid. Typically, 
each file being described has a respective entry in 
the catalogue. The entries are described by user-
definable attributes, which are key/value pairs with 
type information. The Metadata Catalogue adopted 
by gLite is the Arda Metadata Catalogue Project 
(AMGA,2006). 

For further definitions about the gLite 
architecture, the reader is requested to consult 
(Laure,2006). 

4 GRIDIFICATION APPROACH 

Just like "webifying" applications to run on a web 
browser, Grid users need to "gridify" their 
applications to run on a Grid. This process may 
comprises the creation of additional bash scripts as 
well as changes in the original source codes in order 
to include APIs to directly interact with Grid 
components. In some cases, it is also necessary to 
stop using services and libraries that are not 
supported by the standard distribution of the adopted 
Grid middleware.   
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As aforementioned, we developed a RS to 
recommend movies at Cinefilia website 
(Ciuffo,2001). To be able to get movie 
recommendations, Cinefilia visitors need to sign in 
and to rate at least 20 movies. The rating scale varies 
from 0 to 6 for each watched movie. There is also an 
option that enable users to indicate the movies that 
he/she hasn't watched yet.  

Altogether, more than 800 movies are available 
to be rated, from classics to the latest releases. Our 
current dataset consist of 32,817 ratings (ranging 
from 0 to 6) provided by 327 unique users. It is 
important to remark that this is considered a small 
dataset for what concern the measurement of either 
the accuracy of the generated recommendations or 
the performance of the proposed workflow. Both 
analyses are out of scope of this work.  

The implementation strategy for porting our 
Recommender System on the GILDA test-bed is 
depicted in Figure 3 and explained as follows: users 
can freely interact with the Cinefilia website to rate 
as much movies as they can. Cinefilia makes use of 
a standard MySQL database to store and retrieve 
information about its users (1). In order to generate 
recommendations, a pre-processing script must be 
executed in the Grid User Interface.  This is a bash 
script that can be launched either on-demand or by 
using cron to run it many times a day on a schedule. 
The pre-processing script is in change of  
downloading all ratings from the on-line database 
(2); chopping the users’ ratings into several text-file 
strings - one per user (3); registering the files in the 
LFC (4) and storing them on a Grid SE (5). The pre-
processing script should also dynamically create the 
JDL file (6). In our approach we are using 
parametric Jobs (Giorgio,2008) where each user ID 
is a parameter of the actual executable file called 
“recommender”. This is a compiled code originally 
written in C that implements the classic CF 
algorithm and calculates recommendations for a 
single user – specified as a parameter. The 
“recommender” code uses as input the text files 
obtained from the database and generates as output a 
.SQL file containing recommendations to the 
specified user. For the reader's convenience, the JDL 
file is shown in Figure 4. 

The last action of the pre-processing script is to 
submit the parametric job to the WMS (7), which 
dispatches multiple jobs (one job per user, as defined 
in the parameters list) to the available Computing 
Elements (8). The usage of parametric jobs ensures 
the distributed characteristic of our approach, where 
each user can have his/her recommendations 
calculated simultaneously by different Worker 
Nodes (in different Computing Elements queues). 

 

 
Figure 3: Implementation workflow. 

 
Figure 4: JDL file generated by the pre-processing script.  

One can note that the “recommender” code is 
included in the Input Sandbox and therefore 
transferred to be executed in the Worker Nodes. 

[ 
Type = "Job"; 
JobType = "Parametric"; 
Executable = "start-recommender.sh"; 
Arguments = "_PARAM_"; 
StdOutput = "output_PARAM_.out"; 
StdError = "error_PARAM_.err"; 
InputSandbox = {"recommender", 
"start-recommender.sh"}; 
OutputSandbox = {"recommendations.sql", 
"output_PARAM_.out","error_PARAM_.err"}; 
Parameters = 
{userID1,userID2,userID3,...,userID320}; 
] 
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Also, the text-files previously stored in the SE are 
downloaded to be used as input files by each job 
execution (9).  

At the end of the execution, it is possible to 
retrieve multiple output files (one .SQL file per 
user). Therefore, another script must be launched in 
order to assemble all these files into a single one 
containing recommendations for all users. The 
ultimate step of this workflow is to update the on-
line database using the generated .SQL file. 

To keep track of all executions of our 
Recommender System, the post-processing script is 
also in charge of storing some relevant statistics into 
the AMGA Metadata Catalogue, such as the date 
and time when the .SQL file was generated, the total 
of ratings, the amount of users entitled to get 
recommendations, the number of generated 
recommendations and so forth. 

5 CONCLUSIONS AND FUTURE 
WORKS 

Grids first emerge within scientific communities, 
like High Energy Physics (HEP) experiments. 
However,  the  enormous  research activity in recent 
years has contributed to the development of new 
areas of interest. Commercial users have been  
attracted  by  this  technology,  which can potentially 
be  exploited by industries and SMEs to offer new 
services with reduced costs and higher performance. 

This expansion from science to business is 
nearing Grids to “utility computing”, where 
computing power is viewed as a utility, available on 
a pay-as-you-use basis, like gas or electricity. This is 
not yet the case, but there are several ongoing 
initiatives to develop new tools and Grid services 
that should allow the outsourcing of computing 
resources in the short term. 

Although the case study presented in this paper 
did not focus on  a comparative analyses between 
our approach and other implementations of CF 
algorithm, it is interesting to note that the resources 
required to run our Recommender System are owned 
by other entities, letting our own resources 
(computers and storage) free to perform other tasks. 
This is an immediate benefit of using Grids, 
specially for SMEs that cannot afford to have their 
own computer farm to run their 
simulations/algorithms.  

The distributed approach used in this case study 
has helped to reduce the time consumption of the 
original algorithm, since each job launched to the 

Grid is in charge of calculating the recommendations 
for one single user - O(mn). The overall execution 
time to generate recommendations to all users will 
depend on the number of Computing Elements and 
Worker Nodes available in the Grid. The best 
scenario would be to have all jobs running 
simultaneously in different Worker Nodes. The 
bigger the number of free CPUS in a Grid, the better 
is the chance of this scenario occurs.  

The strategy of fetching data from the database 
and splitting it into several text-files is due to a lack 
of a Grid enabled DataBase Management System 
(DBMS) supported by the middleware and available 
to the users. However, since many applications need 
to access, manage and process huge amount of data, 
there are several initiatives trying to face this 
important challenge. One of them is the Grid 
Relational Catalog Project (GRelC,2007), which 
provides a data access interface to access standards 
DMBS (MySQL, PostgreSQl, Oracle etc.) in a Grid 
environment.  

As a future work, we intend to create a new 
version of our Recommender System exploring the 
GRelC service. We also intend to deploy our system 
in the EELA-2 production Grid infrastructure, since 
GILDA is devoted to learning purposes only. The 
results and discussions of both experiments will be 
presented in future papers. 
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