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Abstract: The methods of case-based reasoning for a solution of problems of real-time diagnostics and forecasting in 
intelligent decision support systems (IDSS) is considered. Special attention is drawn to a case library 
structure for real-time IDSS and an application of this reasoning type for diagnostics of complex object 
states. The problem of finding the best current measurement points in model-based device diagnostics with 
using Assumption-based Truth Maintenance Systems (ATMS) is viewed. The new heuristic approaches of 
current measurement point choosing on the basis of supporting and inconsistent environments are presented. 
This work was supported by the Russian Foundation for Basic Research (projects No 08-01-00437 and 
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1 INTRODUCTION 

The problem of human reasoning simulating (so 
called “common sense” reasoning) in artificial 
intelligence systems and especially in intelligent 
decision support systems (IDSS) is very actual 
nowadays (Vagin, 2007). That is why special 
attention is turned to case-based reasoning methods 
and heuristic methods of obtaining the effective 
measurement in diagnostic systems on the basis of 
ATMS. The precedents (cases) can be used in 
various applications of artificial intelligence (AI) 
and for solving various problems, e.g., for 
diagnostics and forecasting or for machine learning.  

At first we consider case-based reasoning (CBR) 
methods including four main stages that form a 
CBR-cycle and the application of CBR for 
diagnostics of complex object states. Then model-
based diagnostics on the basis of ATMS and 
heuristic methods of choosing a measurement point 
in a diagnosed device are viewed. And finally 
modeling results of the best measurement point 
choosing for the 9-bit parity checker are given. 

2 CASE-BASED REASONING 

Case-based reasoning is an approach that allows to 
solve a new problem using or adapting a solution of 

a similar well-known problem (Eremeev, 2006). As 
a rule, case-based reasoning methods include four 
main stages that form a CBR-cycle, the structure of 
which is represented in figure 1. 

The main stages of CBR-cycle are the following 
(Aamodt, 1994; Eremeev, 2007). 

• Retrieving the closest (most similar) case (or 
cases) for the situation from the case library; 

• Using the retrieved case (precedent) for solving 
the current problem; 

• If necessary, reconsidering and adaptation of the 
obtained result in accordance with the current 
problem; 

• Saving the newly made solution as part of a new 
case. 

It is necessary to take into account that a solution 
on the basis of cases may not attain the goal for the 
current situation, e.g., in the absence of a similar 
(analogous) case in the case library. This problem 
can be solved if one presupposes in the CBR-cycle 
the possibility to update the case library in the 
reasoning process (inference). A more powerful (in 
detecting new facts or new information) method of 
reasoning by analogy is means of updating case 
libraries. 

Use of the mechanism of cases for IDSS of real 
time (RT IDSS) consists in issuing the decision to 
the operator (DMP – Decision Making Person) for 
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the current situation on the basis of cases which are 
contained in a system. As a rule, the last stage in a 
CBR-cycle is excluded and performed by an expert 
(DMP) because the case library should contain only 
reliable information confirmed by an expert. 
Reconsidering and adaptation of the taken decision 
is required seldom because the same object 
(subsystem) is considered. 

 

 
Figure 1: CBR-cycle. 

The modified CBR-cycle for RT IDSS includes 
the following stages: 

• Retrieving the closest (most similar) case (or 
cases) for the situation from the case library; 

• Using the retrieved case (precedent) for solving 
the current problem. 

• Case-based reasoning for IDSS consists in 
definition of similarity degree of the current 
situation with cases from case library. For 
definition of similarity degree, the nearest 
neighbor algorithm (k-nearest neighbor algorithm) 
is used.  

There was built the structure of case library for 
RT IDSS on the basis of non-classical logics for 
monitoring and control of complex objects like 
power units.  

The case library for RT IDSS should join in itself 
the cases concerning a particular subsystem of a 
complex object, and also contain the information on 
each parameter which is used for the description of 
cases (parameter type and range). Besides, the case 
library should include such adjustments, as: 

• the significance of a parameter;  
• a threshold value of similarity;  
• a value which limits quantity of considered cases. 

It is necessary to emphasize, that the case library 
can be formed on the basis of: 
• the experience, accumulated by an expert;  
• analysis of the system archive;  
• analysis of emergencies;  

• operative instructions;  
• technological requirements. 

The case library can be included in the structure 
of the knowledge base of RT IDSS or act as a 
separate component of the system. 

3 APPLICATION OF  
CASE-BASED REASONING  
FOR DIAGNOSTICS OF 
COMPLEX OBJECT STATES 

As a complex object, we shall understand an object 
which has a complex architecture with various 
interrelations, with a lot of controllable and operated 
parameters and small time for acceptance of 
operating influences. As a rule, such complex 
objects like the power unit are subdivided into 
technological subsystems and can function in 
various modes (in regular, emergency, etc.). 

For the description of such complex object and 
its subsystems, a set of parameters is used. The state 
of an object is characterized by a set of concrete 
values of parameters. 

In the operative mode, reading of parameter 
values from sensors for the whole object is made by 
the system of controllers with an interval at 4 
seconds. For this time interval, it is necessary to give 
out to the DMP (operator) the diagnosis and the 
recommendation on the developed situation. 

Diagnosing and detection of operating influences 
is carried out on the basis of expert knowledge, 
technological requirements and operative 
instructions. The developed software (Case Library 
Constructor – CLC) can be applied to the decision of 
the specified problems. 

Basic components of CLC are: 

• module for storage and loadings case libraries and 
for data import; 

• a subsystem of visualization for browsing the 
structure of case libraries;  

• a subsystem of editing and adjustment of case 
libraries;  

• a module of new cases check; 
• a subsystem of case library testing and case-based 

reasoning. 

CLC was implemented in Borland C++ Builder 
6.0 for Windows NT/2000/XP. 

Implementation of case libraries with use of 
CLC for systems of expert diagnosing is subdivided 
into the following main stages: 
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• Creation of case libraries for subsystems of 
complex object;  

• Adjustment of the created case libraries;  
• Addition of cases in case libraries;  
• Check of the added cases;  
• Testing of the filled case libraries with using case-

based reasoning; 
• Reservation of the created case libraries for their 

subsequent transfer to operative maintenance. 

This tool was applied in the prototype of a RT 
IDSS for monitoring and control of complex objects 
like power units on an example of a pressurizer in 
pressurized water reactor (PWR) of the atomic 
power station (Eremeev, 2008). 

4 MODEL-BASED DIAGNOSTICS 

The generalized problem of diagnostics can be 
formulated as follows. There is a device exhibiting 
an incorrect behaviour. The device will consist of 
components, one or several of which are not 
working properly what is the reason of incorrect 
behaviour. There is a structure of connections 
between components and a possibility to get 
measurements on their inputs and outputs. It is 
necessary to determine what of components are 
faulty with minimal resource expenses. 

At present two main approaches to a solution of 
the given problem are viewed (Clancey, 1985; de 
Kleer, 1987; Forbus, 1993). 

The first approach is heuristic diagnostics. The 
base of this approach is the knowledge extraction 
from an expert and building fault determining rules 
in the form of "symptoms → faults". 

Because this approach suffers from a rigid 
dependence on a device structure and difficulties 
using the knowledge bases for other diagnostic 
problems we use the second approach – so called 
model-based diagnostics. This approach is based on 
the knowledge of device component functionality. 

The model of a device is a description of its 
physical structure, plus the models for each of its 
components. A compound component is a 
generalized notion including simple components, 
processes and even logical inference stages. 

Model-based diagnosis process is the comparison 
of predicted device behaviour with its observed 
behaviour. 

It is supposed, that the model is correct, and all 
differences between device behaviour and a device 
model indicate availability of broken components. 

Main advantages of the model-based approach: 

• diagnosing the multiple faults; 
• unexpected fault recognition; 
• a precision of a component model description does 

not depend on the expert experience; 
• a possibility of new device diagnosing; 
• multiple using the models; 
• detailed explanations. 

5 ASSUMPTION-BASED TRUTH 
MAINTENANCE SYSTEMS 

For building a prognosis network, a component 
behaviour model, finding minimal conflicts 
characterizing mismatch of observations with 
prognoses and candidates for a fault, it is efficient to 
use possibilities given by ATMS (de Kleer, 1986; 
Vagin, 2008). 

The truth maintenance systems (TMS) are the 
systems dealing with the support of coherence in 
databases. They save the assertions transmitted to 
them by a problem solver and are responsible for 
maintaining their consistency. Each assertion has the 
justification describing what kind of premises and 
assumptions this justification was obtained. The 
environment is a set of assumption. 

The inference of an inconsistency characterizes 
assumption incompatibility within the 
presuppositions of which this conclusion was made. 
Also there is introduced the environment set which 
contains some inconsistency (de Kleer, 1986). The 
sets of inconsistency environments E1, E2, ..., Em are 
Nogood = {E1, E2, ..., Em). A consistent ATMS 
environment is not Nogood. 

There are the following correspondences 
between ATMS and the model-based diagnosis 
approach: 

• ATMS premises – an observed device behaviour; 
• ATMS assumptions – components of a device; 
• inferred ATMS nodes – predictions of an 

diagnostic system; 
• Nogood – the difference between predicted and 

observed device behaviour. 

6 THE CURRENT 
MEASUREMENT POINT 
DETERMINATION 

One of the key aspects of the model-based fault 
search algorithm is to determine the optimal current 
measurement in a diagnosed device. Efficiency of 
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the current measurement choosing allows essentially 
reducing a decision search space while the 
inefficiency of choice will increase an operating 
time, the space of a searching algorithm, and also 
require additional resource spends to implement a 
measurement. 

The best measurement point in a diagnosed 
device is a place (point) of measuring a value giving 
the largest information promoting the detection of a 
set of fault components at minimal resource 
spending. 

One of the best procedures for reducing resource 
expenses is to produce the measuring giving the 
maximal information concerning predictions made 
on the basis of the current information on a system. 

6.1 Heuristic Methods of Choosing  
a Measurement Point 

The purpose of the best choosing a measurement 
point is to derive the maximal component state 
information. After each measuring there is a 
confirmation or refutation of prediction values in a 
point of measurement. So, it is possible to use the 
following aspects: 

• Knowledge about environments that support 
predicted values in the measurement points which 
can be confirmed or refuted. 

• Knowledge about inconsistent environments. 
• Knowledge about coincided assumptions of the 

inconsistent environments. 

6.2 Knowledge about Supporting 
Environments 

The diagnostic procedure constructs predictions of 
values for each device point with the list of 
environments in which the given prediction is held. 
The list of environments represents assumption sets 
about correctness of corresponding device 
components. As we are interested with a 
measurement point with the greatest information on 
failure, a point is selected from a quantity of 
assumptions. Let’s introduce the function Quan(x), 
by which we will designate the information quantity 
obtained at measuring values in the point x. The 
points with the greatest value of this function have 
the greatest priority of a choice. We will call the 
given method of choosing a measurement points as 
SHE (Supporting Environment Heuristics). 
 
 

6.3 Knowledge about the Sets  
of Inconsistent Environment 

As a result of each measurement there is a 
confirmation or refutation of some prediction. The 
environments E1, E2, ..., Em of refuted prediction 
form the set Nogood = {E1, E2, ..., Em}. It can be 
used for directional searching for more precise 
definition what kind of components from Nogood is 
broken. 

Obviously the more of the components from 
Nogood are specified by measuring a value in some 
device point the more the information about which 
components of Nogood are broken will be obtained. 
Designate an environment set as Envs (x). For using 
this possibility, it is necessary to take the 
intersection of each environment from Envs(x) with 
each set from Nogood: 
Envs(x) ∩ Nogood = {A ∩ B: A ∈ Envs(x), B ∈ 
Nogood}. 

Points with the greatest value of a variety of the 
function Quan(x) have the greatest priority of a 
choice. We will call the given method of choosing a 
measuring point as SIEH (Supporting and 
Inconsistent Environment Heuristics). 

6.4 Knowledge about Coincided 
Assumptions of the Inconsistent 
Environments 

During diagnostics of faulty devices as a result of 
confirmations and refutations of some predictions 
there is a modification of a set of inconsistent 
environments Nogood. 

In each component set from Nogood one or more 
components are broken what was a reason of 
including a supporting set into the inconsistent 
environments Nogood. Taking the intersection of all 
sets of the inconsistent environments, we receive a 
set of components which enter into each of them, so 
their fault can be a reason explaining an 
inconsistence of each set holding in Nogood. Thus, 
we obtain the list of components a state of which is 
recommended to test first of all, i.e. the most 
probable candidates on faultiness. 

The set intersection of inconsistent environments 
is expressed by the following equation: 

∩
NogoodE

i
i

EodSingleNogo
∈

=

. 
If SingleNogood = ∅, it means that there are 

some disconnected faults. In this case the given 
approach is inapplicable and it is necessary to define 
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more precisely the further information by any other 
methods. 

After obtaining a set SingleNogood ≠ ∅, on the 
base of environments of value predictions in device 
points it is necessary to select those measurement 
points that allow to effectively test components to be 
faulted from SingleNogood. 

For this purpose we will work with the sets 
obtained as a result of an intersection of each 
environment from Envs(x) with SingleNogood: 
Envs(x) ∩ SingleNogood = {J ∩ SingleNogood: J ∈ 
Envs{x)}. 

The following versions are possible: 

a) ∃ J ∈ Envs(x): J ≡ SingleNogood. One of 
environments of the value prediction in the point 
x coincides with the set SingleNogood. The given 
version allows to test faulty components from the 
set SingleNogood most effectively so this 
measurement point x is selected with the most 
priority. 

b) ∃ J ∈ Envs(x): |J ∩ SingleNogood| < |SingleNog
ood|. The cardinality of SingleNogood is more 
than the cardinality of a set obtaining as a result 
of an intersection SingleNogood with a set from 
Envs(x). We evaluate this version as 

||max
)(

odSingleNogoJ
xEnvsJ

∩
∈ , i.e. the more of 

components from SingleNogood are intersected 
with any environment from Envs(x), the more 
priority of a choice of the given measurement 
point for the observation. 

c) ∃ J ∈ Envs(x): SingleNogood ⊂ J. The 
SingleNogood includes in a set from Envs(x). We 
evaluate this version as 

|)||(|min
)(

odSingleNogoJ
xEnvsJ

−
∈ , i.e. the less a 

difference between SingleNogood and Envs(x), 
the more priority of a choice of the given 
measurement point for the current observation. 

d) ∀ J ∈ Envs(x):J ∩ SingleNogood = ∅, i.e. no one 
of the most probable faulty candidates includes 
in environments Envs(x) supporting predictions 
at the point x. We evaluate this version as the 
least priority choice, i.e. 0 in the numerical 
equivalent. 

Also to the version D there are referred other 
methods of definition of current measurement point 
priorities which happen when SingleNogood = ∅. 
Thus, in the estimations of a choice priority a 
numerical value returned as a result of call of other 
method is accepted. We call it by ResultD(x). 

At appearance of the greater priority choosing 
between versions B and C, heuristically we accept 

the version B as at this choice the refinement of 
faulty candidates is produced better. 

Note for various supporting sets of the same 
Envs(x), the availability of both the version B and 
the version C is also possible. In this case, as a 
resulting estimation for the given Envs(x) the version 
B is also accepted. 

We will call the method of choosing the place 
where reading is taken by the heuristics based on the 
set of supporting and coinciding assumptions of 
inconsistent environments as SCAIEH (Supporting 
and Coinciding Assumptions of Inconsistent 
Environment Heuristics). 

The developed methods of heuristic choice of the 
best current measurement point are recommended to 
use for devices with a great quantity of components 
as quality of guidelines directly depends on the 
quantitative difference of environments. 

7 PRACTICAL RESULTS 

Let's test the developed methods of the best 
measurement point choosing for the 9-bit parity 
checker (Frohlich, 1998). 

For each experiment one of device components 
is supposed working incorrectly what is exhibited in 
a value on its output opposite predicted. A 
consequence of the incorrect component work is 
changing of outputs of those components which 
produce the results depending on values on the 
output of a faulty component. These changed results 
of component operations are transmitted to 
appropriate inquiries of a diagnostic system. 

In figure 2 the quantity of the stages required to 
each method for fault localization is shown. A 
method stage is a measurement point choosing. The 
smaller the quantity of method stages, the faster a 
fault is localized. 

From the obtained results one can see that the 
method efficiency for different fault components is 
various and hardly depends on the device structure. 

Let's estimate the method efficiency. The device 
is consists of 46 components. The output values of 
45 components are unknown (a value on the output 
of Nor5 is transmitted to the diagnostic system with 
input data together). So, the maximal stage quantity 
necessary for a fault definition is equal 45. Let's 
accept 45 stages as 100 %. For each experiment it is 
computed on how many percents each of the 
developed methods is more effective than exhaustive 
search of all values. Then define the average value 
of results. The evaluated results are represented in 
table 1. 
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Figure 2: The quantity of the stages required to each 
method. 

Table 1: Evaluated results. 

The method SEH SIEH SCAIEH
On how many percents  
the method is more effective, %

30,79 63,17 68,65 

From table 1 one can see that the greatest 
efficiency of current measurement point choosing 
has the heuristic method based on the knowledge 
about coincided assumptions of the inconsistent 
environments SCAIEH. 

8 CONCLUSIONS 

The method of case-based reasoning was considered 
from the aspect of its application in modern IDSS 
and RT IDSS, in particular, for a solution of 
problems of real-time diagnostics and forecasting. 
The CBR-cycle is viewed and its modification for 
application in RT IDSS is offered. The k-nearest 
neighbor algorithm for definition of similarity 
degree of a current situation with cases from a case 
library is supposed. Note that elements of case-based 
reasoning may be used successfully in analogy-
based reasoning methods, i.e., these methods 
successfully compliment each other and their 
integration in IDSS is very promising. 

 Also the heuristic methods of finding the best 
current measurement point based on environments 
of device components work predictions are 
presented. 

Practical experiments have confirmed the 
greatest efficiency of current measurement point 
choosing for the heuristic method based on the 
knowledge about coincided assumptions of the 
inconsistent environments SCAIEH. 

Advantages of heuristic methods of the best 
current measurement point choosing is the simplicity 
of evaluations and lack of necessity to take into 
consideration the internal structure interconnections 
between components of a device. 
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