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Abstract: This paper proposes the concept of Minimum Executable Pattern (MEP), and then presents a MEP 
generation method and a MEP-based Deep Web adaptive query method. The query method extends query 
interface from single textbox to MEP set, and generates local-optimal query by choosing a MEP and a 
keyword vector of the MEP. Our method overcomes the problem of “data islands” to a certain extent which 
results from deficiency of current methods. The experimental results on six real-world Deep Web sites show 
that our method outperforms existing methods in terms of query capability and applicability. 

1 INTRODUCTION 

There is an enormous amount of information buried 
in the Deep Web, and its quantity and quality are far 
beyond the “surface web” that traditional search 
engines can reach (Michael, 2001). However, such 
information cannot be obtained through static html 
pages but dynamic pages generated in response to a 
query through a web form. Due to the enormous 
volume of Deep Web information and the 
heterogeneity among the query forms, effective 
Deep Web crawling is a complex and difficult issue. 

Deep web crawling aims to harvest data records 
as many as possible at an affordable cost (Barbosa, 
2004), whose key problem is how to generate proper 
queries. Presently, a series of researches on Deep 
Web query has been carried out, and two types of 
query methods, namely prior knowledge-based 
methods and non-prior knowledge methods, have 
been proposed. 

The prior knowledge-based query methods need 
to construct the knowledge base beforehand, and 
generate queries under the guidance of prior 
knowledge. In (Raghavan, 2001) proposed a task-
specific Deep Web crawler and a corresponding 
query method based on Label Value Set (LVS) 
table; the LVS table as prior knowledge is used for 
passing values to query forms. (Alvarez, 2007) 
brought forward a query method based on domain 
definitions which increased the accuracy rate of 
filling out query forms. Such methods automate 
deep crawling to a great extent (Barbosa,2005), 

however, have two deficiencies. First, these methods 
can only perform well when there is sufficient prior 
knowledge, while for the query forms that have few 
control elements (such as a single text box), they 
may have an unsatisfactory performance. Second, 
each query is submitted by filling out a whole form, 
which reduces the efficiency of Deep Web crawling. 

The non-prior knowledge methods are able to 
overcome the above deficiencies. These methods 
generate new candidate query keywords by 
analyzing the data records returned from the 
previous query, and the query process does not rely 
on prior knowledge. Barbosa et al. first introduced 
the ideas, and presented a query selection method 
which generated the next query using the most 
frequent keywords in the previous records (Barbosa, 
2004). However, queries with the most frequent 
keywords in hand do not ensure that more new 
records are returned from the Deep Web database. 
(Ntoulas, 2005) proposed a greedy query selection 
method based on the expected harvest rate. In the 
method, candidate query keywords are generated 
from the obtained records, and then their harvest 
rates are calculated; the one with the maximum 
expected harvest rate will be selected for the next 
query. (Wu P, 2006) modeled each web database as 
a distinct attribute-value graph, and under this 
theoretical framework, the problem of finding an 
optimal query selection was transferred into finding 
a Weighted Minimum Dominating Set in the 
corresponding attributed-value graph; according to 
the idea, a greedy link-based query selection method 
was proposed to approximate the optimal solution. 
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Compared with the prior knowledge-based methods, 
the non-prior knowledge methods improve the query 
capability on Deep Web crawling. However, these 
methods suffer from the following three limitations: 
first, queries are only based on single text box and 
the candidate keywords are assumed to be suited to 
the text box; second, query selection decision is 
made solely based on the obtained records, namely 
“myopia estimation problem” (Wu P, 2006); third, 
query selection lacks sufficient knowledge in the 
initial period. The three problems limit the query 
capability on Deep Web crawling, and result in the 
phenomenon called “data islands” which means the 
total acquired records may constitute only a small 
fraction of the target database. 

In this paper, we propose the concept of 
Minimum Executable Pattern (MEP) and a MEP-
based Deep Web adaptive query method. The query 
method extends query interface from single textbox 
to MEP set; it performs a query by choosing a MEP 
and a keyword vector of the MEP, and generates the 
next query with the maximum expected efficiency 
adaptively through the acquired information. This 
method not only has the advantages over the non-
prior knowledge methods, but also has the ability to 
solve the problem of “data islands” by making the 
most of query capability of elements in MEP set. 
The experimental results on six real-world Deep 
Web sites show that our method outperforms 
existing methods in terms of query capability and 
applicability. 

The rest of the paper is organized as follows: 
Section 2 introduces the concept of MEP. Section 3 
describes the algorithm for generating the MEP set 
of a given query form. Section 4, the core of this 
paper, studies the MEP-based adaptive query 
method and the convergence of the related 
algorithm. The experimental results are discussed in 
Section 5, and conclusions and future work are 
offered in the final section. 

2 FUNDAMENTAL CONCEPTS 

Definition 1: Query Form. A query form F is a 
query interface of Deep Web, which can be defined 
as a set of all elements in it. 1{ ,..., }nF e e= , where 

ie is an element of F, such as a checkbox, text box or 
radio button.  

Each element ie  of F has its domain iD  which is 
the set of values associated with ie . If iD  is a finite 
set, then ie  is a finite domain element, else ie  is an 

infinite domain element. Elements are usually 
associated with some descriptive text to help users 
understand the semantics of the element, namely 
labels. The expression ( )ilabel e  is used to denote the 
label of ie  ( Raghavan, 2001). 

Definition 2: Executable Pattern (EP). Given a 
query form 1{ ,..., }nF e e= , 1{ ,..., } 2F

me e′ ′∀ ∈ ,1≤m≤n, 

1{ ,..., }me e′ ′ is an executable pattern of F if the Deep 
Web database returns the corresponding results after 
the query  with value assignments of elements in 

1{ ,..., }me e′ ′  is issued. 
Executable Pattern satisfies the following 

monotonicity properties: 
1. If 1{ ,..., }me e′ ′ is an executable pattern, then any 

subset of F that contains 1{ ,..., }me e′ ′  is also an 
executable pattern. 

2. If 1{ ,..., }me e′ ′ is not an executable pattern, then 
any subset of 1{ ,..., }me e′ ′ is not an executable 
pattern. 

The result records returned based on an 
executable pattern may also be null. A query based 
on a non-executable pattern can not perform a 
successful database search, and usually leads to an 
error report or switches to another page.  

Definition 3: Minimum Executable Pattern 
(MEP). If 1{ , ..., }me e′ ′  is an executable pattern of 

query form 1{ , ..., }nF e e=  (1≤m≤n), then 

1{ , ..., }me e′ ′  is a MEP iff any proper subset of 

1{ , ..., }me e′ ′  is not an executable pattern. We may 

rewrite it as
1

( , ..., )
m

MEP e e′ ′ . 
The keyword vector 1( , ..., )mkv kv kv= makes a 

value assignment for 
1

( , ..., )
m

MEP e e′ ′ , where 

iikv D∈ ′ , i=1,2,…,m. If there is an infinite set iD′ , 
then the MEP is called infinite domain MEP, or 
IMEP for short; while if each iD′  is a finite set, then 
the MEP is called finite domain MEP (FMEP). All 
MEP of the query form F constitute the MEP set of 
F which is denoted as SMEP. 

According to the monotonicity properties of EP, 
we can draw the following inference: 

Inference 1:  An executable pattern 1{ ,..., }me e′ ′  is a 
MEP iff all its subsets of size m-1 are not EP. 

Deep web crawling aims to retrieve data records 
from a web database through iterative queries on a 
given query form F. In this process, the MEP set 
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SMEP of the query form F is generated firstly and 
then all subsequent queries are performed based on 
the MEP set. For this reason, our study focuses on 
such two critical issues: first, how to generate the 
MEP set of a given query form; second, how to 
select a proper MEP and its keywords vector to 
harvest data records from web database efficiently. 

3 MEP SET GENERATION 

A naive method to generate the MEP set is to 
enumerate all combinations of elements in the form 
F. If the size of F is n, then the number of 
combinations to be checked totals is about 2n. For 
this reason, the efficiency of enumeration will 
sharply drop when n grows large. 

Elements in a form are not independent but 
always have connection with each other, such as 
“start city” and “destination city” in a ticket query 
form. Such elements always appear simultaneously 
in the same MEP, and their combination is called 
“Condition Pattern” (CP for short) (Zhang Z, 2004). 
By using CP, the MEP set can be generated with 
greater granularity than element, which greatly 
improves the efficiency of MEP set generation. 

There have existed several methods of generating 
all CPs of a query form (He B, 2006) (Zhang Z, 
2004). For example, Zhang Z. et al. proposed the 2P 
grammar & best-effort parser model, by using 
which, a query form can be parsed into a complete 
parser tree (Zhang Z, 2004), and the CP nodes in this 
tree are corresponding with the CPs of the form. The 
CP set can be easily generated through finding all 
the CP nodes in this tree. 

Let the CP set be SCP, and the initial MEP set 
SMEP is empty. The algorithm MEPGeneration(SCP, 
SMEP) will generate the MEP set SMEP based on the 
CP set SCP. In order to facilitate the description of 
the algorithm, we introduce a function μ defined as: 

{ }{ }( )= -A A x x Aμ ∈  ( A ≠ ∅ ). The algorithm is shown 
in Fig.1. 

 
Figure 1: Algorithm for generating the set of MEP. 

According to the monotonicity properties of EP, 
the algorithm uses divide-and-conquer to generate 
SMEP in a recursive way. Considering that a single 
CP is also a MEP in most cases, we can move all 
CPs that are EPs from SCP to SMEP before 
executing the above algorithm, which can accelerate 
the generation of MEP set. 

4 QUERY BASED ON MEP 

Once the MEP set SMEP of a given form is obtained, 
the next task is to select suitable MEPs and the 
corresponding keywords vectors to perform iterative 
queries on the target Deep Web database. In this 
section, we formulate the problem of MEP-based 
query, and on the basis of that, propose a MEP-
based adaptive query algorithm as well as the 
estimation methods of two key parameters. Finally, 
we give the convergence analysis of our query 
algorithm. 

4.1 Formal Description of MEP-based 
Query 

Let qi(kv, mepj) be the ith query on the target Deep 
Web site, and qi(kv, mepj) is implemented using the 
MEP mepj and its corresponding keyword vector kv. 
Here, mepj∈SMEP includes m elements and kv=(kv1, 
kv2, …, kvm) is a m-dimensional vector accordingly. 
qi(kv, mepj) can be abbreviated as qi. 

Given a query qi, P (qi) is used to denote the 
fraction of data records returned form the web 
database through the query qi. P(q1 ∧ … ∧ qi) 
represents the fraction of the common records that 
are returned from q1, q2,... and qi. Similarly, we use 
P(q1∨…∨qi) to represent the fraction of the unique 
records that are returned from q1 or q2,....or qi. 
Additionally, Pnew(qi) stands for the fraction of the 
new records that have not been retrieved from 
previous queries from qi. Pnew(qi) is computed from 
Equation(1): 

Pnew(qi) =P(q1∨.. qi) - P(q1∨.. qi-1) (1) 

In order to measure the resource consumption of 
issued query, we introduce cost(qi) to represent cost 
of issuing the query qi. Depending on the scenario, 
the cost can be measured either in time, network 
bandwidth, or the number of interactions with the 
site. In this study, we measure cost in terms of 
consumed time, as follows:       

          cost(qi(kv,mepj))= 
tq(mepj)+trP(qi(kv,mepj))+tdPnew(qi(kv,mepj)) 

(2) 

MEPGeneration (SCP, SMEP) 

Step 1: If none of cp( )Sμ  is EP 

         Add SCP to SMEP; 
         Return; 

Step 2: Else for each cp cp( )S Sμ′ ∈  that is EP 

         MEPGeneration ( cpS ′ , SMEP); 

Step 3: Return SMEP. 
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In the above equation, query cost consists of 
three factors, tq(mepj) is fixed part of the query cost, 
which includes the query transmitting time and 
query processing time by Deep Web database; tr is 
proportional to the average time of handling a result 
record; while td is proportional to the average time of 
downloading a new result record. 

With the above notations, we can formalize 
MEP-based query on Deep Web as follows: under 

the constraint 
1

( )i

n

i
cost q T

=
≤∑ , find a sequence of 

queries q1,…qn that maximize Pnew(q1∨…∨qn). 
Here, T is the maximum cost constraint. 

4.2 Adaptive Query Algorithm 

The sequence of queries q1,…qn that maximize 
Pnew(q1∨…∨qn) is called global-optimal query set. 
Even if all results of candidate queries are clearly 
known, finding the global-optimal query set is an 
NP-Hard problem. An efficient algorithm to solve 
this problem in polynomial time has yet to be found. 
For this reason, we present an adaptive query 
algorithm based on MEP that aims at finding a local-
optimal query set to approximate the global optimal 
query set. A query is the local-optimal if it has the 
maximum value of Efficiency. Efficiency is defined 
as follows: 

Definition 4: Efficiency. Efficiency(qi) is used to 
quantify new queries returned from qi per unit cost: 

 
Efficiency(qi(kv,mep))=Pnew(qi(kv,mep))/cost(qi(kv,mep)) (3) 

 
By observing equation (2) and (3), it can be seen 

that to compute Efficient(qi) is actually to compute 
Pnew(qi). Using chain rules, Pnew(qi) can be rewritten 
as: 

 
Pnew(qi(kv,mepj))=Pnew(q(mepj)) Pnew(qi(kv|mepj)) (4) 

  
In equation (4), the value of Pnew(qi) is 

determined by a joint decision of both Pnew(q(mepj)) 
and Pnew(qi(kv | mepj)). Pnew(q(mepj)) is also called 
harvest rate of the mepj (i.e. the capability of 
obtaining new records), which is independent of 
choice of keyword vectors, but depends on the 
pattern mepj itself. For example, assuming that a 
Deep Web site about academic paper has MEP set 
SMEP = {mep(Keywords),mep(Abstract)}, it is 
obvious that the harvest rate of “Abstract” pattern is 
greater than that of “Keywords”, since keywords are 
usually included in abstract. Pnew(qi(kv|mepj)) 
represents the conditional harvest rate of kv among 
all candidate keyword vectors of given mepj. The 

value depends on the capability of obtaining new 
records of selected keyword vector. 

The estimation of Pnew(q(mepj)) and Pnew(qi(kv | 
mepj)) is the key to find the local-optimal query in 
our adaptive query algorithm. The process of 
estimation is based on currently available records. In 
the early stage of Deep Web crawling, as feedback 
records are relatively scarce, the selection of 
keyword vectors is lack of basis and inevitably leads 
to the problem of “data islands”. To address the 
problem, we introduce an LVS table in our 
algorithm. The algorithm is divided into two phases. 
When the number of queries is less than a certain 
threshold s, i.e. in the data accumulation phase, the 
algorithm uses Probabilistic Ranking Function 
(Raghavan, 2001), an LVS value assignment 
method, to select the most promising kv and obtains 
data from the target Deep Web database. Once the 
number of queries is greater than or equal to s, the 
algorithm switches to the prediction phase; in this 
phase, it analyzes currently available data and 
estimates the most promising query. The algorithm 
finally outputs the next local-optimal query. The 
algorithm flow is shown in Fig.2. 

In the following, the methods for computing 
Pnew(q(mepj)) and Pnew(qi(kv | mepj))are discussed in 
details. 

4.2.1 Prediction for Pnew(q(mepj)) 

In practice, we use Pnew(qi(mepj)) to denote the 
predicted value of Pnew(qi(mepj)) at the ith query ,and 
introduce two methods to accomplish the task. 

  
Figure 2: Adaptive query algorithm based on MEP. 

1) Continuous prediction: the current harvest 
rate of a MEP totally depends on the harvest rate of 
the latest issued query by the MEP, namely:   
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where Z is a normalization factor. Assume qi-1 

uses mepj, then 1
1
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P q kv mep
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Continuous prediction method performs well on 
FMEP since there is no significant variation in 
harvest rates among different keyword vectors in 
most cases, while it may not be effective for IMEP. 

2) Weighted prediction: the current harvest rate 
of a MEP depends on all its previous harvest rates of 
issued query by the MEP, namely:   

1
1

1
-1

1
-1

( ( , ))
( ( )) (1 )

( ( , ))
 use ( ( ))

( ( ))
                           not use    

new i j
new i j

i j
i j

new i j

new i j
i j

P q kv mep
vP q mep v

P q kv mep
q mepP q mep Z

P q mep
q mep

Z

−
−

−

−

⎧
+ −⎪

⎪⎪=⎨
⎪
⎪
⎪⎩

 (6) 

where v is a weight to measure the dependence of 
the current harvest rate on the past experience. 
Experiments show that v ranges from 0.6 to 0.8. Z is 
a normalization factor; assume that qi-1 use mepj, 
then,  

1
1 1

1

( ( , ))
( ( )) ( ( )) (1 )(

( ( , ))
new i j

new i t new i j
t j i j

P q kv mep
Z P q mep vP q mep v

P q kv mep
−

− −
≠ −

= + + −∑

Weighted prediction method is the generalized form 
of continues prediction method, and works well on 
both FMEP and IMEP. Furthermore, the method is 
not sensitive to the initial value of each pattern in 
equation (6). So we adopt the weighted prediction 
method in our algorithm to predict Pnew(q(mepj)). 

4.2.2 Estimation for Pnew(qi(kv|mepj)) 

The aim of estimating the Pnew(qi(kv|mepj)) is to 
identify the most promising keyword vector of the 
given mepj. According to equation (1), we have 

Pnew(qi(kv|mepj)) 
=P(qi(kv|mepj))-P(qi(kv|mepj)∧(q1∨…∨qi-1)) 

(7) 

In equation (7), P(qi(kv|mepj)) represents the 
conditional capacity of obtaining data records of kv 
among all candidate keyword vectors of mepj. 
P(qi(kv|mepj)∧(q1∨…∨qi-1)) represents the fraction 
of previously downloaded unique records which 
contain kv of mepj. The value of P(qi(kv|mepj)∧ (q1

∨ … ∨ qi-1)) can be calculated through currently 
available data, whereas P(qi(kv|mepj)) needs to be 
estimated. The following part focuses on the 
calculation of these two values. 

In order to calculate P(qi(kv|mepj)∧(q1∨…∨qi-

1)), we introduce the notion of SampleDF(w) ,which 
means the document frequency of observed word w 
in sample croups {d1,...,ds} (Ipeirotis, 2002). 

SampleDF(w) =
1

s

k
k

b
=
∑ , bk=1 if w in dk , 0 otherwise. 

Unfortunately, SampleDF(w) cannot be applied to 
our work, for it only focuses on single keyword and 
ignores the compatibility between kv and mepj. To 
identify the contribution of the document frequency 
of m-dimensional keyword vector on a given 
particular pattern, we introduce cos<kvxk,mepx>, 
where kvxk is the corresponding Boolean vector of 
kvx in dk, and similarly mepx is the Boolean vector 
of mep. Assume that cosine value of null vector and 
any vector is 0. Here, we define the document 
frequency of kv on a given mep in sample croups 
{d1,...,ds} as SampleDF(kv|mep), which is calculated 
as follows: 

1 1
cos( )( | )

k
k

k

s s

k k

kvx mepx

kvx mepx
kvx ,mepxSampleDF kv mep

= =

= =∑ ∑ i
 (8) 

In equation (8), mepx = (mepx1,..., mepxm-1, 
mepxm). Unlike IMEP, FMEP keyword vector can be 
obtained by parsing the form F. In order to eliminate 
the influence on predicting keyword vector of IMEP, 
we assign zero to mepxi of finite element; kvxk = 
(kvxk

1,...kvxk
n), for given kvx and mep, the kvxk 

generation algorithm is shown in fig.3, where 
label(kvi) is the keyword label in dk, label(ei) is the 
label of the ith element of the mep. 

The reason of label(kvi) = null in Step 4 is that 
either the label of kvi is absent or the label can’t be 
extracted. To solve this problem, the algorithm 
borrows the idea from (Raghavan, 2001) to find the 
most relevant label of the missing label. In Step 6, 
Mv(x) is the fuzzy value of x in LVS. According to 
fig.3, the SampleDF(kv|mep) of a given FMEP is 0. 

 
Figure 3: Algorithm for generating the vector kvxk. 

Step 1:  i = 0; 
Step 2:  i++; If i > dimension of mep then return kvxk; 
Step 3:  If mepxi = 0 then kvxk

i = 0; Goto Step 2;  
Step 4:  If label(kvi) = null in dk;; Goto Step 6; 
Step 5: If label(kvi) = label(ei) then kvxk

i = 1; Goto Step 
2;Else then kvxk

i = 0; Goto Step 2; 
Step 6: Smax=0;  

//Calculate the most relevant label in LVS 
For each (L,V) entry in LVS 

S = Mv(kvi);  If(S > Smax) label(kvi)= L; 
Step 7:  Goto Step 5; 
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Obviously, when the given mep is FMEP, all 
candidate keyword vectors of mep can be obtained 
by parsing the form F. Assume that each pattern is 
capable to obtain all records from the target Deep 
Web database within limited time of queries, we can 
simply use average value to estimate P(qi(kv|mepj)): 

P(qi(kv|mepj)) = 

1

1

| |
n

t

tD
=
∏

 
(9) 

where iD  is the domain of element ie in mepj. 

Furthermore, suppose the mep consists of p radio 
buttons (or combo boxes) e1,...et,…ep, and q 
checkboxes ep+1,...e p+t,…e p+q, et has mt buttons (|Dt| 
= mt) and e p+t has r boxes (|Dp+t| = 2r). Since the 
domain size of a checkbox is an exponential 
function of the number of its check buttons, it is 
difficult to cover the full domain within acceptable 
time. In order to improve efficiency of queries with 
checkboxes, we replace the domain of a checkbox to 
its subset with size of ht (2≤ht≤r+2). Experimental 
results indicate that the subset formed by empty set, 
full set and sets of an individual checkbox can obtain 
about 90% of total records in most cases. Based on 
the above considerations, the value of P(qi(kv|mepj)) 
can be further optimized as: 

P(qi(kv|mepj)) = 

1

1
p q p

tt
t p t

h m
+

= =
∏ ∏

 
(10) 

When the given mepj is IMEP and consists of p 
radio buttons and q checkboxes, the value of 
P(qi(kv|mepj)) is 

P(qi(kv|mepj)) = 

1

p q p

tt
t p t

f

h m
+

= =
∏ ∏

 
(11) 

Compared with equation (10), equation (11) is 
more general. When the given mepj is FMEP, f = 1, 
which means that the query scope is the entire 
database; when the given mepj is IMEP, f is the 
fraction of records including keywords of infinite 
domain element on the given mepj. Here, we exploit 
Zipf-Mandelbrot law to estimate the fraction. 
Alternative method such as Poisson Estimator 
(Kenneth, 1995) may also be exploited. Zipf was the 
first to observe that the word-frequency distribution 
followed a power law, which was later refined by 
Mandelbrot. Mandelbrot observed a relationship 
between the rank r and the frequency f of a word in a 
text database (Mandelbrot, 1988): 

f = ( )r γα β −+ ,  where α , β and γ are parameters. (12) 

By analyzing dozens of experimental results, we 
find kv also follows Zipf-Mandelbrot law. If the rank 
value of SampleDF(kv|mep) is known, the value of f 
can also be estimated using equation (12). Then 
equation (11) can be rewritten as follows: 

P(qi(kv|mepj)) = 

1

( )
p q p

tt
t p t

r

h m

γα β −

+

= =

+

∏ ∏
. 

(13) 

Once SampleDF(kv|mep) and P(qi(kv|mepj)) are 
calculated, Pnew(qi(kv|mepj)) can be predicted as 
follows: a candidate query is formulated as a 4-tuple 
(MEP, Keyword Vector, SampleDF, ActualDF), 
where ActualDF indicates the actual number of 
records returned by the issued query; all the 4-tuples 
of candidate queries construct the query candidate 
pool. Our predicting algorithm manages the query 
candidate pool based on the acquired data records of 
the last query, sorts all 4-tuples in the pool according 
to sampledf, and then fits equation (12) with the rank 
and actualdf /S (the size of the target database)of all 
tuples that meet sampledf*actualdf≠0. Subseque-
ntly, Pnew(qi(kv|mepj)) of all the tuples which meet 
actualdf =0 can be calculated according to equation 
(11). The detailed algorithm is shown in Fig.4. 

 
Figure 4: Algorithm for predicting Pnew(qi(kv| mepj)). 

 

 

Step 1: Create a Tuple Set(Keyword Vector, MEP,  
SampleDF, ActualDF); 

Step 2:  Fetch a new downloaded document dk; If no more 
 document then Goto Step 7; 

Step 3:  If dk is not a new document Goto Step 2; 
Step 4:  Find out all (Keyword Vector, MEP) pair (kv,mep) 

 and its corresponding sampledf in dk; 
Step 5:  For each (kv,mep) 

If (kv,mep) pair exists in Tuple Set Then add 
sampledf to SampleDF of that tuple; 
Else Then add a new tuple 

(kv,mep,sampledf,0) ; 
Step 6:  Goto Step 2; 
Step 7:  Sort all 4-tuples in descending order of SampleDF; 
Step 8:  For each tuple where sampledf * actualdf≠ 0 

Simulate α 、 β 、 γ  in ( )r γα β −+  using 
tuple 

rank and actualdf /S; 
Step 9:  For each tuple where ActualDF = 0 

If(mepj is a FMEP) then f = 1; 

Else then f = ( )r γα β −+ ; 

Pnew (qi(kv| mepj)) =  p q p

f
+ - sampledf / S; 
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4.3 Convergence Analysis 

When to stop querying the web database is a 
difficult issue, especially when the size of target 
database is unknown. To make a decision on “When 
to stop” requires the knowledge of the relationship 
between fraction of new records and query cost. 
Assume that the size of Deep Web database is S, mk 
is the fraction of records returned by the ith query 
and ak is the cumulated fraction of new records 
returned by previous i queries. We have ak+1 = ak + 
mk * pk, where pk is the fraction of new records in mk. 
To simplify the calculation, we suppose that mk is 
fixed and pk can be approximated as /kS a S− , 
where kS a−  is the number of records that are not 
retrieved.ak+1 = ak + mk * pk can be rewritten as 

1 ( / )k k ka a m S a S+ = + ⋅ − , from which equation 
1/ 1 (1 / )k

ka S m S −= − −   is derived. 
The comparison between ideal and practical 

crawling fraction curve is carried out on dozens of 
Deep Web databases. Take the Babe Raccoon 
(http://vod.xjtu.edu.cn) as an example (see Fig.5). 
On the y-axis, the database coverage is plotted, 
while the x-axis represents the query number. 

 
Figure 5: Comparison between ideal and practical craw-
ling fraction. 

From both ideal and practical fraction curve, we 
can find that when the fraction of the total records 
obtained is approaching 90%, the harvest rate of the 
subsequent queries is relatively small and even 
equals to 0 in a period of time. We call the 
phenomenon “Crawler Bottleneck”. Deep web 
crawling is a time-consuming task requiring a 
significant amount of network resources. It would be 
a waste of both time and network bandwidth if the 
crawler doesn’t stop crawling when it comes into 
“Crawler Bottleneck” phase. For example, stopping 

crawling at t1 saves approximately 50% cost 
compared to stopping at t2. 

Assume W is an obtained data window with the 
size of ws, for a query qi, if i<ws, 

( )1i iW q ... q= ∨ ∨ ,if i≥ws, ( )1i i ws iW q ... q− += ∨ ∨ , 
costmax is the maximum available resource that a 
crawler has, and ε  is a very small positive number, 
we present an strategy for stopping crawling: after 

submitting qt, if
1

( )
t

i max
i

tcost q cost W ε
=

< >∧∑ is 

false, then stop crawling at qt. 
The value of ws depends on costmax. The greater 

the value of costmax, the bigger ws can reach. When 
ws is determined, ε becomes the critical factor in the 
strategy for stopping crawling. If ε is too small, the 
stopping time will be prolonged, while more data 
records may be obtained. To the contrary, the 
crawler will stop at an earlier time and reduce 
quantity of records retrieved. Therefore, the value of 
ε depends on the importance of the resource cost 
and the crawling data. 

5 EXPERIMENTS 

To evaluate the performance of our MEP-based 
adaptive query method, we performed experiments 
on 6 real Deep Web sites and compared our method 
with the representative methods of both non-prior 
knowledge and prior knowledge-based methods, i.e. 
adaptive query method based on single IDE (Infinite 
Domain Element) (Ntoulas, 2005) and classical LVS 
method (Raghavan, 2001). 

5.1 Effectiveness of MEP-based 
Adaptive Query 

We test our MEP adaptive query method on 6 real 
Deep Web sites, and the detailed experimental 
results are shown in Table 1. Results show that our 
method is quite effective for crawling Deep Web. 

Table 1: Web sites and their experimental results. 

URL(http) Domain Size/Harvest/query NO. 

www.jos.org.cn Paper 1380/1380/143 
cjc.ict.ac.cn Paper 2523/2523/13 
www.jdxb.cn Paper 424/424/16 
www.paperopen.co
m 

Paper 743,444/730,000/39
9 

vod.xjtu.edu.cn Movie 700/679/311 
music.xjtu.edu.cn Music 154,000/146,967/386 
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5.2 Performance Comparison 

We compare the crawling performance of our MEP-
based adaptive query (MEP or MEP adaptive for 
short) method with the adaptive query method in 
(Ntoulas, 2005). The experimental result is shown in 
Fig. 6, where the x-axis represents the query 
numbers and y-axis plots the database coverage. 

We find that if the query form contains a FMEP, 
our method shows distinct advantage over the 
adaptive query method based on single IDE (see 
Table 1). In order to evaluate performance of our 
method on query forms only containing IMEPs, we 
conduct other two experiments on Babe Raccoon 
and Blue Lotus. Fig. 6(a) shows the experimental 
results on Babe Raccoon, in which IDE1, IDE2, 
IDE3 represent the crawling curve of the method in 
(Ntoulas, 2005) on elements “movie name”, “actor”, 
“director” respectively and MEP denotes the curve 
of our method on three IMEPs. The experimental 
results on Blue Lotus are plotted in Fig. 6(b), in 
which IDE1, IDE2, IDE3 represent the crawling 
curve of the method in (Ntoulas, 2005) on element 
“author”, “publisher”, “title” respectively and MEP 
denotes the curve of our method on these IMEPs. 
Fig. 6(a) and 6(b) indicate that our method is more 
efficient than the adaptive query method in (Ntoulas, 
2005) on query forms only containing IMEPs. 

The MEP adaptive method is based on multi-
pattern, and usually there are several MEPs to be 
selected for each query. If each query takes the same 
MEP, the method degenerates into single IDE-based. 
From this point of view, the adaptive query method 
based on single infinite element in (Ntoulas, 2005) 
can be regarded as a special case of the MEP-based 
adaptive method. Single pattern always brings 
locality of the candidate keywords, while multi-
pattern can make full use of each pattern’s query 
capacity, and break through the locality of the 
keywords selection which leads to the problem of 
“data islands”. 
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Figure 6(a): Experiment on Baby Raccoon. 
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Figure 6(b): Experiment on Paper Open. 

In order to compare the crawling performance 
between the MEP adaptive method and the prior 
knowledge-based methods, we conduct experiments 
on the site of Blue Lotus. In addition, we find that 
the keyword with high value of P(qi) in our method 
is useful for the LVS method. If we update such 
keyword’s Mv value with its corresponding P(qi) in 
the LVS table and then perform the LVS method 
(Raghavan, 2001), it can remarkably improve 
crawling efficiency. We call it the enhanced LVS 
method. Fig. 7 shows the experimental results. 
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Figure 7: Comparison to Classical LVS. 

According to Fig. 7, we can gain the efficiency 
order of the three methods: the MEP adaptive 
method > enhanced LVS method > classical LVS 
method. Since the enhanced LVS method uses the 
updated LVS table which improves the veracity of 
the prior knowledge in LVS table, it contributes to 
better crawling efficiency. However, because of the 
inherent deficiencies of the prior knowledge-based 
methods, it is still less efficient than the MEP 
adaptive method. 

 

CRAWLING DEEP WEB CONTENT THROUGH QUERY FORMS

641



 

6 CONCLUSIONS  

Due to the heterogeneity among the query forms, 
effective Deep Web crawling is a difficult issue. In 
this paper, we propose the concept of MEP and a 
MEP-based Deep Web adaptive query method. The 
proposed method, like the prior knowledge-based 
methods, has the ability to handle a variety of web 
forms. Moreover, the method has an advantage of 
good crawling efficiency over the non-prior 
knowledge methods, and can overcome the problem 
of “data islands” to a certain extent. Performance 
comparisons with the related method validate the 
better query capability of our method. 

Although our method can be effective for most 
Deep Web sites, it has the following limitations: 
first, it may not perform well for some Deep Web 
sites that limit the size of the result set; second, it 
cannot support Boolean logic operators (e.g. AND, 
OR, NOT) in queries. We will focus on these issues 
in our future work. 
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