
MARKUP AND VALIDATION AGENTS IN VIJJANA
A Pragmatic Model for Collaborative, Self-organizing, Domain Centric

Knowledge Networks1,2

S. Devalapalli, R. Reddy, L. Wang and S. Reddy
SIPLab, Department of Computer Science & Electrical Engineering, West Virginia University

Morgantown, WV 26506, U.S.A.

Keywords: Vijjana, Knowledge Network, Semantic Web, Markup, Firefox Browser Extensions.

Abstract: In this paper we describe the Markup and Validation agents in Vijjana, a model for transforming a
collection of URLs (Uniform Resource Locators) into a useful knowledge network which reveals the
semantic connections between these disparate knowledge units. The markup process is similar to, but much
more involved than the traditional book-marking. All the relevant metadata corresponding to a particular
Uniform Resource locator is generated and passed on to the organizing agent, which adds this URL to the
database. Validation agent checks and ensures the database is consistent and has valid entries.

1 This work is supported in part by an endowment from the Bell Atlantic Foundation.
2 The authors thank all the members of SIPlab for their valuable contributions. The authors are also grateful to Dr. Asesh Das, Dr. Srini
Kankanahalli, Sentil Seliah and Ravi Raman for their valuable feedback on earlier drafts of this paper.

1 INTRODUCTION

The World Wide Web is the most comprehensive
source of information available to almost anyone
who has a computer. More often than not,
information seekers find what they are looking for
on the web. The most popular search engines
available today give to the users not just the
information requested but additional links and
resources to related topics. But the base assumption
of all these technologies is “the user knows what he
wants.” There is a difference between knowing what
you want precisely and having only a vague idea of
what you are interested in. A computer science
student might start out broadly with operating
systems and have the following traversal storage
systems memory allocations multitasking
multitasking in embedded systems operating
systems in embedding systems and end up reading
about VxWorks or similar real time operating
systems.

To achieve the precise awareness process,
Vijjana System provides a series of agents to fulfill
the tasks. Very often, a seemingly unguided but a
well organized browsing strategy would immensely
benefit anybody One of the objectives of Vijjana is

to never have an unproductive browsing session.
Though this might seem ambiguous, it’s easy to see
that it can be achieved to an extent.

With the idea of a system like Vijjana mentioned
above, conceiving such an application is a two step
process – build the library i.e., build a database with
data on domains that the system is being built for
and browse the system i.e., view/walk through the
system in the method described above. In this paper,
we will introduce one rudimental but essential part,
Vijjana Markup and Validation agent, which simply
in a way fits into both categories by applying several
recently popular techniques like KEA algorithm to
ensure information correctness and also cooperate
with other Vijjana agents to achieve high accuracy.

Since building the database is a continuous
process, the support for the same is provided as a
feature that is referred to as the Markup agent. The
purpose of the markup agent is to allow a user to
add anything of interest to the database. The markup
agent adds this resource to the database and invokes
the Organizing Agent which ensures that the
resource added will sit at a place that is most
appropriate. The markup agent identifies the domain
of the document/resource (JAN) being added by
generating the key phrases and other meta-data for
the contents of the JAN. The purpose of the

263
Devalapalli S., Reddy R., Wang L. and Reddy S.
MARKUP AND VALIDATION AGENTS IN VIJJANA - A Pragmatic Model for Collaborative, Self-organizing, Domain Centric Knowledge Networks.
DOI: 10.5220/0001825802630269
In Proceedings of the Fifth International Conference on Web Information Systems and Technologies (WEBIST 2009), page
ISBN: 978-989-8111-81-4
Copyright c© 2009 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

validation agent is to remove any dead links i.e.,
JANs that don’t exist anymore and ensure that the
database is in a consistent and complete state.

This paper is organized into six parts. A
background introduction is given in Section 2 to
illustrate our motivation for developing the Vijjana
system. Section 3 briefly introduces the framework
of our system. From it we can tell the essence of
Markup and Validation agent which crosses two
agents and play an important role in maintaining
information consistence. Detailed agent work
process and principle can be found in Section 4. The
first part in this section explains a popular key
phrases algorithm and its application in Vijjana. And
followed is the whole work process. Section 5 gives
out A concise conclusion and some future works.

2 MOTIVATION
AND RELATED WORK

 The main difficulty of using the Web as a
knowledge source lies in the fact that the Web is
nothing more than a list of hyper-linked pages where
the links have no associated semantics. Research on
semantic webs is aimed at mitigating this difficulty.
Tiwana et al. (2001) and Knoblock et al. (1997)
discuss a uniform way to represent web resources
and suggest models for automatic integration. Work
at IBM on the SHER project (Dolby et al., 2007;
Fokoue et al., 2007) focuses on simplifying
ontologies and scalable semantic retrieval through
summarization and refinement. There has been also
considerable research in the Artificial Intelligence
community on formalizing knowledge
representation (Sowa, 2000; Minsky, 1968; Sowa
and Majumdar, 2003) which is being adopted by the
researchers in the semantic web community
(http://www.semanticweb.org). All of these efforts
rely in one form or other on the ability to discover
semantic links automatically by analyzing the
contents of web pages, which poses considerable
difficulties due to the ad hoc nature of web pages.
While automatically converting the current web into
a fully linked semantic web may be a solution, such
an outcome is unlikely in the near future.

Meanwhile a number of organizations such as
del.icio.us (http://del.icio.us), Webbrain.com
(http://webbrain.com), digg.com (http://digg.com)
are busy creating what are called social networking
sites where a person searching the web may come
across an interesting link that is then “marked” with
a set of tags (keywords) which are stored in the site

owner’s server. A recent start-up company –
RadialNetworks has developed a system called
Twain (http://twain.com), which claims to create a
semantic network automatically. While this may be
an advantage for casual social networking it will be
unsuitable for enterprise-wide knowledge networks
as there are well-established relationships between
document types specific to that organization or
domain which cannot be derived automatically.

The information created via these sites may be
kept private, or it may be combined with similar lists
created by other people – thus the name social
network. In due course these lists may grow
enormously needing the employment of a search
engine bringing us back to the original problem -
how to cope with a large number of links that cannot
be visualized in their semantic context. Current
social bookmarking sites do not have any semantic
linking of web pages. For a knowledge network to
be useful for a large community of users working in
a well-defined domain (e.g. Computer Science
Teaching), the semantic web should be buildable co-
operatively using a predefined taxonomy and link
semantics.

With this motivation, we propose a model we
call Vijjana (a Sanskrit word that represents
collective knowledge created through classification
and analysis) which can help in organizing
individually discovered web pages drawn from a
narrowly bounded domain into a knowledge
network. This can be visualized as a hyper tree
(http://InXight.com), or a radial graph
(http://iv.slis.indiana.edu/sw/), thus making the
semantic relations visible. The visibility of semantic
relationships is the key to comprehending what is
actually inside the knowledge network. It can be
perused and also searched by anybody who wants to
“discover” knowledge in that domain. Let us
consider a simple example where two professors
Smith and Bradley among others can contribute
useful links to web pages (we call them Jans which
has roughly the same meaning as the word knol
popularized by Google to represent units of
knowledge) such as syllabi, homework problems,
etc. to an evolving Computer Science specific
knowledge network, say Vijjana-CS. These Jans are
then classified and interlinked using a pre-defined
taxonomy and relational semantics. This Vijjana-CS
will grow organically as contributions continue. We
can also define a number of agents associated with
this model, which can keep the knowledge network
complete and consistent by removing missing Jans
and associated links. In addition, we can create a

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

264

mechanism to maintain usefulness ratings of
individual Jans as determined by the users or by
using a heuristic based on the number of semantic
links and “hits” on the web page.

Now, let us re-visit, Professor Smith and his
problem of defining a new course. If Vijjana-CS
described above were available, he will simply visit
the associated website where he can fully visualize
all the textbooks liked to associated syllabi which
are further linked to associated lecture notes and
homework problems, etc. Furthermore, Professor
Smith can quickly notice the brightly glowing nodes
(representing most useful Jans as designated by
users or by a heuristic based rating agent) and
synthesize his course quickly and effectively. Later
he may return to Vijjana-CS to contribute his ratings
or other Jans he may have created. Thus grows the
Vijjana-CS’s content and its user/contributor
community - collaboratively and by self-organizing.
We should also hasten to add that the semantic
network created using the Vijjana model could
tolerate incomplete links, as we do not apply any
formal methods for retrieval of information, but
depend on visualization and perusal to guide our
discovery of information we need.

3 THE VIJJANA MODEL

We define the Vijjana model as:

Vijjana-X = { J, T, R, dA, oA, cA, vA, sA, rA}
where
X = the domain name
J= the collection of Jans in the Vijjana-X
T = the Taxonomy used for classification of Jans
R= the domain specific relations
dA = the discovery agent which find relevant Jans
oA = the organizing agent which interlinks the Jans
based on R
cA = the consistency/completeness agent
vA = the visualization agent
sA = the search agent
rA = the rating agent

The markup agent is a sub-agent of the discovery
agent. Similarly, the validation agent is a sub-agent
of the consistency/completeness agent. We now
examine the underlying concepts followed by the
markup process and the validation process.

4 MARKUP AND VALIDATION
AGENT

4.1 KEA Algorithm

Key phrases summarize documents. The gist of large
documents can be conveniently and coherently
described using a set of key phrases that reflect the
document’s contents. They save a lot of reader’s
time also. The importance of assigning keywords to
documents becomes even more pronounced in a
digital library or information retrieval systems. Most
of the documents available in electronic form today
contain a list of keywords that describe them.
However, there exist many that don’t. Manually
going through them and assigning keywords to each
document can be quite a task. It would need several
hundred man-hours and people with some
knowledge of the subject matter which, considering
the use of a computer program to do the task instead
is a futile exercise.

The KEA (Witten et al., 1999) algorithm
addresses this very need of extracting/assigning
keywords to documents. Of course, even at its best
KEA might not be able to extract the very same
keywords that the author of the document might
assign. It still offers a satisfactory solution to the
problem of text summarization.

Extraction of key phrases using KEA involves
two stages:
1. Training (building a key phrase extraction

model): before KEA can extract any key
phrases, it must be trained on a set of
documents. These documents need to have key
phrases assigned to them. KEA builds a model
based on these documents.

2. Extracting the keywords: Once a model is built,
KEA uses the model to extract key phrases for
any new document. Because key phrase
extraction is based on this model, it is best to
have domain-centric models i.e., training
documents need to be related (belong to the
same domain/subject) and the documents on
which KEA is used with this model must also
belong to the same domain for best results.

4.1.1 The Process

Witten et al. (1999) describe the following steps
involved in extracting key phrases using KEA
starting with cleaning the input document:

1. Cleaning: The document input must be

MARKUP AND VALIDATION AGENTS IN VIJJANA - A Pragmatic Model for Collaborative, Self-organizing, Domain
Centric Knowledge Networks

265

cleaned first. All punctuation marks, stop
words, hyphenations must be removed.

2. Identify the candidate phrases: There is a
maximum length set for candidate phrases (5
in Vijjana). All possible subsequences are
examined to get a list of candidate phrases.

3. Case folding and stemming: Stemming refers
to the process of removing suffixes like –ed, -
es, -ation, etc. This eliminates redundant
considerations of variations of the same
phrase.

4. Feature calculation: KEA uses two feature
values to compute the probability of a
candidate phrase being a key phrase for the
document. These are TF×IDF score and the
first occurrence.
TF×IDF score is a measure of a phrase’s
frequency in the document compared to its
frequency in general use. General use here
refers to the use of that phrase in the training
corpus.
The TF×IDF score for a phrase P is computed
as:

TF×IDF =
N

Pdf
Dsize

DPfreq)(log
)(

),(
−× (1)

Where freq(P,D) is the number of times P
occurs in D. size(D) is the number of words in
D df(P) is the number of documents
containing P in the training set
N is the size of the training set

First occurrence is the fraction of the document
that has to be read before the phrase’s first
appearance. It is the ratio of the number of words
that precede the phrase’s first occurrence to the total
number of words in the document.

With the TF×IDF (t) score and the the first
occurrence (d) values, KEA computes the
probability of a candidate being a key phrase as
follows:

P[yes] =
NY

Y
+

PTF×IDF[t | yes] Pdistance[d | yes] (2)

P[no] =
NY

N
+

PTF×IDF[t | no] Pdistance[d | no] (3)

p =
][][

][
noPyesP

yesP
+

 (4)

where Y is the number of positive instances in the
training files and N is the number of negative
instances i.e., candidate phrases that are not key
phrases.

Once the probabilities for all candidate phrases
are computed using this method, KEA sorts them
and returns the requested number of key phrases.

4.1.2 KEA in Vijjana

An implementation of KEA can be found at
(http://www.nzdl.org/Kea/). This implementation
has been modified to fit into Vijjana’s requirements.
The initial version of Vijjana is targeted at people
interested in Computer Science. The Vijjana
database would contain the JANs that are specific to
Computer Science. Keeping this in mind, the
training documents were chosen from various areas
of Computer Science specifically from areas such as
Algorithms, Database Theory, Operating Systems
and Pervasive Computing technologies.

A set of 24 documents with author assigned key
phrases, covering all the basics of the above
mentioned areas was input to KEA.

Since KEA does not always generate key phrases
that a reader might expect to associate with the
document, Vijjana Markup Agent provides a way to
add/remove key phrases.

4.2 Firefox Browser Extensions

Firefox allows application developers to write their
own extensions. Extensions, as the name implies
extend the functionality of the browser. The
extension used in Vijjana is a Toolbar that allows a
user to perform operations like Mark-up, Validate
JANs, navigate to the Vijjana homepage etc.

Combining these two ideas, Vijjana implements
the Markup agent and Validation agents as firefox
extensions. On installing the Vijjana extension, a set
of toolbar buttons, a menu and a context menu will
be installed into the firefox browser. A view of the
browser after installing Vijjana extension is shown
in Figure 1.

Figure 1: Firefox extension.

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

266

4.3 Vijjana Markup Agent

Markup is the process where the user marks up a
page/resource of interest to be a new JAN
containing feathers like key phrases generated by
KEA, and moves it into his/her own collection
which is informally called “user space”. When a
JAN is moved to the user’s space, it must be placed
in its proper corresponding classification of its
taxonomy. This is taken care by theVijjana
Organizing Agent(VOA) which applies some
pattern recognition techniques on key phrases to
classify it correctly.

The markup process flow is as shown in Figure
2:

Figure 2: Markup Process Flow.

The Markup process is illustrated in the
following series of screenshots. A JAN/URL
corresponding to an article on “Ubiquitous
Computing” at www.wikipedia.org is illustrated.
The user first needs to open the URL in the browser
as shown in figure 3.

The next step is to markup this page. This is
accomplished by clicking the Markup button in the
Vijjana Toolbar, which would trick the JAN creation
process. The webpage content will flow into KEA
algorithm to generate Key phrases which can be
further altered by user. As shown in the Figure 4, the
Markup GUI provides the user more options to
enrich this JAN, such as adding some semantic
features, such as title, descriptions. A default rating
of 1 out of 5 is given to the JAN, which also can be
altered before adding the JAN. Appropriate
predefined categories for the JAN are provided to

user to select. As mentioned above, VOA is in
charge of providing or preserving these categories.

Figure 3: Marking-up a Jan.

The following screenshot (figure 4) illustrates
this:

Figure 4: Adding/Deleting Keywords.

To add this JAN to the database, the user clicks
on “Organize and Add” button. This invokes VOA
to work. The Organizing Agent will then depending
on the key phrases add this JAN to its appropriate
location in the database. That is all is needed on
behalf of the user to add a JAN in his database.

4.4 Vijjana Validation Agent

Validation refers to the process of ensuring that the
database is in a consistent state. The next part of this
report deals with validation of a user’s JANs. The
JANs might be relocated or dead over a period of

MARKUP AND VALIDATION AGENTS IN VIJJANA - A Pragmatic Model for Collaborative, Self-organizing, Domain
Centric Knowledge Networks

267

time. At any time the database must reflect the most
recent status of the JANs. The next button in the
Vijjana toolbar is the Validate JANs button The
purpose of this button is to ensure that there is no
dead links (JANs) in the Vijjana database. In case of
such links being present, they need to be removed
from the database. It is essentially a cleansing
process where the database is cleaned of any
inconsistencies.

The most natural way of implementing this
feature is to fetch the URLs pertaining to a particular
user and validate them one after the other. A major
hurdle in doing this is that a user might have too
many JANs in his database which would cause the
system to run out of memory or take a considerable
amount of time to perform the validations. While
running out of memory can be corrected by fetching
subsets of rows and performing validations on those
rows. The size of subset in this implementation has
been set to 10000 rows which works fine. However,
the problem of time consumption cannot be avoided.
The time taken to validate all the JANs is
proportional to the number of JANs in a user’s
space. So a user must be at least informed of this
before the validation can begin. Only when a user
confirms, the validation will begin. The following
flowchart (Figure 5) illustrates the validation
process:

Figure 5: Validation of a Jan.

The following screenshots illustrate the
Validation agent in action. If validate has not been
performed at all, the valid/invalid state of a JAN is
not defined. The column in the database
corresponding to this state is termed “InvalidCount”.
So all those JANs that have not been validated will
have the invalidcount column set to null as shown
below:

Figure 6: Before Validation.

To validate the JANs in a user’s space, the user
clicks the validate button on the toolbar. A
confirmation is required before the validation can
begin. The validation process begins and the user is
notified when the validation is complete. The next
screenshot shows the validation complete
confirmation. During the process of validation, it
might seem that the browser isn’t responding. So
validation is best performed overnight as the last
task in the day.

The state of the database after the validation
process completes looks like

Figure 7: After Validation.

An invalid count of 0 represents that the link is
valid and a value of -1 represents otherwise. The
reason we don’t delete the JAN from the database if
its invalid is that sometimes, the server may be down
temporarily for maintenance in which case, validate
would assume that the JAN is dead.

5 CONCLUSIONS & FUTURE
WORKS

 In this paper we have proposed a way to “Markup”
URLs which involves extracting metadata of the

WEBIST 2009 - 5th International Conference on Web Information Systems and Technologies

268

URL like the key phrases describing the contents of
the URL, the title, a rating and a description of the
URL. We have also implemented a validation agent
that validates the database (of URLs) and marks the
entries as valid/invalid. These agents are currently
provided as firefox browser extensions which a user
with privileges can install and use.

Although Vijjana Markup and Validation agents
already work well in our current system, from above
we can say that it still needs some improvements..
Accurate selection of key phrases is an important
factor in determining the information correctness.
Current KEA algorithm largely depends on domain-
specific training data which might not be available
before the markup. This calls for a new key
algorithm which only marginally relies on domain
information. Due to this requirement, we designed a
new algorithm called VKE which is currently being
evaluated. It combines the syntax heuristic and
statistical method together to achieve high accuracy.
Also the comparatively large amount of validating
time consumed by the validation agent puts
considerable demands on the server. To solve this,
we are trying to apply some synchronization
techniques which divide a large server computing
work into many small client tasks, and distribute
them along the network.

REFERENCES

Tiwana, Amrit and Ramesh, Balasubramanian (2001)
Integrating Knowledge on the Web, IEEE Internet
Computing, pp 32-39.

C. Knoblock, S. Minton, J. Ambite, N. Ashish, P. Modi, I.
Muslea, A. Philpot, and S. Tejada (1997) Modeling
Web Sources for Information Integration, Proceedings
of the 1997 AAAI Conference.

J. Dolby, A. Fokoue, A. Kalyanpur, A. Kershenbaum, E.
Schonberg , K. Srinivas and L. Mia (2007) Scalable
semantic Retrieval Through Summarization and
Refinement, Proceedings of AAAI.

Fokoue, A. Kershen baum, L. Mia, E. Schonberg, K.
Srinivas (2007) Cutting Ontologies to Size, Lecture
Notes in Computer Science, ISBN 978-3-540-49029-
6, pp 343-356.

Sowa, John F. (2000) Knowledge Representation: Logical,
Philosophical, and Computational Foundations,
Brooks/Cole Publishing Co., Pacific Grove, CA.

Minsky, Marvin, ed. (1968) Semantic Information
Processing, MIT Press, Cambridge, MA.

Sowa, John F., & Arun K. Majumdar (2003) Analogical
reasoning, in A. de Moor, W. Lex, & B. Ganter, eds.,
Conceptual Structures for Knowledge Creation and

Communication, LNAI 2746, Springer-Verlag, Berlin,
pp. 16-36.

http://www.semanticweb.org/
http://del.icio.us
http://webbrain.com
http://digg.com
http://twain.com
http://InXight.com
http://iv.slis.indiana.edu/sw/ - This website has a lot of

information on displaying information as a radial
graph.

http://www.rssprotocol.com/ - This website has a lot of
information about the RSS protocol.

KEA: Practical Automatic Key phrase extraction - Witten
I.H., Paynter G.W., Frank E., Gutwin C. and Nevill-
Manning C.G. (1999): Proc. DL '99, pp. 254-256.

The KEA project - http://www.nzdl.org/Kea/
Mozilla Developer Center - Building an extension,

http://developer.mozilla.org/.
Vijjana - A Pragmatic model for Collaborative, Self-

Organizing, Domain Centric Knowledge Networks,
Reddy, Dr. Ramana. Morgantown: IKE 2008.

MARKUP AND VALIDATION AGENTS IN VIJJANA - A Pragmatic Model for Collaborative, Self-organizing, Domain
Centric Knowledge Networks

269

