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Abstract: The present paper proposes a visual integration algorithm that integrates intensity edge information into a
stereo algorithm. The stereo algorithm assumes two constraints of continuity and uniqueness on disparity
distribution. Since depth discontinuity around object boundaries does not satisfy the continuity constraint, it
causes numerous errors in stereo disparity detection. In order to reduce the errors due to the depth disconti-
nuity, we propose a new algorithm that integrates intensity edge information into the stereo algorithm. The
stereo algorithm utilizes reaction-diffusion equations, in which diffusion coefficients control the continuity
constraint. Thus, we introduce anisotropic diffusion fields into the reaction-diffusion equations; that is, we
modulate the diffusion coefficients according to results of edge detection applied to image intensity distribu-
tion. We demonstrate how the proposed algorithm works around areas having depth discontinuity and confirm
quantitative performance of the algorithm in comparison to other stereo algorithms.

1 INTRODUCTION

The cooperative stereo algorithm proposed by Marr
and Poggio (Marr and Poggio, 1979) assumes two
constraints: uniqueness and continuity on stereo dis-
parity distribution. The uniqueness constraint states
that a particular point in a stereo disparity distribution
has only one stereo disparity level except for transpar-
ent object; the continuity constraint states that stereo
disparity varies continuously over object surfaces. Al-
though most areas in stereo disparity distribution sat-
isfy the continuity constraint, areas having depth dis-
continuity such as object boundaries do not satisfy the
continuity constraint. Thus, stereo algorithms assum-
ing the continuity constraint tend to provide numerous
errors in areas having the depth discontinuity.

The problem due to discontinuity is one of the cen-
tral issues in image processing and computer vision
research. We usually apply the Gaussian filter to dis-
tribution of visual properties such as intensity, dispar-
ity or motion around spatial neighboring points, in or-
der to smooth the distribution. We can utilize a dif-
fusion equation instead of the Gaussian filter. How-
ever, since a smoothing process or a diffusion process
across the discontinuity causes unexpected smoothing
or diffusion on the visual properties, there are also nu-
merous errors around areas having the discontinuity.
In order to solve the problem due to the discontinu-
ity, several algorithms introduced anisotropy into the
Gaussian filter or the diffusion process. An edge de-
tection algorithm proposed by Perona and Malik is

580
Nomura A., Ichikawa M., Okada K. and Miike H. (2009).
INTEGRATION OF INTENSITY EDGE INFORMATION INTO THE REACTION-DIFFUSION STEREO ALGORITHM.
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 580-586
DOI: 10.5220/0001821005800586
Copyright c© SciTePress



one of the most famous algorithms having anisotropic
diffusion (Perona and Malik, 1990).

When focusing on stereo disparity detection,
we can find many state-of-the-art stereo algo-
rithms (Scharstein and Szeliski, 2002), some of which
handle the problem due to depth discontinuity or its
related occluding boundary problem. The cooperative
algorithm (Marr and Poggio, 1979) mentioned above
is one of the most widely known and primitive algo-
rithms. Zitnick and Kanade proposed a modern coop-
erative algorithm (Zitnick and Kanade, 2000), which
assumes the two constraints and also simultaneously
provides a solution to solve the occluding boundary
problem. The belief-propagation algorithm (Klaus
et al., 2006) and the graph-cuts algorithm (Deng et al.,
2007) are also attracting much attention from com-
puter vision researchers, since they achieved good
performance on stereo disparity detection. Some of
the algorithms can also detect occlusion areas and
thus can partially avoid the problem due to the depth
discontinuity.

Several researchers have proposed to utilize
reaction-diffusion systems or equations in image pro-
cessing and computer vision research. Kuhnert et
al. found that a reaction-diffusion system described
with reaction-diffusion equations works as an opti-
cal memory device and visualizes edges and segments
of patterns from image intensity distribution (Kuh-
nert, 1986; Kuhnert et al., 1989). Adamatzky et
al. proposed novel computer architecture that per-
forms image processing with a reaction-diffusion
system (Adamatzky et al., 2005); they also pro-
posed computer algorithms utilizing the reaction-
diffusion equations and named a class of the algo-
rithms ’reaction-diffusion algorithm’. Suzuki et al.
realized a reaction-diffusion system with large-scale
integrated circuits for an application to finger-print
identification (Suzuki et al., 2005). Ueyama et al.
proposed a model described with a reaction-diffusion
equation for explaining figure-ground separation ob-
served in the human motion perception (Ueyama
et al., 1998). The authors applied the reaction-
diffusion equations to edge detection and segmenta-
tion in image processing (Nomura et al., 2003).

The previous stereo algorithm proposed by the
authors also utilizes the reaction-diffusion equa-
tions (Nomura et al., 2009). The algorithm con-
sists of multi-sets of the reaction-diffusion equations;
each set governs areas of its corresponding dispar-
ity level, in accordance with the cooperative algo-
rithm. Diffusion processes in the reaction-diffusion
equations realize the continuity constraint; a mutual
inhibition mechanism built in the multi-sets realizes
the uniqueness constraint. However, the algorithm did

not achieve satisfactory performance on disparity de-
tection, in particular, in areas having depth disconti-
nuity.

Reaction-diffusion equations were originally pro-
posed as mathematical models for explaining pattern
formation or signal propagation observed in natural
systems such as chemical and biological systems. The
equations couple diffusion equations with reaction
terms describing chemical reaction or biological phe-
nomena; they are composed of time-evolving partial-
differential equations. For example, the FitzHugh-
Nagumo type reaction-diffusion equations are a sim-
plified model of equations describing signal propaga-
tion along a nerve axon (FitzHugh, 1961; Nagumo
et al., 1962). By modeling visual functions and realiz-
ing their computational algorithms with the reaction-
diffusion equations, we are trying to support the al-
gorithms in their biological background, even if we
do not have direct evidence that connects each of the
algorithms with the human visual perception. The au-
thors believe that such the biologically motivated al-
gorithms are interesting from both scientific and en-
gineering points of view.

In this position paper, we focus on the problem
due to depth discontinuity and propose an idea of a
visual integration algorithm that integrates intensity
edge information into the reaction-diffusion stereo al-
gorithm. Previous psycho-physical studies provided
several evidences showing that the human vision sys-
tem reconstructs depth distribution from combination
of several kinds of visual information such as binoc-
ular stereopsis, motion, texture and shading (Landy
et al., 1995). We believe that integration of edge infor-
mation into the stereo algorithm brings better perfor-
mance, also in the case of stereo disparity detection.
Since the reaction-diffusion stereo algorithm realizes
the continuity constraint with diffusion processes,
weak diffusion prevents the stereo disparity informa-
tion from diffusing. Thus, in order to realize the al-
gorithm of the integration, we introduce anisotropic
diffusion fields (Perona and Malik, 1990; Black et al.,
1998) into the reaction-diffusion equations; we can
expect that anisotropic diffusion fields modulated by
depth edge information prevent disparity information
from diffusing across depth edges. However, it is dif-
ficult to detect areas having depth discontinuity prior
to stereo disparity detection. Thus, we utilize areas
having intensity edges instead of areas having the
depth discontinuity; another reaction-diffusion algo-
rithm designed for edge detection provides the in-
tensity edge information (Nomura et al., 2008). We
realize the full reaction-diffusion system that detects
stereo disparity and intensity edges; we provide re-
sults of the intensity edge detection to anisotropic dif-
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fusion fields in the proposed stereo algorithm. We
confirm how the proposed algorithm works around
the areas having depth discontinuity for test stereo
image pairs provided on the Middlebury website
(http://vision.middlebury.edu/stereo/) (Scharstein and
Szeliski, 2002). In addition, we evaluate the quan-
titative performance of the stereo algorithm, in com-
parison to the previous reaction-diffusion stereo algo-
rithm and a state-of-the-art stereo algorithm.

In the future direction of the present research
work, we are planning to dynamically integrate edge
information into the reaction-diffusion stereo algo-
rithm. That is, we first detect edge information
from both distribution maps on image intensity and
initially-detected disparity, which is obtained from an
output of a matching cost function. Next, we com-
pute tentative disparity distribution by integrating the
firstly detected edge information into the reaction-
diffusion stereo algorithm having anisotropic diffu-
sion. By repeating the two steps of edge detection and
stereo disparity detection alternately, we update stereo
disparity distribution so as to achieve better perfor-
mance of the reaction-diffusion stereo algorithm. The
present position paper is the first step in this future
direction.

2 REACTION-DIFFUSION

The FitzHugh-Nagumo type reaction-diffusion equa-
tions consist of two time-evolving partial differen-
tial equations with two variables: activator and in-
hibitor. The equations were proposed as a model
of signal propagation along a nerve axon (FitzHugh,
1961; Nagumo et al., 1962). Let us consider two-
dimensional space(x,y) and timet; let u(x,y, t) be the
activator variable andv(x,y, t) be the inhibitor vari-
able. Then, the reaction-diffusion equations are de-
scribed as follows:

∂tu = Du∇2u+[u(u−a)(1−u)−v]/ε, (1)

∂tv = Dv∇2v+(u−bv), (2)

where ∂t denotes∂/∂t and ∇ denotes the two-
dimensional spatial gradient operator;Du is a diffu-
sion coefficient on the activatoru(x,y, t), Dv is a dif-
fusion coefficient on the inhibitorv(x,y, t), andε is a
positive small constant (0< ε ≪ 1).

The diffusion-less system derived from Eqs. (1)
and (2) behaves as two different types of system: bi-
stable system and mono-stable system, depending on
the parameter values ofa andb. The bi-stable system
has two stable steady states and the mono-stable sys-
tem has the one stable steady state; the stable steady
states satisfyu(u−a)(1−u)−v = 0 andu−bv= 0.
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Figure 1: Numerical results on the reaction-diffusion
Eqs. (1) and (2) in one-dimensional spacex. The param-
eter values utilized here are as follows. (a)Dv = 0.0, ε =
1.0×10−2, b = 10; (b)Dv = 0.0, ε = 1.0×10−2, b = 1.0;
(c) Dv = 10.0, ε = 1.0× 10−3, b = 10; (d) Dv = 10.0,
ε = 1.0×10−3, b = 1.0. We fixed the other parameter val-
ues ofDu anda at Du = 1.0 anda = 0.05 and discretized
spacex with the finite differenceδx = 1/5 and timet with
the finite differenceδt = 1/1000 for the numerical compu-
tation. The system of Eqs. (1) and (2) is bi-stable in (a)
and (c), and mono-stable in (b) and (d). A solid black line
indicatesu(x,t = 1.0) or u(x,t = 10.0), and a broken line in-
dicatesv(x,t = 1.0) or v(x,t = 10.0) in each figure. A solid
gray line indicates an initial condition foru(x,t = 0) in each
figure; an initial condition forv(x,t = 0) was fixed atv = 0
over the entire spacex. A wave front or a wave pulse prop-
agates towards a right arrow in each of (a) and (b); a wave
front or a wave pulse does not propagate but remains at the
center edge position in the one dimensional spacex in (c)
and (d).

As time proceeds, any solution converges to either of
the two stable steady states in the bi-stable system,
and to the stable steady state in the mono-stable sys-
tem.

The set of the reaction-diffusion Eqs. (1) and (2)
generates a traveling wave under the conditionDu >
Dv. Figure 1(a) shows a propagating wave front gen-
erated by the bi-stable system; Fig. 1(b) shows a
propagating pulse wave generated by the mono-stable
system. In the both cases, a wave front or a pulse
wave propagates at almost constant velocity in one-
dimensional space. The propagation velocity depends
on the parameter values ofDu, a andε.

When the set of Eqs. (1) and (2) is in the condition
Du ≪ Dv, it generates a static pattern (Turing, 1952).
Under the conditionDu ≪ Dv, the inhibitorv diffuses
more rapidly than the activatoru. Since the increasing
inhibitor variablev prevents the activator variableu
from increasing, it prevents the wave front or the pulse
wave from propagating. That is, we obtain a static
pattern of the wave front or the pulse wave.

The authors found that the set of Eqs. (1) and
(2) has two functions applicable to image process-
ing (Nomura et al., 2003). They found that the bi-
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stable system can detect segments and the mono-
stable system can detect edges from image intensity
distribution given to the initial condition ofu(x,y,t =
0). The parametera in Eq. (1) works as a thresh-
old level for segmentation and edge detection. Fig-
ures 1(c) and 1(d) show one-dimensional examples of
segmentation and edge detection on a step function
given to the initial condition ofu(x, t = 0).

In addition to segmentation and edge detection,
the authors proposed a stereo algorithm that utilizes
multi-sets of the FitzHugh-Nagumo type reaction-
diffusion equations (Nomura et al., 2009). They con-
nected the bi-stable systems of the reaction-diffusion
equations through the parametera as follows:

∂tud = Du∇2ud +µCd

+[ud(1−ud)(ud −ad(umax))−vd]/ε,(3)

∂tvd = Dv∇2vd +(ud−bvd), (4)

whereud(x,y,t) and vd(x,y, t) are activator and in-
hibitor variables in each set of the reaction-diffusion
equations, andµ is a constant that controls an external
stimulus of a matching cost functionCd(x,y) with a
disparity leveld. Thus, each of the sets governs areas
associated with the disparity leveld. A wave front
associated with the disparity leveld propagates into
undefined disparity areas, according to the diffusion
of the activator variableu; thus, the wave front prop-
agation realizes the continuity constraint imposed on
the stereo algorithm. A mutual inhibition mechanism
built into the multi-sets of the equations through the
next functionad(umax) realizes the uniqueness con-
straint as follows:

ad(umax) = a0 +
umax

2
[1+ tanh(da−a1)],

umax = max
d′∈Θ

ud′ ,

da =

∣

∣

∣

∣

d−argmax
d′∈Θ

ud′

∣

∣

∣

∣

(5)

wherea0 anda1 are constants andΘ denotes the inhi-
bition area for the uniqueness constraint (Zitnick and
Kanade, 2000).

The finite difference method with the spatial finite
differences ofδx andδy and the temporal finite dif-
ference ofδt discretizes partial differential operators
∇ and∂/∂t. For example, the Gauss-Seidel method
provides a solution to a set of linear equations derived
from Eqs. (3) and (4). After enough duration of time
t, the next equation provides a disparity mapM(x,y,t)
as follows:

M(x,y, t) = argmax
d∈∆

ud(x,y, t), (6)

where∆ denotes a set of possible disparity levels.

3 PROPOSED INTEGRATION
ALGORITHM

Depth discontinuity causes numerous errors in the
previous stereo algorithm utilizing multi-sets of the
reaction-diffusion equations. As mentioned in the
previous section, a propagating wave front fills in un-
defined disparity areas; this filling-in process realizes
the continuity constraint. However, the filling-in pro-
cess causes error around areas having the depth dis-
continuity. In order to reduce errors around the areas,
we need to prevent the filling-in process, that is, to
prevent the wave front from propagating across depth
edges.

Areas having depth discontinuity are generally un-
known prior to stereo disparity detection. Poggio et
al. proposed a visual integration algorithm that de-
tects depth discontinuity, by integrating intensity edge
information and stereo disparity distribution (Pog-
gio et al., 1988). Thus, instead of taking account
of the areas having the depth discontinuity, we uti-
lize edges detected for image intensity distribution in
the stereo algorithm. The authors also proposed an-
other reaction-diffusion algorithm designed for edge
detection (Nomura et al., 2008). Thus, the two vari-
ablesu(x,y,T) andv(x,y,T) obtained by the reaction-
diffusion algorithm after finite duration of timeT
are useful as intensity edge information. Letue(x,y)
be u(x,y,T) andve(x,y) be v(x,y,T); high values in
ue(x,y) andve(x,y) denote the existence of edges, as
shown in Fig. 1(d).

Now, we modify the reaction-diffusion Eqs. (3)
and (4) in order to integrate edge information into
the stereo algorithm. Let us recall that a single set
of the reaction-diffusion Eqs. (1) and (2) generates
a wave front propagating at a velocity. The veloc-
ity depends on the diffusion coefficientDu and de-
creases asDu decreases, when other parameter values
are fixed. Thus, we propose to introduce the inten-
sity edge information denoted byue andve into the
diffusion terms as follows:

∂tud = Du∇ · [(1−ue)∇ud]+µCd

+[ud(1−ud)(ud −ad(umax))−vd]/ε,(7)

∂tvd = Dv∇ · [(1−ve)∇vd]+ud−bvd, (8)

where∇ · [(1−ue)∇ud] and∇ · [(1−ve)∇vd] describe
the anisotropic diffusion fields. The two terms(1−
ue) and (1− ve) weaken the diffusion ofud and vd
around the edge areas.
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Table 1: Quantitative performance evaluations on the four
stereo image pairs: CONES, TEDDY, TSUKUBA and
VENUS. We evaluated stereo disparity maps with the
bad-match-percentage error measure having the thresh-
old level of 1.0 (pixel) in non-occlusion area (nonocc.),
all area (all) and area having depth-discontinuity (disc.).
Stereo algorithms evaluated here are as follows: the
reaction-diffusion algorithm (RD), the reaction-diffusion
algorithm with the integration of intensity edge informa-
tion (RD+IE), the state-of-the-art algorithm (AdaptingBP:
ABP) (Klaus et al., 2006). We fixed the parameter
values of the reaction-diffusion stereo algorithms across
the four stereo image pairs. The Middlebury website
(http://vision.middlebury.edu/stereo/) provides the stereo
image pairs, the ground truth data and definitions of the ar-
eas as well as the scores on the state-of-the-art algorithm.
See also Figs. 2 and 3 on the results of the reaction-diffusion
algorithms.

RD RD+IE ABP
nonocc. 5.53 5.36 2.48

CONES all 12.57 12.98 7.92
disc. 15.18 14.45 7.32
nonocc. 14.85 14.68 4.22

TEDDY all 20.86 20.91 7.06
disc. 30.15 29.06 11.8
nonocc. 5.98 8.46 1.11

TSUKUBA all 7.86 10.19 1.37
disc. 19.70 20.13 5.79
nonocc. 2.75 2.93 0.10

VENUS all 3.92 4.09 0.21
disc. 21.23 20.18 1.44

4 EXPERIMENTAL RESULTS

This section presents experimental results on
the well-known four test stereo image pairs:
CONES, TEDDY, TSUKUBA and VENUS, all
of which are provided on the Middlebury website
(http://vision.middlebury.edu/stereo/) with their
ground truth data and definitions of areas having
depth discontinuity. We applied two reaction-
diffusion stereo algorithms to the four stereo image
pairs; one of the two stereo algorithms is the previous
algorithm proposed by the authors (Nomura et al.,
2009) and the other one is the proposed algorithm
integrating intensity edge information.

Figures 2 and 3 show results of stereo disparity
detection on CONES and TEDDY. Let us focus on
areas surrounded by red broken lines in Figs. 2 and
3. The proposed algorithm detected disparity values
correctly along the areas having the depth disconti-
nuity, in comparison to the results detected by the
previous reaction-diffusion algorithm. In these areas,
detected intensity edges coincide quite well with the
edges having the depth discontinuity.

We quantitatively evaluated the stereo disparity maps
with respect to the bad-match-percentage error mea-
sure. Table 1 shows the results of the evaluations. Al-
though the performance of the proposed algorithm is
rather better than the performance of the previous al-
gorithm for the areas having the depth discontinuity
(disc.) on the stereo image pairs: CONES, TEDDY
and VENUS, it becomes worse for the all areas (all)
and on the image pair TSUKUBA. Table 1 also shows
the results evaluated for the top-ranked state-of-the-
art algorithm (Klaus et al., 2006). We recognize that
the quantitative performance of the reaction-diffusion
algorithm is much worse than that of the state-of-the-
art algorithm.

5 CONCLUSIONS

In the present paper, we have proposed a visual inte-
gration algorithm that integrates intensity edge infor-
mation into a reaction-diffusion stereo algorithm (No-
mura et al., 2009) for improving its performance
around areas having depth discontinuity. We pro-
vide intensity edge information obtained by another
reaction-diffusion algorithm designed for edge detec-
tion to anisotropic diffusion fields of multi-sets of
the reaction-diffusion equations utilized in the stereo
algorithm. Stereo disparity maps obtained for test
stereo image pairs show that success of the proposed
algorithm was observed in part around the areas hav-
ing depth discontinuity. However, the quantitative
performance evaluated for the proposed algorithm
was not superior but almost similar to the previous
reaction-diffusion stereo algorithm. There are sev-
eral areas in which the proposed algorithm does not
work, even if detected intensity edges coincide with
depth edges. Thus, we need to observe the situation
causing errors and to consider how to suppress the er-
rors around areas having the depth discontinuity. This
is the next work required to establish the proposed
stereo algorithm.
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Figure 2: Experimental results on the stereo image pair
CONES. (a) Left image of the pair and (b) ground truth dis-
parity map. Image size is 450×375 (pixels2) and possible
disparity levels are∆ = {0,1, · · · ,59} (pixels). (c) Stereo
disparity mapM(x,y,t = 100) detected by the previous
reaction-diffusion stereo algorithm; (d) that detected bythe
proposed algorithm. (e) Absolute error map on the de-
tected map (c); (f) that on (d). (g) Definition of area hav-
ing depth discontinuity (white area) and non-occlusion area
(gray area). (h) Edge detection result obtained for the left
image (a) by the reaction-diffusion algorithm designed for
edge detection (Nomura et al., 2008); black dots and lines
indicate detected intensity edges. Parameter values of the
two stereo algorithms were fixed asδx = δy = 1/5, δt =
1/100,Du = 1.0,Dv = 3.0, a0 = 0.13,a1 = 1.5,b= 10,ε =
1.0×10−2 andµ = 3.0. See the literature (Nomura et al.,
2008) for parameter values utilized in (h). Table 1 shows re-
sults of the quantitative performance evaluations. The Mid-
dlebury website (http://vision.middlebury.edu/stereo/) pro-
vides the stereo image pair, the ground truth data and the
definitions of the areas.
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Figure 3: Experimental results on the stereo image pair
TEDDY. (a) Left image of the pair and (b) ground truth dis-
parity map. Image size is 450×375 (pixels2) and possible
disparity levels are∆ = {0,1, · · · ,59} (pixels). (c) Stereo
disparity mapM(x,y,t = 100) detected by the previous
reaction-diffusion stereo algorithm; (d) that detected bythe
proposed algorithm. (e) Absolute error map on the de-
tected map (c); (f) that on (d). (g) Definition of area hav-
ing depth discontinuity (white area) and non-occlusion area
(gray area). (h) Edge detection result obtained for the left
image (a) by the reaction-diffusion algorithm designed for
edge detection (Nomura et al., 2008); black dots and lines
indicate detected intensity edges. Parameter values of the
two stereo algorithms were fixed asδx = δy = 1/5, δt =
1/100,Du = 1.0, Dv = 3.0,a0 = 0.13,a1 = 1.5, b= 10,ε =
1.0×10−2 andµ = 3.0. See the literature (Nomura et al.,
2008) for parameter values utilized in (h). Table 1 shows re-
sults of the quantitative performance evaluations. The Mid-
dlebury website (http://vision.middlebury.edu/stereo/) pro-
vides the stereo image pair, the ground truth data and the
definitions of the area.
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