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Abstract: In this paper, a database of texture images is analyzed by the Laws’ texture energy measure technique. The
Laws’ technique has been used in a number of fields, such as computer vision and pattern recognition. Al-
though most applications use Laws’ convolution filters with sizes of 3× 3 and 5× 5 for extracting image
features, our experimental system uses extended resolutions of filters with sizes of 7×7 and 9×9. The use
of multiple resolutions of filters makes it possible to extract various image features from 2D texture images
of a database. In our study, the extracted image features were selected based on statistical analysis, and the
analysis results were used for determining which resolutions of features were dominant to classify texture
images. A texture energy computation technique was implemented for an experimental texture image retrieval
system. Our preliminary experiments showed that the system can classify certain texture images based on
texture features, and also it can retrieve texture images reflecting texture pattern similarities.

1 INTRODUCTION

In the 1990s, intensive research was conducted
on content-based image retrieval methods. Unlike
traditional keyword-based image retrieval methods,
content-based image retrieval methods have used im-
age features as indices for image databases. The im-
age features describe characteristics of the images
which include colors, shapes and textures. Since im-
age feature indices can be extracted automatically by
using software programs, this process is more ef-
ficient and faster compared to that of keyword in-
dices which are assigned by human hands. Various
image feature extraction techniques have been pro-
posed based on computer algorithms, such as co-
occurrence matrices (Haralick et al., 1973), Markov
random field modeling (Cross and Jain, 1983), Gabor
filtering (Manjunath and Ma, 1996), Wavelet (Chang
and Kuo, 1993), and HLAC (Kato, 1992). Also, vari-
ous statistical learning techniques have been proposed
to improve retrieval rates by learning from the sam-
ple image data (Kato, 1992). Such techniques include
use of self-organizing maps (SOM), neural networks
(NN) and support vector machines (SVM). Details of
image features and a related retrieval technique sur-
vey can be found in several papers (Veltkamp and
Tanase, 2000) (Datta et al., 2008).

In our experiments, the famous Laws’ texture en-
ergy measure technique is applied to a 2D texture
image database. Although a typical application uses
Laws’ filters of 3×3 and 5×5, the sizes of the filters
were extended to 7×7 and 9×9 in our experiments.
These multiple resolutions of the filters were used for
extracting image features from images of a texture
database. The extracted features were analyzed by
linear discriminant analysis to determine which res-
olutions of features were best suited for classifying
the texture database. Also, principal component anal-
ysis (PCA), and the k-nearest neighbor (KNN) algo-
rithm was used for the similarity retrieval of a texture
database.

2 TEXTURE ENERGY FILTERS

In this section, (1) Laws’ texture energy measures, (2)
convolution and (3) rotation invariant features are dis-
cussed.

2.1 Laws’ Texture Energy Measures

The texture analysis technique based on the texture
energy measure which was developed by K. I. Laws
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(Laws, 1979) (Laws, 1980) has been used for many
applications of image analysis for classification and
segmentation. The texture energy measurements for
2D images are computed by applying convolution fil-
ters. In the technique, three basic filters were used as
follows:

L3 = (1 2 1)
E3 = (-1 0 1)
S3 = (-1 2 -1)

The initial letters of these filters indicate Local av-
erage (or Level), Edge detection, and Spot detection.
The numbers followed by the initial letters indicate
lengths of the filters. In this case, the length of the
filters is three. Often, extended lengths of filters are
used for 2D image analysis. The extension of the fil-
ters can be done by convolving the pairs of these fil-
ters together. For example, filters with a length of five
can be obtained by convolving pairs of filters with a
length of three. In this convolution process, nine fil-
ters (3× 3) can be formed, and five of them are dis-
tinct. The following is a set of one dimensional con-
volution filters of a length of five:

L5 = (1 4 6 4 1)
E5 = (-1 -2 0 2 1)
S5 = (-1 0 2 0 -1)
W5 = (-1 2 0 -2 1)
R5 = (1 -4 6 -4 1)

The initial letters of these filters stand for Local
average (or Level), Edge, Spot, Wave, and Ripple.
All filters are zero-sum filters except for theL5 fil-
ter. Many applications use Laws’ filter with a size of
3 and 5 for extracting texture energy values. In our ex-
periments, we have extended the filter sizes to 7 and
9. The filters of 7 can be obtained by convolving fil-
ters of a length of five and filters of a length of three
as follows:

Xa7 = ( 1, 6, 15, 20, 15, 6, 1 )
Xb7 = ( 1, 4, 5, 0, -5, -4, -1 )
Xc7 = ( -1, -2, 1, 4, 1, -2, -1 )
Xd7 = ( 1, 0, -3, 0, 3, 0, -1 )
Xe7 = ( 1, -2, -1, 4, -1, -2, 1 )
Xf7 = ( 1, -4, 5, 0, -5, 4, -1 )
Xg7 = ( -1, 6, -15, 20, -15, 6, -1 )

By using a similar approach, one dimensional ker-
nels of a length of nine are obtained as follows:

All the kernels are zero-sum kernels except for
Xa7 andYa9. Simple sequential labelsX andY were
assigned for the filters 7 and 9 for convenience, al-
though more meaningful labels such asL, E, S, W

Ya9 = ( 1, 8, 28, 56, 70, 56, 28, 8, 1 )
Yb9 = ( 1, 6, 14, 14, 0, -14, -14, -6, -1 )
Yc9 = ( -1, -4, -4, 4, 10, 4, -4, -4, -1 )
Yd9 = ( 1, 0, -4, 0, 6, 0, -4, 0, 1 )
Ye9 = ( 1, 2, -2, -6, 0, 6, 2, -2, -1 )
Yf9 = ( -1, 2, 2, -6, 0, 6, -2, -2, 1 )
Yg9 = ( -1, 4, -4, -4, 10, -4, -4, 4, -1 )
Yh9 = ( 1, -8, 28, -56, 70, -56, 28, -8, 1 )
Yi9 = ( 1, -6, 14, -14, 0, 14, -14, 6, -1 )

andR can be used. (Obviously,Xa7 can be labeled
L7, andYa9 can be labeledL9.)

These one dimensional filters are used to gener-
ate two dimensional filters by combining these one
dimensional filters. The set of two dimensional filters
with lengths of three (3×3) are as follows:

L3L3, L3E3, L3S3
E3L3, E3E3, E3S3
S3L3, S3E3, S3S3

In a similar manner, two dimensional filters with
the lengths of 5× 5, 7× 7 and 9× 9 can be ob-
tained. Furthermore, three dimensional filters such as
3× 3× 3 can be generated by combining basic one
dimensional filters (Suzuki and Yaginuma, 2007).

2.2 Convolution

Once the two dimensional filters are obtained, these
filters are used to convolve the 2D texture image. The
convolution of imageI and filterF with a size of 2t +
1 by 2t +1 is expressed by the following equation:

R(i, j)= F(i, j)∗ I(i, j)=
t

∑
k=−t

t

∑
l=−t

F(k, l)I(i+k, j + l)

(1)
where ’∗’ denotes two dimensional convolution com-
putation. For the next step, the windowing process
is applied to convolved images. In this process, tex-
ture energy values are computed. Every pixel in the
convolved images is replaced with a texture energy
measure value at the pixel. In the Laws’ paper, a
15× 15 square around each pixel is added together
with the values of the neighborhood pixels. In this
computation, Laws introduced ”squared magnitudes”
and ”absolute magnitudes” to compute texture energy
(Laws, 1979) (Laws, 1980). For considering compu-
tation efficiency, ”absolute magnitude” is used in gen-
eral. This computation process can be expressed by
the following equation:

E(l ,m) =
l+t

∑
i=l−t

m+t

∑
j=m−t

|K(i, j)| (2)
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whereK is the local features, and it is smoothed at
position(l ,m) by using a(2t +1)× (2t +1) window.

2.3 Rotation Invariant Features

Some filters are identical if they are rotated 90 de-
grees. The features which are computed from the fil-
ters can be combined as similar features, and these
features are treated as rotation invariant features in
the order of 90 degrees. For example, featureE5L5
can be combined withL5E5, and newly created fea-
tures are denoted asE5L5R whereR means the ”ro-
tation invariant” feature. On the other hand, some
features such asE5E5, S5S5, W5W5 andR5R5 can
not be combined. Since the rotation invariant fea-
tures were combined with two features, the feature
values were scaled by 2. Therefore, the rotation in-
variant features are divided by 2 for the purpose of
normalization. Figure 1 shows rotation invariant fea-
tures for filter lengths of 3×3, 5×5, 7×7 and 9×9.
(In this paper, rotation invariant features are denoted
as 3× 3R, 5× 5R, 7× 7R and 9× 9R, respectively.)
Also the number of corresponding rotation invariant
features is shown in Figure 1. The number of rota-
tion invariant featuresFr can be computed by equa-
tion Fr = n2− ((n2−n)/2) wheren is filter size.

R. Rotation Invariant Features Num.

32 L3L3,L3E3R,L3S3R,E3E3 9 → 6

E3S3R,S3S3

52 L5L5,L5E5R,L5S5R,L5R5R 25→ 18

L5W5R,E5E5,E5S5R,E5R5R

E5W5R,S5S5,S5R5R,S5W5R

R5R5,R5W5R,W5W5

72 XaXa7,XaXb7R,XaXc7R,XaXd7R 49→ 28

XaXe7R,XaX f7R,XaXg7R,XbXb7,

XbXc7R,XbXd7R,XbXe7R,XbX f7R

XbXg7R,XcXc7,XcXd7R,XcXe7R

XcX f7R,XcXg7R,XdXd7,XdXe7R

XdX f7R,XdXg7R,XeXe7,XeX f7R

XeXg7R,X fX f7,X fXg7R,XgXg7

92 YaYa9,YaY b9R,YaY c9R,YaYd9R 81→ 45

YaYe9R,YaY f9R,YaY g9R,YaY h9R

YaYi9R,YbYb9,YbYc9R,Y bYd9R

YbYe9R,YbY f9R,YbYg9R,Y bYh9R

YbYi9R,YcYc9,YcYd9R,Y cYe9R

YcY f9R,Y cYg9R,YcYh9R,Y cYi9R

YdYd9,YdYe9R,YdY f9R,YdYg9R

YdYh9R,YdYi9R,YeYe9,YeY f9R,

YeYg9R,YeYh9R,YeYi9R,Y fY f9

Y fYg9R,Y fYh9R,Y fYi9R,Y gYg9

YgYh9R,YgYi9R,YhYh9,YhYi9R

YiYi9

Figure 1: Rotation invariant features (3×3R, 5×5R, 7×7R
and 9×9R).

3 EXPERIMENTS AND RESULTS

This section describes (1) experimental textures, (2)
comparison of filters for various lengths, (3) similar-
ity retrievals of a texture database

3.1 Experimental Textures

In our experiment, a portion of the OUTEX (Ojala
et al., 2002) texture database was used. It contains
6380 textures (Outex-TR-00000 data set). It consists
of 319 classes of textures with 20 textures in each
class. The database contains both macro-textures and
micro-textures. Texture sizes are 128×128 in RAS
image data format. In our experiments, these data are
converted to sizes of 128× 128 images in PGM for-
mat with 65536 grey scale colors.

3.2 Comparison of Filters for Various
Lengths

Various lengths of Laws’ filters were examined to de-
termine whether the filters can classify the textures.
For the experiments, five classes of textures were se-
lected from a portion of the OUTEX database. The
examples of the textures are shown in Figure 2. Each
class contains 20 textures, thus there were a total of
100 textures. Figure 3 shows examples of convolved
texture images (seeds textures) using Laws’ filters
(3× 3, 5× 5 and 7× 7). As the filter sizes are in-
creased, the resolutions of the convolved images be-
come coarser. Texture images analyzed by large size
filters such as 7× 7 contain very similar convolved
texture images. Some features associated with these
similar convolved images are considered redundant,
and these convolved images can be eliminated for ef-
ficient computation. The elimination of the redundant
features avoids a bias from the features due to dimen-
sionality.

Once the entire texture data were analyzed by
Laws’ filters, the texture energy could be computed by
the technique mentioned in the previous section (Sec-
tion 2). For the texture energy computation, 15×15
smoothing windows were used for the experiments.
These texture energy values and texture class iden-
tification numbers were used as input of a discrim-
inant analysis (LDA). In this experiment, Laws’ fil-
ters of sizes 3× 3, 5× 5, 7× 7 and 9× 9 were ex-
amined. For each filter size, rotation invariant (men-
tioned in section 2.3) features (3×3R, 5×5R, 7×7R
and 9×9R) were also computed. Ten textures for each
class were used for the learning data sets (10 textures
× 5 classes).
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Seeds

Paper

Pasta

Figure 2: Example of textures.

Figure 4 shows texture data of discriminant co-
ordinates for features based on the Laws 7×7 filter.
Four discriminant functions are labeledLD1, LD2,
LD3 andLD4 in the figure. The labelsa, b, c, d and
e in the figure indicate each class of textures. When
each function has good discriminating power, there is
no overlap observed between texture classes.

Figure 5 shows proportions of eigenvalues for the
discriminant functions. The eigenvalues reflect the
amount of variance explained in the grouping vari-
ables by the predictors. In the figure, the proportion
of the eigenvalues estimates the relative importance
of the discriminant functions. In the case of the fig-
ure, discriminant functionsLD1, LD2, andLD3 have
more discriminating power compared to that ofLD4.

The larger the coefficient values of a predictor in
the discriminant function, the more important its role
in the discriminant function. Therefore, these predic-
tors (image features) associated with the larger coef-
ficients are influential predictors (image features) for
classifying textures. In this example, featuresXeXe7,
X f Xd7 andX f X f7 had relatively large coefficients
for theLD1 function, and they are considered as im-
portant image features for classifying our experimen-
tal texture dataset. Important image features vary de-
pending on the patterns which are contained in the
texture dataset.

Figure 6 shows a set of test texture data (tex-
tures of seeds) classified by the discriminant func-
tions trained by the training data set. In the figures,
rows represent predicted texture types, and columns
represent actual texture types. For the 5× 5 filter
case, there are 4 textures misclassified. Two percent
(1/50) of ’a’ textures are misclassified as ’f ’ textures,
2% (1/50) of ’b’ textures are misclassified as ’e’, 2%
(1/50) of ’d’ textures are misclassified as ’c’, and 2%
(1/50) of ’e’ textures are misclassified as ’d’, There-
fore, 92% (46 out of 50) of test textures are classified

Source texture image

1

2

3
3×3

1

2

3

4

5
5×5

1

2

3

4

5

6

7
7×7

Figure 3: Examples of convolved texture images using
Laws’ filters (3×3, 5×5 and 7×7).

correctly for the 5× 5 filter. The classification rates
for each filter can be computed in a similar manner,
and the rates are shown in Figure 7. As shown in Fig-
ure 7, filters 5×5, 7×7, 7×7R, 9×9 and 9×9R show
fair classification rates.
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Figure 4: Texture data of discriminant coordinates for features of the 7×7 filters.

LD1 LD2 LD3 LD4
0.5928 0.1757 0.1460 0.0855

Figure 5: Proportions of eigenvalues for discriminant func-
tions (7×7 filters).

a b c d e
a 9 0 0 1 0
b 0 9 0 0 1
c 0 0 10 0 0
d 0 0 1 9 0
e 0 0 0 1 9

Figure 6: Classification rate tables for filters 5×5 (Seeds
textures).

3.3 Similarity Retrievals of a Texture
Database

Experiments on similarity retrievals of a texture
database have been conducted. The Laws’ filters

3×3 5 ×5 7×7 9×9
Seeds 42.0% 92.0% 100.% 96.0%
Paper 56.0% 90.0% 100.% 96.0%
Pasta 56.0% 86.0% 100.% 94.0%

3×3R 5×5R 7×7R 9×9R

Seeds 42.0% 62.0% 78.0% 100.%
Paper 38.0% 56.0% 90.0% 100.%
Pasta 30.0% 64.0% 94.0% 100.%

Figure 7: Classification rates for filters 3×3, 5×5, 7×7,
9×9, 3×3R, 5×5R, 7×7R, 9×9R.

(3× 3, 5× 5, 7× 7 and 9× 9) have been applied to
the database to extract texture image features. Also,
rotation invariant features (3×3R, 5×5R, 7×7R and
9× 9R) have been computed. The database contains
6380 textures (128×128; 20 images× 319 classes),
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and the image feature extraction computation took
about six hours using a standard computer (Intel (R)
Core 2 Duo E8600 processor). The extracted fea-
tures were analyzed by principal component analysis
(PCA). The PCA transforms a number of correlated
features into a smaller number of uncorrelated fea-
tures called principal components. The PCA reduces
the dimensionality of the data set without a significant
loss of information. Since our image feature data sets
contain redundant features for higher resolution filters
such as 7× 7 and 9× 9, the redundant features can
be eliminated by applying the PCA. For our texture
retrieval system, the dimensions of the feature space
were reduced. All the dimensions of the feature space
were reduced so that the features kept over 90% of
their information.

The k-nearest neighbor algorithm (KNN) was
used for retrieving texture from the database. A tex-
ture was classified by a majority vote of its neighbors,
with the texture being assigned to the class most com-
mon amongst itsk nearest neighbors.

Figure 8 shows examples of the similarity retrieval
of textures. In each figure, the six most similar tex-
tures determined by the system are shown.

1

2

3

4

5

Figure 8: Similarity retrieval of textures (In each figure, the
left image shows the query key).

Figure 9 shows a Recall-Precision graph for the
retrieval test. In the experiment, 20 random query
keys were selected, and corresponding recall rates and
precision rates were computed.

In the figure, filters 7×7, 7×7R, 9×9 and 9×9R
show good retrieval results compared to other filters
when our experimental database is examined.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on
 (

%
)

Recall (%)

Recall-Precision

3x3
5x5
7x7
9x9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90  100

P
re

ci
si

on
 (

%
)

Recall (%)

Recall-Precision

3x3R
5x5R
7x7R
9x9R

Figure 9: Recall-Precision graph for the retrieval test.

4 CONCLUSIONS AND FUTURE
WORK

Two dimensional image textures were analyzed by the
Laws’ texture energy measure approach. Various res-
olutions of Laws’ filters (3×3, 5×5, 7×7 and 9×9)
were used for extracting image features. Also, ro-
tation invariant features (3× 3R, 5× 5R, 7× 7R and
9×9R) were computed. A database of a texture image
was analyzed using a simulation software program. In
the experiments, classification rates of the Laws’ fil-
ters were evaluated, and textures were classified fairly
well when the filters were used in conjunction with
the discriminant analysis. A principal component
analysis (PCA) and a k-nearest neighbor (KNN) al-
gorithm were used for the similarity retrieval. Use of
these statistical techniques reduced unnecessary im-
age features, and made possible the retrieval of pat-
tern similar textures from the database.

For future experiments, additional 2D textures
which contain various patterns will be examined.
Other statistical approaches such as a quadratic dis-
criminant analysis will be applied in conjunction with
the Laws’ filters for improving classification rates.
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Also, other filtering techniques (Randen and Husoy,
1999) will be examined for content-based image re-
trieval.
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