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Abstract. In breast cancer field, radiologists and researchers aim to discriminate
between masses due to benign breast diseases and tumors due to breast cancer.
In general, benign masses have circumscribed contours, whereas, malignant tu-
mors appear with spiculated and irregular boundaries. Recently, we proposed an
original mass description based on three morphological mass descriptors, which
are SPICULation (SPICUL), Contour Derivative Variation (CDV) and Skeleton
End Points (SEP). In this paper, we detail an empirical mass evaluation based
on these morphological descriptors which intend to distinguish between malig-
nant and benign lesions. This evaluation is, first, assured by following descriptors
evolution in two independent data sets: Alberta and MIAS. Secondly, for these
two data sets, the Receiver Operating Characteristics (ROC) analysis is applied.
A comparison between the classic use of Area (A) and Perimeter (P) descriptors
only, and a combination with our three original evaluated descriptors is done. Ob-
tained results proves that classification accuracy of the descriptors combination
including: SPICUL, SEP, CDV, A and P outperforms that of the classic descrip-
tors: A and P. Indeed, our original mass description provides the best Area un-
der ROCA. = 0.986 for Alberta data set and . = 0.9792 for the MIAS data

set. Therefore, we affirm that our three original descriptors can serve as good
shape descriptors for the benign-versus-malignant classification of breast masses
on mammograms.

1 Introduction

Breast cancer is one of the most common diseases that threaten woman life and sci-
entific studies have shown that the mortality rate caused by breast cancer is decreased
by early detection and treatment. Mammography is known to be the most effective
screening method and is credited with reducing breast cancer mortality by at least 30%.
However, screening mammography program requires a large number of radiologists
with special training in this field which could involve problems such as high costs and
visual fatigue. For this reason, several researches aim to develop Computer Aided Diag-
nosis systems (CAD) that could automatically analyze mammographic images [1], [2],
[3]. These CAD systems focus on detection, description and classification of breast ab-
normalities which could be either a mass or a microcalcification, or sometimes both

Cheikhrouhou |., Djemal K., Sellami Masmoudi D., Maaref H. and Derbel N. (2009).

Empirical Descriptors Evaluation for Mass Malignity Recognition.

In Proceedings of the 1st International Workshop on Medical Image Analysis and Description for Diagnosis Systems, pages 91-100
DOI: 10.5220/0001815400910100

Copyright © SciTePress



92

[4] [5]. Breast Imaging Reporting and Data System (BIRAD&nslard is a mam-
mographic lexicon developed by American College of Radjpl¢ACR) [6] for the
mammographic lesions description. This lexicon includescdiptors such as the mass
margins and the microcalcification distribution that defifiaal assessment categories
and suspicion level of mammographic abnormalities.

According to BIRADS, masses classification depends on ecordomplexity. The
descriptors used to define masses are shape and margin [6hignomass is a regular
form, generally round or oval with a well circumscribed bdary, whereas a typical
malignant tumor is an irregular, spiculated form with a robbgundary. There could be
also, some unusual cases which cause difficulties in pattassification studies [17].
Many works focus on mass classification with contour desarip A study by Chen, et
al [1] reported 0.982 as the best area under the receiveatipgicharacteristic (ROC)
curve (A,) when using five new morphological features that concretaations in
boundary delineation. Guo et al [20] computed the fractaledision to characterize the
complexity of breast mass contour. Rangayyan and NguydmjE8ented a study of
fractal dimension including the ruler method and the boxtimg method that leads to
A, = 0.89 and a study of fractional concavity that providés = 0.88. Their combi-
nation yielded the highest area under the ROC curve of 0 @BeSstudies focus on the
evaluation of existing descriptors because of its significgaportance in downstream
treatments and final decision. This evaluation is in ordgr&serve pertinent descrip-
tors and to propose improvements for the others. We haveopeabmicrocalcification
evaluation that brings to improve the rectangularity folation [15] and hence, the
classification accuracy.

We have proposed previously [14] three pertinent desaspitich could describe
mass forms and that could be very useful in CAD systems. Sptdee their perfor-
mance, mammographic images are first preprocessed to dibtexied [21] and seg-
mented [22] [16][13][18] masses to could focus on detaiirdescriptor evaluation for
mass malignity recognition by means of two data sets AlbemthMIAS which repre-
sent variety of cases. Our main objective in this evaluasdn prove how descriptors
react towards complexity contour. The paper is organizefdun sections. Next sec-
tion is preserved to the evaluation of the morphologicatdptors: SPICUL, CDV and
SEP applied to two different data sets Alberta and MIAS. i8a@ shows experimen-
tal results. ROC curves associated to both data sets arseapied to validate features
ability to discriminate between benign masses and maligtamors. We present also,
a comparison with other methods that characterize shapelegity in the same data
sets. Finally, we conclude in section 4.

2 Descriptors Evaluation through Two Mammogr aphic Data Sets

Evaluated morphological descriptors are Contour Deredétariation (CDV), Spicula-
tion (SPICUL) and Skeleton End Points (SEP) [14]. Selectstdptors for validation
are evaluated through two data sets. The first data set B1 btaged from Screen
Test: the Alberta Program for the Early Detection of Breaan¢r [7] [8]. From this
data set, we exploit 35 benign masses, most of which arerogcribed, and 35 malig-
nant tumors, most of which are spiculated, as typically entered in mammographic
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images. The second data set named B2 is from the Mammograpage Analysis
Society (MIAS) database [9]. From which we use 28 benign emasd 28 malignant
ones including circumscribed and spiculated cases in batigh and malignant cate-
gories. Spiculated benign masses and circumscribed naalignmors are unusual, and
tend to cause difficulties in pattern classification studies

2.1 Contour Derivative Variation (CDV)
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Fig. 1. Contour Derivative Variation related to X and Y: a) Originalages, b) CDVX and c)
CDVY.

As given in [14], for thek!" contour point with coordinateX (k) andY (k), we
define the Contour Derivative related to x-coordinate (CXY Contour Derivative
related to y-coordinate (CDY) as follows:

X(k+1)— X(k—1)
2

Y(k+1) - Y(k—1)

CDX (k) = .

CDY (k) =

1)
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whereX (k+1) andY (k+ 1) are the(k + 1)*" contour point coordinates, respectively,
X (k—1)andY (k — 1) are the(k — 1) contour point coordinates.

We note CDVX (resp. CDVY) the number of CDX (resp. CDY) vaigat sign from
positive to negative or from negative to positive values.G&mtour Derivative Variation
(CDV) is the CDVX and CDVY total sum.

Figure 1 shows images from the two data sets B1 and B2 ordesedlfenign to
malignant. Subjectively, we can note that for regular masae should have CDVX=2
and CDVY=2 as shown in fig.1, in the first image with circulaagh which provides
CDV=4. The second which is lobulated has low CDV value (CD2kThe last two
images which are irregular and spiculated, have more sigatiens in contour deriva-
tive. Especially for high spiculated masses as the fbréixample, CDVX reaches 92
and CDVY reaches 88 which provides a high CDV value (CDV=18® can notice
that CDV will increase considerably when contour becomergeraad more complex.

To objectively prove this observation, we plot CDV valuesiioth data set B1 and
data set B2. Figure.2 a) shows all data set B1 images: frorgeémal to n°35, we
present benign images and from imag&6 to n°70, we present malignant ones. Also,
figure.2 b) shows all data set B2 images: from imageé to n°28, we present benign
images and from image°©29 to n°56, we present malignant ones. We will preserve
this distribution for all next evaluations. For data set B&nign masses still under the
value CDV=30 and malignhant ones are higher than CDV=30 ebalep images. For
the second data set B2, benign images are all under CDV=3(fbanublignant cases,
allimages exceed this value except image7 with CDV=18. These results prove that
this descriptor has the ability to distinguish between ger@ind malignant masses for
the two data sets B1 and B2.
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Fig.2. CDV evaluation for: a) data set B1 and b) data set B2.

2.2 Spiculation (SPICUL)

In [14], we propose a new feature named spiculation (SPIGIdffined as follows:

S=" SpiculX(k)+ Y SpiculY (k) @)
k k
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wherek represents the!” contour pointSpicul X (k) (respectivelySpicul Y (k)) is the
number of points having the same x-coordinate (resp. the saooordinate).

Masses from the two data sets, represented in fig.1 are negeddn the same order
of increasing malignity to be evaluated with the SPICUL diggor. Results are given
in Table 1 which shows that when the mass is more spiculaBRIQUL) increases
successively from 0.3967 to 6.0081.

Table 1. SPICUL value for six masses ordered from benign to malignant

Mass 1 Mass 2 Mass 3 Mass 4

SPICUL 0.3967 0.6130 1.2514 6.0081

For evaluating the whole images, we show in fig.3 evaluatibthe descriptor
SPICUL. Data set B1 represented in fig.3 a) indicates thafitste35 benign images
have nearly similar values which are all strictly under SBPLE1. Otherwise, all be-
nign masses are identified correctly. For malignant imatpesmajority of masses are
well recognized and are well separated from benign masshsralues between 2 and
6. But, 14 malignant cases are considered benign also. BaB2sin fig.3 b) shows
that SPICUL makes many errors in benign case recognitionSBtCUL evaluation in
data set B1 proves its strength to discriminate betweengmetit and benign images.
And SPICUL evaluation, in data set B2, proves that errorgaused essentially by the
presence of irregular forms in benign class that have higReCUL values.

SPICUL
n
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Fig. 3. SPICUL evaluation for: a) data set B1 and b) data set B2.

2.3 Skeleton End Points (SEP)

Skeleton provides a simplified version of the object at oxelpiidth. This represen-
tation makes easy complex images processing such as diggatprint, handwritten
letters and [10] blood vessels images . In mammographic #eld especially when we
treat complexity contour, skeleton seems to be very uskfdact, for regular shapes,
skeleton has few branches, and for irregular contoursetkebecomes more complex
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and has several ramifications. In [1] authors study skeletmeept in breast sonogram
images by computing the number of skeleton points. Thigyergivery sensitive to
lesion size. To avoid this constraint, we developed in [14k® skeleton formulation
adapted to our objectives, based on skeleton branches mbsnbemputing the number
of skeleton End Points (SEP).

)

a

)

b) d)

Fig. 4. Skeletonization: Four masses and relative skeletons ttin €nd points (SEP).

As a first SEP evaluation, we plot in fig.4 skeletons and skrlenhd points for the
same masses studied in fig.1 and Table 1 extracted from B1 2nEig4 a) which is
a regular circle have SEP=4. For the lobulated form b) SESesaslightly with succes-
sively 7 ramifications. Irregular forms, (such as ¢ and d)ehsikeletons more compli-
cated and also have the higher SEP values such as the lastiyveitis SEP=55. This
first observation confirms the descriptor performance itirdjslishing between regular
and irregular masses, then between benign and malignaed.cas

As a second SEP evaluation, we test SEP evolution acrosst¢hdeta sets in fig.5.
We notice that, for fig.5 a), for the data set B1, benign maseetd be visually dis-
tinguished with their low values under 13. However, for paint masses, SEP highly
increases with values that overpass SEP=50. The gap beBevalues favors dis-
crimination between the two classes. For the data set B3, lfig.benign forms are all
recognized correctly ( all SEP values atel 3). But, in malignant forms, the skeleton
have some errors. It confounds some benign and malignags.cas

It should be noted that, for all evaluation examples, datBseecognizes better be-
nign and malignant classes. And as we have said before,eldt#AS have some spic-
ulated forms in benign class and some circumscribed fornmsalignant class which
clarify why this data set has less discrimination betweenttfo classes. For this rea-
son, we notice that descriptors for data set B2 translaté thveir information about
complexity contour which explain that we find low descriptatues in malignant cases
and high descriptor values in benign cases.
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Fig.5. SEP evaluation for: a) data set B1 and b) data set B2.
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Fig. 6. ROC curve associated to: a) data set B1 and b) data set B2.

3 Experimental Results

Since mass classification depends on mass size, we compsseamaa (A) which is,
in digital images, given by the number of pixels that beloaghte mass. As a sec-
ond geometrical feature, we add perimeter which can beyealsidined by computing
boundary pixels [11]. These geometrical descriptors galyeameliorate classification
rate. First, in this section, we use evaluated descripo®/, SPICUL and SEP for
classification through SVM classifier, joined to informatidescriptors Area (A) and
Perimeter (P). To evaluate the classification performameejse the so-called Receiver
Operating Characteristic (ROC) analysis, which is now usedinely for many clas-
sification tasks. A ROC curve is a plot of the classifications#évity (TPF) as the
ordinate versus the specificity (FPF) as the abscissa. Foea glassifier, ROC curve
is obtained by continuously varying the threshold assediatith its decision function.
At any given FPF, a ROC curve with a higher TPF correspondbitar classification
performance. The overall classification accuracy is suraedry the area under the
ROC curve 4,).

In this section, we classify data set B1 and B2, first with ¢ descriptors: Con-
tour Derivative Variation (CDV), Spiculation (SPICUL), Sleton end points (SEP),
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Perimeter (P) and Area (A) (5 descriptors), and secondlly wily P and A (2 descrip-
tors) in order to keep a comparison between our proposediptss and known ones.
These descriptors are used as entries to SVM classifier vgeieims to be an excellent
candidate for several classification tasks such as medgigéitations [12].

Fig.6 a) shows ROC curve of data set B1 in both cases 5 desariphd 2 de-
scriptors. We notice that, although ROC curve of (5 desori)toutperforms that of
(2 descritors), for both cases, TPF fraction still very highFPF values. This proves
the pertinence of descriptors adopted even for malignaag@s with similar aspect to
benign ones and contrarily. Area under ROC computed for érgeers isA, = 0.986
and for 2 descriptors id, = 0.97 as given in Table 2.

Fig.6 b) represents ROC curve of data set B2 in both caseschiptess and 2 de-
scriptors. This data set contains circumscribed and sptiedimasses in both malignant
and benign cases. Although this new organization makesifitagion task very diffi-
cult, the area under ROC preserves a high valud of= 0.9792 especially in the case
of 5descriptors. For two descriptors, classification aacydecreases significantly and
providesA, = 0.854 as shows in Table 2.

Table 2. Area under ROC for the two data sets.

A, Areaand Perimeter Area, Perimeter, SPICUL, CDV, and SEP
Bl 0.97 0.986
B2 0.854 0.9792

We provide a final evaluation based on a comparison with anteeerk. Rangayyan
and Nguyen [19] focused on contour description on mammograma detailed four
methods to compute the fractal dimension of the contourseddi masses, including
the ruler method and the box counting method applied to 1D2dhdepresentations
of the contours. The methods were applied to the same datdhegtwe exploit: the
Alberta [7] and MIAS [9] data sets. Receiver operating chtaastics (ROC) analysis
was performed to assess and compare the performance dlfdamiension methods
and the use of the five descriptors: SPICUL, SEP, CDV, P andtAdrtlassification of
breast masses as benign or malignant. This comparisonserges in Table 3.

Table3. Area under ROC for the two data sets in the case of fractalmbioa and our descriptors.

A Data setB1 Data Set B2
1D ruler 0.91 0.8
2D ruler 0.94 0.81
1D box counting 0.89 0.8
2D box counting 0.9 0.75
our descriptors 0.986 0.9792

We notice that, for the use of fractal dimension or our dgsors, data set B1 pro-
vides usually better results in classification than dateB&because of the existence
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of atypical masses (slightly lobulated or spiculated bemgasses and round or cir-
cumscribed malignant tumors) which cause more miscladsifises than the data set
B1. Also, the combination of the five descriptors: SPICULPSEDYV, P and A outper-
forms the use of fractal dimension, that provides as be#tsults with the use of 1D
ruler method4, = 0.94 for data set B1 versud, = 0.986 in our case andl, = 0.81
for data set B2 versud, = 0.9792.

4 Conclusions

In this paper, we propose an empirical evaluation of threepmalogical descriptors
which are useful in the analysis of breast masses contoargvaluation, we use two
independent data sets from Alberta and MIAS. These datasetsidely different and
independent which allows as to generalize from final resttsen computing descrip-
tors, we notice their ability to capture diagnostically ionfant details of shape related to
spicules and lobulations. The proposed descriptors, goinghe geometrical features
perimeter and area, have provided high classification acegs when discriminating
between benign breast masses and malignant tumors. This sagperforms classifi-
cation accuracy of the two descriptors P and A for the two data, which prove the
performance and the precision of these descriptors. Indutorks, we intend to eval-
uate the performance of each descriptor apart and to contipameto other pertinent
descriptors cited in literature which have proven a higtfgrerance in mass classifi-
cation. Also, we intend to modify classification tools in erdo reduce False Positive
Fraction and to further maximize True Positive fraction.
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