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Abstract. We study the dynamics of cell division in liMBrosophila embryos

using fluorescent proteins and 3D time-lapse microscopy. Accurate segmentation
of nuclei and mitotic chromosomes labeled by the live reporter histone-GFP is
a prerequisite for subsequent tracking and quantitative object analysis. We pro-
pose an automated 3D segmentation method based on narrow band level sets that
preserves the boundary of the cell nuclei and removes signals that are artifacts
of live cell imaging. We introduce an improved 3D narrow band approach in the
region shrinking and growing process for accurately segmenting the cell nuclei
from background. The proposed method has been evaluated with the ground truth
regarding the object level accuracy and segmentation quality. Both the object
level accuracy and pixel accuracy of the proposed method are around 96% and
85% respectively. Our algorithm can robustly segment nuclei and chromosomes
in different phase of the division cycle.

1 Introduction

Cell cycle regulation plays an important role in disease and development. Drosophila
embryogenesis is an excellent model system to study the mechanics and regulation of
cell division cycle in an intact multi-cellular organism [1]. The first 13 nuclear division
cycles are synchronous and take place in a common cytoplasm shared by all nuclei.
After completion of the syncytial blastoderm, cells form and all subsequent cell divi-
sions happen within the confines of cell membranes. Fluorescence proteins, such as
histone-GFP, in conjunction with 3D video microscopy can be applied to monitor cell
cycle progression in living cells. Quantitative analysis of 3D image stacks can provide
novel insights into the cell division cycle and its genetic regulation. However, computer
vision tasks like feature extraction, quantification, classification and tracking are highly
dependent on the accuracy of image segmentation.

Several automatic 3D segmentation methods [2—7] have been developed for seg-
mentation of cell nuclei. The most common methods used for cell nuclei segmentation
can be classified as watershed, model and active surface-based methods. Watershed-
based methods [2] [3] are very popular for segmentation of merged nuclei. However,
they are prone to over-segmentation and requiring complex postprocessing. Model-
based segmentation method [4] has demonstrated highest segmentation accuracy but
they rely ona priori model of the expected nuclei morphology. Moreover, various
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active surface based methods [5-7] have been proposed ¢anisegmentation. In
the active surface-based methods, objects are representedmooth surface, which
evolves with a speed force depending on the geometric psopethe surface and the
external energy. However, the active surface-based methdter from an inherent de-
pendency on the initial seed. Various methods exist in teedliure [2—7]; all of which
have been developed under restricted environmental ¢gonsliand are motivated by
specific application problem.

In 3D live microscopy, various factors, including unevearitination due to limited
depth penetration, photo-bleaching, poor signal-toacaio (SNR), heterogeneity in
the localization of fluorescent molecules and other atfaan affect the performance
of segmentation. In order to characterize the dynamic ceswo§nuclear and chromo-
somal morphology during the division cycles we propose awggation algorithm that
has to meet the following requirements: (1) recognitionaiaus shapes and textures
in the different stages of interphase and mitosis, (2) reitimyn during different stages
of development and (3) robustness of the object detectiamagfluorescence signals
that are not associated with nuclei, e.g. lipid dropletshls paper, we present a hybrid
3D segmentation method that aims to handle the above-nmeatichallenges of nu-
clear segmentation. We also present experimental resultgadidation of the proposed
method.

2 Hybrid 3D Segmentation Method

In this section, we describe an automated hybrid 3D segrtientapproach that pre-

serves the surfaces of cell nuclei and is also robust agaagfing artifacts inherent

to laser scanning confocal microscopy (LSM). The methodmmosed of a sequence
of four major steps; namely preprocessing, backgrouneigimund model, cell object
detection and marker-based region growing (Figure 1). ®iailed description of the

major steps is provided next.
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Fig. 1. Flow chart illustrating the major steps in the proposed eth

2.1 ImageAcquisition

Cell nuclei and chromosomes Drosophila embryos were labeled using the live flu-
orescence reporter histone H2Av-GFP [8] . Image acquisitias performed using an
inverted Zeiss 5 Live laser scanning confocal microscojpeeeBx N.A. 1.3 oil immer-
sion lens. Drosophila embryos were dechorionated in 50%chland embedded in 1%
agarose on aglass bottom dish. Image de-convolution waedarsing the Huygens
Professional, version 3.0.
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2.2 Preprocessing

Serial optical sections produced by confocal microscopg te suffer from attenuation
of fluorescence signals in deeper tissue layers. In ordesrtgpensate for uneven illu-
mination within the same image stack, we use a simple mettatchiormalizes pixel
intensity relative to the optical slice which shows the l@ghmean intensity. More-
over, live cell imaging records signals that are not assediavith nuclei or chromo-
somes. These can be due to auto-fluorescence or cytoplasttindrGFP containing
lipid droplets [9]. Compared to cell nuclei, lipid droplétave a smaller size and differ
both in mean and standard deviation of intensity. A seriesiedlian filters was used
to alleviate the problem. However, variable window sizeefilig altered the shape of
object boundaries and increased false detection rate. dicome this problem, we in-
troduced a novel pre-processing method based on 3D morgibaloeconstruction [10]
that enhances the background noise and limits debris. Werperd 3D morphological
reconstruction that preserves object boundaries, foliblemulti-scale gradient and
local minima elimination that limits the debris by varyirtetheight parametér. The
parametef used for reducing debris needs to be specified manually apjopriate
value depends on the nature of variation of gray values inléteis.

2.3 Background/Foreground Detection

The background/foreground detection starts with the diete®f plateau minima in
the gradient stack and then, labels the largest minima gfiéi as background and
the others as foreground. At last, we applied a fast hillblimg technique [11] on all
optical slices simultaneously.

2.4 Ceéll Object Detection

This section describes the cell object detection in the argtgck by region shrinking
based on the Narrow Band level set (NB) approach [12] [13E Bhsic idea of the
narrow band level set concept is to update level sets anditriegiforce in a subset of
points in the neighborhood of evolving front instead of tleénps on the grid. The nar-
row band has to be updated in each iteration and where itteesfor closest front point
over the entire fixed narrow band for computing front drivingce. The time complex-
ity of the NB method isD(én*), wheren is the number of grid points along a side and
0 is the width of narrow band. The conventional NB approackéwer, is impractical
for high-throughput or large scale 3D nuclei segmentatiorthe proposed approach,
we aim at update the level set in the nearest neighboringgp@6-connected) of the
deforming front points and define an appropriate speed fomét that can accelerate
the evolving surface to the desired object boundary.

We use an implicit representation of the surfécas the zero level set of higher di-
mensional time-varying functio®(S) = 0. The surface evolution equation as follows,

00(S) 03 B 00
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WhereF is the speed function normal to the surfageThe formulation of modified
speed function is
F=R—-¢eK (2)

Where R is an unit sign function (+1 for object region and -1 for baakgnd) that
makes the object surface inflate or deflate. The signed VR({p¢ at pixelp € Dy can
be obtained

[ +1if (I(p) > T;) then _
R(p) - { —1 Otherwise ' T; € [/LB + kUB; HO; — kgOi] (3)
HereT; is an optimal threshold value [14] between the backgroundet{@.z, o5) and
the candidate object modelb,, co,) . The viscosity termeK reduces the curvature
of the surface. Wher& is the mean curvature of the evolving surfétande is a non-
negative regularization parameter. The mean curvatuaoé surface can be formulated
as

Vo N N N
=V — =A P+ AP+ A P=T, —T_,
where
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V/(D2)2+(D¥)2+(D%)%+¢ \/(D2)2+(D¥)2+(D? )24
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D% =@% - &%, D* = @7 - &* andD? = represent forward, backward and
center gradients im direction, and similarly foyy andz directions.

We utilize a FIFO queue for recursive region shrinking in ttefirst order from
initial foreground front points as shown in Fig.2. First, idialize the 3D level sets
@ with +1 for background and -1 for foreground region, and theitialize the FIFO
gueuel) with the foreground pointsf = —1 ) which have at least one outer band point
(background® = 1).

FIFOQ
[ J RO

@® > CandidateFrontPoint (9(S"))

» —> Outer Band Points(® = |; F < 0)

® > InnerBand Points(@ = —; ¥ > 0)
Fig. 2. Queue-based region shrinking at candidate front points.

In each iteration, points in the que@kare processed, and the connected elements
and object models are updated. Pgirg¢ D; is de-queued from queug one at a time
and its surface driving forcg' is calculated as given in equation 2. If the fodcés less
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than zero, then the candidate pojnbecomes backgroun@€1) and its neighboring
object points with level set value equal to -1 are insertéal ihe queué) for recursive
region shrinking process. Otherwise, if the foiceat pointp is greater than zero, then
the candidate point becomes cell object boundary point. This process is it nangil
the criterion is satisfied. The complexity of proposed apphos linear with respect to
the number of neighboring grid points. The total number cdrafions per iteration is
bound byn * N2 , hereNZ stands for 26-connected neighbors on the 3D gridrand
is the number of evolving surface front points. Hence, tleppsed approach limits the
search range with itvZ® points at each candidate surface front point agdinépoints
for narrow band methods.

2.5 Marker-based Region Growing

In this section, we introduce a fast marker-based 3D regiowing method for sepa-
rating the merged cells that are extracted in the cell olojetetction step. The proposed
method consists of two sequential steps, namely 3D markectien and 3D region
growing. In the marker detection step, we use conditiorredtyi morphological erosion
based on the hypothesis test followed by volume-basediidfef he proposed marker
detection technique well identifies the markers in the cejéct and also detects sep-
arate markers for merged cells in the image stack. The peap8B region growing
method starts from the labeled 3D marker and then, growsetifiem by surface defor-
mation, simultaneously in all the markers. We use a FIFO gd@urecursive 3D region
growing in depth-first order from initial 3D object markessshown in Fig. 3.

First, we label the object markers in 3D by using connect camept labeling where
each marker get unique label and then, initialize the 3Dl Iests® with +1 for back-
ground and -1 for 3D object marker and the FIFO qué@ueith the outer band points
(Backgroundg=1) which have at least one marker object point (Mar#er1).

FIFOQ
@—)lu\q eoe ‘u‘

@ — FrontPoint (4X(S"))

@ —> OuterBand Points((=1; F <0)

@ —> InnerBand Points(® = —1; ¥ >0)

Fig. 3. Queue-based region growing at candidate outer points.

Outer band poinp € Dy is de-queued from queug one at a time and its sur-
face driving forceF' is calculated as given in equation 2. If the fortEeat pointp is
greater than zero, then we decide the label of candidaté pbised on its neighboring
surface front points. If the candidatehas neighboring surface front points which are
originated from same marker, then the outer band polcomes surface front point
and its neighboring outer band pointss N¢(p) with level set value equal to 1 are
inserted into the queu® for recursive region growing process. However, if the ppint
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has surface front neighbors which are originated from difiémarkers, then, the point
p gets a watershed label which is used to separate the admudate fronts. Other-
wise, if the forcel" at pointp is less than zero, then, the candidate ppittecomes
background. The present iteration completes when all thrgpim the queue visited. In
the each iteration, we update the object models. This psdsdterated until the crite-
rion is satisfied. Finally, we apply an isotropic and diset®aussian shape filter of size
(3x3x3) on the 3D level set for smoothening the surface points.

3 Experimental Results

We performed a set of experiments to evaluate the proposeskgmMentation method
for the detection of cell nuclei in Liv®rosophila Embryos time-lapse images. We
tested our segmentation on image stacks acquired durifeyetit stages of embryonic
development; the synchronous nuclear cycles of the syaldytistoderm and mitotic
domains of the post-cellular blastoderm that contain meguwf different phases of
the cell cycle. Figure 4 illustrates the experimental rissobtained from applying the
proposed 3D segmentation method for post-cellular blastodime-lapse images. The
method has been evaluated by manually creating ground ttetteloped by automatic
thresholding on image stack followed by manual correctimimdividual cells by using
Imaged plugin. We evaluated the segmentation results loasthe object level accuracy
such as number of correctly classified cells, merged cetisalit cells, and pixel level
detection rates, namely miss detection rate and false ataen The accuracy of our
approach was evaluated for image data recorded duringetiffstages of development
(Table 1). On average, 96% of 3D cell nuclei were identifidie Segmentation quality
on the pixel level ranged between 85%-90%. Figure 5 showstatimnucleus track
from interphase to the end of anaphase in wildtype syncytium

Table 1. The performance of proposed method in Livesophila Embryos time-lapse images.

Object level accuracy Pixel level
Image Stack No. of Correct Merged False Split Accuracy
(70 slices) cell nuclei cells cells Positives cells
Post-cellular 192 187 1 13 6 86.45%
blastoderm
Syncytial 96 96 0 1 0 88.67%

blastoderm
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(€)

Fig. 4. Automatic segmentation of cell nuclei in images acquiredrduthe post-cellular blasto-
derm of embryogenesis. (a) Original optical slice 15, (&yioal optical slice 25, (e) Maximum
Intensity Projection (MIP) of original image stack. Segitagion results of optical slices 15 (b)
and 25 (d). Contours of detected regions of interest are shiowhite. (f) 3D visualization of

segmented cell nuclei and their labels.
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Fig. 5. Cell cycle dependant changes of nuclear and chromosomatineolrom interphase to the
end of anaphase in wildtype syncytium.

4 Conclusions

We presented a novel method for the detection of fluorescéatibled cell nuclei in
3D image stacks. Reliable segmentation of cell nuclei aridtimmichromosomes is very
important for the study of cell cycle progression in LDeosophila Embryo. We intro-
duced a methodology based on narrow band level sets fotirspkhe cell nuclei from
background. The proposed method has been evaluated regatgect level and pixel
level accuracy. Preliminary results show that the outpfitk@image segmentation are
suitable for downstream tracking, quantification and dfsdion of identified image
objects.
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