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Abstract. This work intends to predict the clinical dementia rating (CDR) 
based on human brain volumetric segmentation measures from magnetic reso-
nance (MR) images. These brain measures were extracted using an automated 
image segmentation method based on morphometry study and considering 
brain anatomical atlas. The prediction was achieved by Bayesian classifier. The 
classifier training was performed on 371 individuals from Open Access Series 
of Imaging Studies (OASIS) dataset. MR images and clinical information (in-
cluding the Clinical Dementia Rating score) of each case are available on 
OASIS dataset. Experimentation results were assessed using true-positive rate. 
The final purpose of this work is to design a computer-aided diagnostic system 
that could be able to detect precociously neurodegenerative disorders, allowing 
early therapeutic interventions.  

1 Introduction 

Neurodegenerative disorders, such as multiple sclerosis, Alzheimer, Huntington and 
Parkinson diseases, are characterized by neuronal cell loss or dysfunction [1]. It is 
estimated that these disorders affect 11 million individuals, aged 60 years or older [1]. 
Alzheimer’s disease (AD) represents the most common cause of dementia [2]. AD 
diagnostic criteria are based on the National Institute of Neurology Communicative 
Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association 
(NINCDS-ADRDA) criteria [3]. The Clinical Dementia Rating (CDR) scale is a 
global dementia staging instrument developed by the Memory and Aging Project [4]. 
CDR presents 5 scores: 0 (no dementia), 0.5 (questionable), 1 (mild), 2 (moderate) 
and 3 (severe). Agreement of CDR score with NINCDS-ADRDA’s criteria achieves 
86% for sensitivity and 100% for specificity [5]. A previous validation of this scale in 
Brazil was carried out achieving 91% sensitivity and 100% specificity [6]. Structures 
located in the medial temporal lobe, such as hippocampus and the parahippocampal 
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gyrus are the first to manifest atrophy in AD [7]. Numerous studies and applications 
of brain volumetric measurements to early detect neurodegenerative disorders and to 
follow-up the patient disease progress have been presented [8]. It has been suggested 
that the atrophy of medial temporal lobe structures can predict AD risk [8]. These 
structures can be evaluated by magnetic resonance (MR) or, less accurately, com-
puted tomography (CT) imaging. Our work proposes the use of automated segmenta-
tion methods and classifiers models to analyze brain structure volumes on MR images 
and predict patient’s CDR scores. The automated segmentation algorithm is based on 
the Voxel-Based Morphometry (VBM) method [9]. The classifier model adopted was 
the naïve Bayesian approach [10], assuming that brain structure volume values are 
independent. 371 MR T1-weighted images from distinct patients, aged 18 to 96 
years-old, were used in our practical experiments. This work extends the ideas pre-
sented in [11]. In next section the used segmentation procedure is presented. Section 
3 considers the experiments and section 4 presents its conclusions.  

2 Segmenting Brain Structures 

Manual volumetric techniques are expensive and time-consuming. Some segmenta-
tion of medial temporal structures has being reported as taking about 75 minutes per 
exam and patient [12]. Moreover it results great variability of final medial temporal 
lobe volume [12-14]. Aiming to reduce the excessive time consumed and to standard-
ize its volumetric acquisition method, decreasing inter and intra-personal volumes 
variability, automated image analyzing have been proposed [15]. This technique al-
lows brain tissue segmentation and volume assessment without direct human inter-
vention. Voxel-Based Morphometry (VBM) computes a customized template and the 
prior probability map from a population. The map was computed by segmenting the 
normalized images into grey matter (GM), white matter (WM) and cerebrum-spinal 
fluid (CSF), thus averaging the segmented image and finally obtaining the customized 
prior probability maps specific for GM, WM and CSF. Individual differences are 
handled computing spatially normalized mappings to the customized template [15].  

Pennanen et al [16] applied VBM on 32 normal control subjects and 51 subjects 
with Mild Cognitive Impairment (MCI). They found a unilateral medial temporal 
atrophy in individuals with MCI, suggesting that these anatomical structures could be 
related to higher risk of AD. Ridha et al [17] compared the longitudinal volumetric 
MRI modifications with changes in performance on cognitive tests routinely used in 
AD clinical trials, observing strong correlations between brain atrophy, ventricular 
enlargement and Mini-Mental State Examination (MMSE) scores [18]. Jack et al [19] 
compared different MRI brain atrophy rate measures with clinical disease progres-
sion, studying normal elderly subjects, patients with MCI and patients with probable 
AD. Each subject underwent a brain MR examination at the time of the baseline clin-
ical assessment and then again at the time of a follow-up clinical assessment, 1 to 5 
years later. The results showed a strong correlation among hippocampus, entorhinal 
cortex, whole brain and ventricle volumes modification with MMSE, CDR and other 
cognitive tests. When referring brain medial temporal lobe structures segmentation, 
such works used manual segmentation [12-14]. In our work, such structures are seg-
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mented in an automatic manner. This was achieved by using an anatomical atlas as 
following. 

The brain anatomical structures segmentation method follows the sequence 
scheme shown in Fig. 1. Spatial normalization is an image registration method [20]. 
The registration problem consists of optimizing the parameters q from the affine ma-
trix in order to minimize the objective function [20]. The objective function is com-
posed by the sum of squared differences between the images, as shown in Equation 1. 
Some authors distinguish between different categories of alignments using the words 
registration, co-registration and normalization [20]. The term normalization is usually 
restricted to the inter subject registration situation, so we prefer to use the term spatial 
normalization. There are two steps in the spatial normalization process: (i) estimation 
of warp-field and (ii) application of warp-field with resample. The estimation of 
warp-field is made using an image similarity measurement (Equation 1). In order to 
perform normalization, a number of points in the template image are compared with 
points in the original image. The images might be scaled differently, so a scaling 
parameter denoted by s was included in the model: 
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where M is the affine1  matrix defined by twelve parameters reproducing translation, 
rotation, zoom and shearing effects [21]. The optimization algorithm used is the 
Gauss-Newton based method [20]. Suppose that bi(q) is the function describing the 
difference between the original and template images at voxel i, when the vector of 
model parameters have values q. If the q parameters are decreased by t, Taylor’s 
Theorem can be used to estimate the value of this difference: 
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Applying the Gauss-Newton optimization method, for iteration n, the q parameters 
are updated as: 

bAAAqq TTnn ⋅⋅⋅−= −+ 1)1( )(  (3) 

where A is the matrix of the partial derivative coefficients. The iteration is repeated 
until the objective function can no longer be decreased or a maximum number of 
iterations is reached. A nonlinear spatial normalization is handled for correcting gross 
differences in head shapes that cannot be accounted by the affine normalization alone

                                                           
1 Observe that the term “afine” may have different meanings. Here it means a translation of 

an operator (e.g, of a square matrix). On the other hand, it is worth noticing that in the operator 
theory literature an afine transformation between normed spaces is a topological isomorphism 
(i.e., an invetible continuous linear transformation with a continuous inverse). A quasi afine 
transformation is an injective continuous linear transformation with a dense range. If a pair of 
operators are intertwined by an afine transformation, then they are said to be similar; if they are 
intertwined by a quasi afine transformation, then they are says to be quasi similar (see 
e.g.[21]). 
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.The nonlinear warps are modeled by linear combinations of smooth Discrete Cosine 
Transform (DCT) basis functions, considering a tri-dimensional space, as: 
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where l=1,2,3, qjk is the jth coefficient for dimension k and dj(xi) is the jth basis func-
tion at position xi. The dj(xi) is defined according to: 
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where dmi is the mth coefficient, I is the set of voxels size. The objective function is: 
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where w is the scalar parameter, f the source image, g the template image. A linear 
regularization approach based upon Bayesian framework is used in order to avoid 
unnecessary deformations introducing instability. The segmentation method used an 
Expectation Maximization algorithm and a Gaussian mixture modeling. It assumes 
that each pixel belongs to a different class and pixel’s intensities within each class is 
normal. A Bayesian model is used, where it is assumed that the modulation field Uij 
has been drawn from a population for which the a priori probability distribution is 
known. It is assumed that the prior spatial probability of each pixel is Grey Matter 
(GM), White Matter (WM) or Cerebrum Spinal Fluid (CSF). The prior spatial prob-
ability images is provided by Montréal Neurological Institute (MNI) , as part of the 
International Consortium of Brain Mapping (ICBM) [22]. Suppose Fij is the pixel’s 
intensity of the original spatial normalized image, the probability of each voxel be-
longing to each class is assigned based on Bayes rules [11]. 

 
Fig. 1. Steps of the segmentation approach. 
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In the next step, each pixel belonging to gray matter is labeled based on MNI ana-
tomical atlas constructed by manual segmentation, locating 116 brain structures de-
fined by Broadman’s areas [23]. Supposing the Fij is the gray partition of the spatial 
normalized image and assuming that it is a binary image, the brain structure is ob-
tained by logical operation as: 

( , )ijk ij ijkG and F B=  (6) 

where Gijk is the binary image representing each of brain structure coded by k Broad-
man areas and Bijk is the anatomical atlas. The inverse deformation mapping is applied 
to bring back the labeled structures to the original space. Each brain structure volume 
is achieved by counting the pixels belonging to each Broadman area and multiplying 
them by its physical dimensions. Figure 2 shows the 3 brain tissues (GM, WM and 
CSF) segmented automatically by method described above. 

 
Fig. 2. Brain structures segmented: (a) original MR image; (b) WM; (c) GM; and (d) CSF. 

2.1 Classification 

Classification is a task of machine learning and data mining areas whose solution 
requires the construction of a classifier, that is, a function that assigns a class label to 
instances described by a set of attributes [24]. The induction of classifiers from data 
set of previous classified instances is a central problem in machine learning and data 
mining researches. The classification method adopted was the naïve Bayesian classi-
fier [25]. The Bayesian classifier learns from training data the conditional probability 
of each attribute Ai given the class label C. Classification is done by applying Bayes 
rule to compute the probability of C given the particular instance of A1, …, An, and 
then predicting the class with the highest posterior probability. The patient clinical 
data set contains the brain structure volumes of each patient. These data are used as 
input for the classifier training. The continuous variables, such as the brain structure 
volumes, were transformed to a discrete number of intervals, reducing the number of 
values and improving Bayesian classifier performance [26]. The supervised discreti-
zation method performed was the Minimum Description Length (MDL) [27]. An 
attribute selection aiming to filter the most relevant attributes and to remove redun-
dant data is applied. The attributes are evaluated using correlation-based feature se-
lection (CFS) method of attribute subset selection [28] with “greedy hillclimbing” as 
search method. The naïve Bayesian classifier was trained and tested on a total of 371 
instances and 138 attributes. Its performance was measured performing a cross-
validation method using 10 folds [29]. 
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3 Experiments and Text 

The conducted experiments demonstrate the capability of predicting the CDR value 
using patient clinical data and brain structure volume information. 371 MR T1-
weighted images from aged 18 to 96 years-old patients were used in the experiments. 
Images were downloaded from the OASIS (Open Access Series Imaging Studies) 
public database [30]. A number of 116 brain structures, including gray matter (GM), 
white matter (WM), cerebrospinal fluid (CSF) and whole brain, were segmented 
using the method described in Section 2. Patient data attributes such as age, gender, 
education, socioeconomic status, and MMSE were also considered. The CDR scale 
was selected as the attribute class. It was assumed a CDR scale ranging from 0 to 0.5 
as normal control patient and ranging from 1 to 3 as patient in risk of dementia pa-
tient. Image processing and statistical analysis of structural T1 images were per-
formed with SPM5 (Welcome Department of Imaging Neuroscience, University Col-
lege London, visited 18/05/2008 http://www.fil.ion.ucl.ac.uk/spm). The classifier was 
performed with WEKA (http://www.cs.waikato.ac.nz/ml/weka; visited at April 16th, 
2008). Table 1 and 2 show the patient CDR description grouped by aging and gender. 

Table 1. CDR considering patient ages. 

Ages  0.0 0.5 1.0 2.0 Total 
0 to 20 16  0 0 0 16 
20 to 40 126  0 0 0 126 
40 to 60 59  0 0 0 59 
60 to 80 52 36 16 0 104 
Over 80 33 22 10 1 66 
Total 286 58 26 1 371 

Table 2. CDR considering patient gender. 

Gender  0.0 0.5 1.0 2.0 Total 
Female 112 25 8 1 146 
Male 174 33 18 0 225 
Total 286 58 26 1 371 

The classifier training and tests were performed according to the criteria illustrated in 
Fig. 3. The criteria define the selected attributes and the set of instances following the 
combinations illustrated in Fig. 3, as well. The objective is to compare the classifier 
performance when using different datasets. The MMSE (Mini-Mental State Examina-
tion) is a brief questionnaire test used to assess cognition which is applied when pa-
tient has shown symptoms of cognitive deficit [18]. It is also used to predict the risk 
of dementia. The MMSE score and MRI volumetric measurements can be evaluated 
together, reaching a consensus diagnosis. In our experiment we performed the classi-
fier’s training with and without MMSE, because only a few patients had that informa-
tion (166 missing values). The missing MMSE scores were replaced with modes from 
training data. Besides applying the supervised attribute selection method mentioned 
in Section 2.1, we also considered an attribute selection set based on medical knowl-
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edge. The classifier performance was measured based on sensitivity or true-positive 
rate (TPRC) for each class defined according to: 

CC

C
C FPTP

TP
TPR

+
=  (7) 

where TPC is the computing of true-positives (instances classified as class C that 
belong to class C) verified in test dataset; FPC is the quantity of true-negatives is the 
computing of false-positives (instances classified as C but do not belong to class C). 
The classification results are summarized in Table 3, according to the selected crite-
ria. We also considered in the experiments the patients with CDR equal to 0.5, be-
cause these patients represent a very mild dementia diagnostic state, requiring usually 
further information to identify a principle of cognitive deficit disorder. According to 
Table 3, we noticed that the best classifier performance was achieved by using selec-
tion criterion number 1 (including MMSE score and applying supervised attributes 
selection). Assuming medical knowledge, the best classifier performance was 
achieved by using selection criterion number 4. 

 
Fig. 3. Classifier training and tests strategy. 

Table 3. Summarizing the results. 

Selection   Criteria TPR [%] 0.0³ TPR [%] >0³ 
1 a1 b1 90.4 96.3 
2 a2 b1 88.4 96.3 
3 a1 b2 89.5 88.9 
4 a2 b2 86.9 92.6 

The attributes selected by supervised attribute selection described in Section 2.1 are 
reported in Table 4 (line 1) sorted by highest to lowest relevance. The attributes se-
lected by medical knowledge [31] are summarized in Table 4, as well. The attributes 
from patient dataset are described at Marcus et al. [30]. The remainding attributes are 
from automated brain structures segmentation algorithm described in Section 2, based 
on brain anatomical atlas describing the Broadman areas [31]. 
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Table 4. Attributes used: ¹ Patient data from OASIS dataset; ² Brain tissues volumes normal-
ized by total brain volume got from automated segmentation process; ³ Brain structures volume 
got from automated segmentation process; 4 The MMSE was used only in criterion set number 
3. 

N Total Attributes 
1,2 

14 
MMSE¹4, nWBV¹, VLiquor², nWhite², Supp_Motor_Area_L², Cin-
gulum_Mid_L², Hippocampus_L², Hippocampus_R², ParaHippocampal_R², 
Cuneus_R², Angular_R², Caudate_L², Thalamus_L², Thamalus_R² 

 
3,4 

18 
Gender¹, Age¹, Education¹, Socioeconomic status¹, MMSE¹4, eTIV¹, nWBV¹,  
nGray², nWhite², nCSF², Cingulum_L³, Cingulum_R³, Hippocampus_L³, 
Hippocampus_R³, ParaHippocampal_L³, ParaHippocampal_R³, Amyg-
dala_L³, Amygdala_R³ 

Evaluating the 58 subjects with CDR equal to 0.5 (questionable dementia), 69% were 
classified as normal control and 31% as risk of dementia. It would be necessary to 
follow those subjects up, reviewing them two or three years later, in order to predic-
tion accuracy. Fung et al [32] showed an AD patient classifier based on brain perfu-
sion marker changing observed in SPECT imaging. Their classification approach was 
achieved by using SVM (support vector machines) [32].Concerning the results, they 
achieved a TPR equal to 86.7% for normal control subjects and 80% for subjects with 
AD. Devanand et al [33] conducted a longitudinal study performed in 139 patients 
with the objective of evaluating the utility of MRI hippocampal and entorhinal cortex 
atrophy in predicting conversion from mild cognitive impairment (MCI) to AD. 
Based on regression models [34] in the 3-year follow-up sample, they reached 80% 
specificity and 83.3% sensibility, using the attributes age, MMSE, SRT (Selective 
Reminding Test) delayed recall, WAIS-R (Wechlsler Adult Intelligence Scale-
Revised), hippocampus and entorhinal cortex volumes. Fleisher et al [34] compared 
volumetric MRI of whole brain and medial temporal lobe structures to clinical meas-
ures for predicting progression from MCI to AD. They obtained a 78.8% predictive 
accuracy assuming hippocampus and ventricular volumes and cognitive measures, 
such as MMSE, ADAS (Alzheimer’s Disease Assessment Scale), NYU recall test, 
Symbol Digit Modalities Test, etc. 

4 Conclusions 

This paper proposed a fully automated segmentation algorithm applied to dementia 
study. The paper showed also an application of a data mining method, in order to 
classify patients with risk of dementia based on volumes obtained on image process-
ing. An advantage of using fully automated segmentation method should be standard-
izing brain structures volumetric assessment, allowing the patients with risk of inci-
dent AD could be followed up and treatment efficacy could be measured. As future 
work, we intend to apply the method into different image sets, associated to further 
clinical data, aiming to identify the risk of incidence AD in early stage. 
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